[Step back on the COMPLETE  sequential path: Treated results (link type: 'sq-back/is part of/is summarised in/context in'; target: A08-m4bii)] [Next step on the COMPLETE complete sequential path: Treated results (link type: 'seq-next'; target: A08-m4bii2)]
[Show the characterisation of the module]
[Show the navigation menu of the module]
[To the Map of contents]
[Legenda]


[Contents
of the thesis]
[Comments on this module]
























































[Step back on the COMPLETE  sequential path: Treated results (link type: 'sq-back/is part of/is summarised in/context in'; target: A08-m4bii)] [Next step on the COMPLETE complete sequential path: Treated results (link type: 'seq-next'; target: A08-m4bii2)]
[Show the characterisation of the module]
[Show the navigation menu of the module]
[To the Map of contents]
[Legenda]


[Contents
of the thesis]
[Comments on this module]

Treated results: Potential and deflection function=A08-m4bii1

The sodium-iodine potential curves are given by the following expressions. The ionic ground state is usually described by the Rittner potential [The formulae are given in the mesoscopic Theoretical methods module (link type: 'project/wider range/input from'; target: MESO-m3c-mod#Potential curves]

$\displaystyle U_\ion(R)$ = $\displaystyle -\frac{e^2}{R}-\frac{e^2(\alpha_{\Na^+}+\alpha_{\I^-})}{2R^4}$  
    $\displaystyle -\frac{2e^2\alpha_{\Na^+}\alpha_{\I^-}}{R^7}-\frac{C_\ion}{R^6}$  
    $\displaystyle +A_\ion\, \er^{-R/\rho_\ion}+\Delta E.$ (E2)

and we describe the covalent potential only by two terms:
,  (E2)
where the potential parameters are given in table A08-m4bii1-T1 [The values are input from the Interpretation (link type: 'input from'; target: A08-m5bi].

  
Table A08-m4bii1-T1
Ionic-potential parameters Covalent-potential parameters
\alpha_Na^+ = 0.4083.a \alpha_Na = 273.h
\alpha_cl- = 6.4313.a \alpha_cl = 73.i
Cion = 11.3 eV6.b Ccov =1000 eV6.j
Aion = 1913.6 (2760l) eV.c Acov =3150 eV .j
rho_ion = 0.3489.d rho_cov =0.435 .j
epsilon = 3.11 + DeltaE_cov eV.e
re = 2.71143 (2.664l).f Coupling parameters
DeltaE_cov = 2.075eV.g H12 = 0.065 eV (0.0024 a.u. k)
Hrot = 3 x 10-17 (0.04 a.u. k)
a Dipole polarizability, [Value are input from another article (link type: `input from/external'; target: Rf(A08)14-m*]. b Van der Waals coefficient, from the London formula: , where I2 is the second ionization potential of Na and A is the electron affinity of I. c [Value are input from another article (link type: `input from/external'; target: Rf(A08)15-m*]. d [Value are input from another article (link type: `input from/external'; target: Rf(A08)16-m*]. e Potential well depth, [Value are input from another article (link type: `input from/external'; target: Rf(A08)17-m*]). f Internuclear equilibrium distance, [Value are input from another article (link type: `input from/external'; target: Rf(A08)18-m*)]. g From INa-AI. h [Value are input from another article (link type: `input from/external'; target: Rf(A08)19-m*)]. i Arbitrary value. j From the London formula: , where I is the first ionization potential. k Present work. l Alternative value due to overdefinition of the potential curve.

[To the FULL figure] Figure A08-m4bii1_1: Na-I adiabatic potential curves. The pseudo-crossing potentials are all of the same species $^1{\mit\Sigma}^+$. [Copied from the Quantitative interpretation (link type: 'INPUT FROM'; target: A08-m5bi].

Starting from these potential curves, the deflection function for chemi-ionisation in collisions between Na and I is given by figure A08-m4bii1-F2. The two curves due to ionic and covalent scattering are connected $b\approx R_\c$. Because of the several interference features, the ionic curve is split up into b, c and e branches, the covalent curve into a and d branches.
[To the FULL figure] Figure A08-m4bii1-F2: Deflection curves for chemi-ionization scattering (CM system) at Ei = 13.1 eV. [Copied from the Quantitative interpretation (link type: 'input from'; target: A08-m5bi]