Local image structure

An image assigns has an intensity at each point. If at the point (zg,yp) the intensity has a
sudden change along a line, there may be an edge of an object passing through that point. That
is important to detect, for image understanding. This figure ilustrates this: it shows an image

of a drawing and a detail of it, both as an intensity image (in the lower right) and as a plot of
the image function. (To see this properly, use at least ‘magstep = 3’ in ghostview, or print
this postscript file).

In order to develop quantitative methods for computer vision, we need to analyze such local
structures in an image.

Mathematically, the image can be seen as a function f : R x R — R assigning to each ‘point’
(z,y) the real value f(z,y). If we assume that this function is sufficiently smooth, for instance
at least twice differentiable, then we can develop the function as a (2-dimensional) Taylor series
around (zg,yp)) The first 3 terms of that series then describe the image well, up to second order.

You may have had Taylor series only in 1 dimension (see also taylor.ps):
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f(zo +€) = f(wo) +f’($0)€+f"(370)5 +O(€). (1)

In two dimensions, you have to take partial derivatives of f in the z-direction and y-direction.
We denote these by f, and f,, and their derivatives by fi., fzy, fyy, etcetera. Then the Taylor
series is, to second order:

flzo+ €90+ 90) =~ f(zo,y0) + fe(zo,y0)e + fy(w0,%0)0
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(1) The function f(z,y) = m is fairly typical of what we would like to call an edge:




(2) Compute f, and f,. As often happens when you compute with exponential functions, you
can express these in f (see also sigma.ps). Do that, it makes the computation of the
second derivatives a lot easier. (Answer: f, = f(1—f), fy, =2f(1— f).)

(3) Now compute the second derivatives frz, fzy, fya, fyy- (Answer: fo, = f(1— f)(1 —2f)
and fzy = fyz = 2f(1 - f)(l - 2f) and fyy = 4f(1 - f)(l - 2f) Note that fzy = fyz)

(4) Give the second order Taylor approximation to f at a point (zq,yo).
Answer: in shorthand, with fo = f(20,yo0):

(€ +25)?

J(xo + €90 +6) = fo+ fo(1 = fo)(e+26) + fo(1— fo)(1—2fo) 5

(3)
(5) The following plot superimposes the Taylor approximations at several places (namely
(0,0),(2,2),(—3,3)) onto the function. Locally, the approximations are close enough that
they are indistinguishable from the surface; but when you move too far, they can get pretty

bad.

(6) The occurrence of (e + 20) suggests that we will get simpler formulas when we change
coordinates. We prefer an orthonormal basis, so we use as a coordinate transformation:

(2)-(22)() ®
Vb Vb

(7) This is a rotation (see rotation2d.ps); over which angle? (Answer: atan(2).)

(8) Give the Taylor expansion of f in these new coordinates.
Answer:

u — 2v 2u+v

f@o+ —— 00+ 7
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7 ) = fo+V5f(1 = fo)u + 3 fo(L = fo) (1 = 2fo)u’. (5)

(9) The new coordinates are gauge coordinates, in this case they have been chosen in the
direction of the gradient (direction of maximum derivative). (It is coincidence of this
example that it also makes the second derivative terms so nice, this does not usually
happen for curved edges.)



(10) We can use the Taylor series to determine where the function is locally flat. This means
that the second derivative terms must locally be 0, independent of u and v. At which
function values does this happen? At which points (i.e. (z,y) values) does this happen?

Answer: When fo(1 — fo)(1 — 2fo) = 0, so when fo = 0or fo =1 or fo = % The first two
possibilities happen only for infinite « or y (and indeed, the function looks flat there); so the last
one is the most interesting. From f(z,y) = %, we get: x +y — 5 = 0, so it happens at the line
y = 5 — z. This is just at the edge! This is because the edge is already straight in the direction
along it (the u direction), and that at the inflection points is also must be flat in the u-direction,

since the second derivative changes sign.

(11) We thus found the location of the edge. This example had some simplifying properties
— for one thing, the edge was straight. In general, to find an edge you have to look for
a second derivative that is zero independent of u (in the gradient gauge), at the points
where the first order terms are not too small (or it will hardly be an edge at all).

(12) If you want to try your hand at a curved edge, try: f(z,y) = m, and follow the
€

same procedure.

Answer: Some intermediate answers:
f(zo +€,y0 +0) = fo+2fo(1 — fo)(ze + 6) + 2fo(1 — fo) ((1 — 2fo)(we + 6)* + %fz> (6)

The gradient gauge becomes dependent on position:
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(13) This may all be very well for functions, because you can do the differentiation. But how

does it work in images, and especially discrete images in which x and y change stepwise,
form pixel to pixel? In that case you need to estimate (or measure) the derivatives. Again,
your course in computer vision will teach you how to that properly (for instance by filtering
images with the derivatives of Gaussians). A result of this kind of edge detection is:

original image edges

This is one of the best edge detectors currently available. It is called the Canny edge
detector; and the Gaussian derivatives are by Koenderink.



