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Preface

In the secondhalf of the 80's, a number of models and metaphors have
arisenthat explicitly deal with the concurrencyof cooperation in distributed
systems.They had one thing in common, they consideredprogramming a
distributed system to consist of two distinct activities: the computing part
consisting of a number of processesinvolved in manipulating data, and
a coordination part responsible for the communication and cooperation
between these processes.Since that time it has been recognisedthat ar-
chitectures incorporating explicit coordination models enhancemodularit y,
the reuseof existing components, portabilit y and languageinteroperabilit y.
A number of these architectures, focus on distributed reactive systems
and provide additional facilities for distribution of data and processes,
fault-tolerant behaviour, gracefuldegradation,and dynamic recon¯guration.

In 1997 a project started as a cooperation between the University of
Amsterdam, Delft University of Technology and Utrecht University to
participate in the RoboCup. One of the aims was to develop software for
a competitiv e robot soccer team. Although the merits of separation of
coordination and computation had been demonstrated by then, the design
decidedfor relied on messagepassingfor communication, and coordination
as an implicit part of the computation. The problems arising due to a lack
of robustnessof the system were resolved by practicing ad-hoc solutions,
and patchwork programming. The lack of °exibilit y of the architecture
resulted in multiple implementations of code with equal functionalit y in
di®erent modulesof the system,and large, di±cult to comprehendmodules.

In the ¯rst trimester of 2000,I attended a coursewhich discussedCom-
plex Industrial Systems.A system providing support for integration in dis-
tributed reactive systemswas presented, called SPLICE. I was surprised by
the elegant and simple approach it took to solve problems associated with
parallel and distributed systems.
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January 2001I started working on my graduation project. The assignment
consisted of reorganising the RoboCup software, in such a way that all
robots, aswell astheir internal components, cooperate by using the facilities
of SPLICE, and evaluating this solution.

For a number of reasons,this proved to be more di±cult than thought.
One of the problems was the uncrystallized state of the software existing
at the time. Another problem (partially resulting from this) was a lack of
documentation for the system modules. In the RoboCup project, graduate
students usually work on a single module for their project. While they
are working on it they are consideredmaintainers for the module. When I
started my project, four modules were being developed in this way. Sinceit
is sciencewe are talking about, my colleaguestudents were experimenting,
and experimental code was the order of the day. Sometimessimply to see
whether or not a thought they had would work, or to seehow well it would
perform. Aside from that there was always the call of the tournaments. To
ensurea functioning team when a challenge started, somefrantic hacking
took place for a short period before(and occasionallyduring) a tournament
or demonstration would take place.

In order to circumvent the uncrystallized state of the software, I decided
to take a working snapshot of the system, and disregard all modi¯cations
to the software made later. Unfortunately, as mentioned earlier, most of
the code was undocumented. That is to say: all of it was undocumented
on a functional level, but someof it had documentation on the API level
of the modules. Documentation on a functional level comprises the way
the modules perform their functionalit y internally, how these functional
components interrelate, and - once implementation would begin - what
parts of the code were associated with this. I neededthis information since
it was no option to maintain the structure of the modules as they were, as
will be explained in chapter 4.

I tried to get this information by talking to the module maintainers, but
somewerenot able to answer my questionssincethey were just started with
their projects themselves, and did not have a clear idea of what functional
components their modules consistedof. Others seemedsomewhat preoccu-
pied, and had their own worries. Which is understandable when you are
trying to design and code a module at the same time, and ¯x bugs, and
adapt the module you are working on to provide functionalit y another mod-
ule needsin order to make it possiblefor the robot team to play a decent
gameof robot soccer,and write your thesisaswell... SoI decidedto wait for
better times (I still liked the idea of using SPLICE for the RoboCup project
and was determined to go on with it). Meanwhile I studied someliterature
and wrote chapter 3.



iii

May 2002 better times arrived. The documentation I neededbecame
available in the form of graduation theses. Based on this information I
was able to design the architecture presented in chapter 5. I will probably
not implement it, let alone evaluate the implementation. Nevertheless in
this thesis, I try to show the potential bene¯ts of using a SPLICE based
architecture for the RoboCup.

I owe all I learned the past ¯v e years to the members of the Faculty of
Scienceand the University of Amsterdam; ¯v e years of education I won't
likely forget. Thanks also to the following people:Wouter Caarls, Bas Ter-
wijn, Jeroen Roodhart, Edwin Ste®ens,Nikos Vlassis, Frans Groen, Jurjen
Caarls, Werner Altewischer, Robert Bartelds, Pieter Jonker, Tijn van der
Zant, Marco Wiering, Erik Boasson,Edwin de Jong and to Matthijs Spaan
and Raymond Donkervoort for collaboration in writing the intro duction of
the RoboCup software and hardware.

And in conclusion, I would like to reserve some special thanks for
Maarten Boassonfor supervising my graduation project.

I think that's enoughprefacing. Enjoy the text!

Bas Doodeman
University of Amsterdam, NL

Summer 2002





Summary

A consortium of the University of Amsterdam (UvA), the Vrije Universiteit
(VU), Delft University of Technology (TUD), and Utrecht University (UU),
hasdeveloped software for RoboCup. The software is basedon a distributed
sharedworld model of the - for the robots relevant - world, i.e. the playing-
¯eld, the ball, the positions and behaviour of other robots of both teams.
Every robot decideswhat role it should perform basedon this world model
and a number of rules of conduct.

The current implementation of this conceptusesa communication mech-
anism originally developed at the TUD, which is usedby the robots to ex-
changelocal state information to build a sharedrepresentation of the world.
Unfortunately, becausethis communication mechanism is basedon message
passingwith coordination as implicit part of computation, the resulting ar-
chitecture has becomerather static.

To overcome this, the idea arose to redesign the system based on
SPLICE. SPLICE provides architectural support for real-time distributed
systems.It incorporates an explicit data-oriented coordination model, and
utilizes the subscription paradigm. This results in a more °exible architec-
ture for which design, implementation, and maintainance is greatly simpli-
¯ed. Due to the increasedmodularit y of the architectural components it is
easierto increaserobustnessof the system.In addition to this, architectural
components can easily be interchanged by alternativ es providing the same
functionalit y through another approach. Thereforeresearching what method
will perform best for a certain subproblem will require far lesse®ort, and
more time and energy is left for to perform true scienti¯c research.
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Chapter 1

In tro duction

This chapter intro ducesthe basicnotions usedthroughout the thesis.First I
will intro ducethe RoboCup, next I will discusssomedesignissuesregarding
a software architecture for distributed systems.After this I will intro duce
SPLICE, which provides architectural support for distributed reactive sys-
tems. Finally I will give a short overview of the organization of this thesis.

1.1 Rob oCup

The Rob oCup has been intro duced by Kitano et. al. [20] in AI Maga-
zine as \an attempt to promote AI and robotics research by providing a
common task for evaluation of various theories, algorithms and agent ar-
chitectures." At that time Chess- the common task previously associated
with AI - was no longer a challengeto the AI research ¯eld. Kitano tried to
provide a new challenging task to AI and other research areasby providing
a common task to evaluate and integrate a wide range of possibly interdis-
ciplinary technologies.The research areasinvolved with the RoboCup are:
agent architecture, combined reactive and modelling-planning approaches,
real-time recognition, planning and reasoning,reasoningand action in a dy-
namic environment, sensorfusion, multi-agent systems,behaviour learning
for complex tasks, strategy acquisition, and cognitive modelling.

The RoboCup is subdivided into a number of leagues.It consists of a
soft ware rob ot league,commonly referred to as the \sim ulation league"; a
real rob ot league,and the exp ert rob ot comp etition . In the simulation
league, software agents play soccer on a network of computers connected
to a soccer server , which provides the playground, simulation of physics,
and enforcesthe game-playing rules by meansof a software referee.In the
expert robot competition, robots compete which have special abilities, but
are unable to participate in the soccer game;instead they are challengedto
display special skills, likeshooting penaltiesand goal keeping.The real robot
leagueis subdivided into three categories,onefor small-, onefor middle-size-,
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Figure 1.1: A Pioneer 2.

Figure 1.2: Three Nomad Scouts.

and one for large robots.
A consortium of the University of Amsterdam (UvA), the Vrije Uni-

versiteit (VU), Delft University of Technology (TUD), and Utrecht Univer-
sity (UU), participate in the RoboCup middle-size real rob ot leagueas
Clo ckw ork Orange (from now on referredto asthe RoboCup). This league
is for robots at least 30cm and at most 80cm in height, with a diameter of
approximately 50 centimeters. The pla ying ¯eld is a colouredgreenrectan-
gle, which may vary in sizebetween8 and 10 meters in length, and between
4 and 7 meters in width. The rules of the gameare comparable to but not
completely the sameas those of human soccer. For instance, the maximum
number of players simultaneously in the game(including the goal keepers)
is eight; each team has four players. Other di®erencesand additions are
made to the rules, mostly regarding limitations of the robots as compared
to human players. For a more detailed discussionof the middle-sizerules of
conduct, seeappendix A (page59). The next sectiondescribesthe hardware
of the robots in somedetail.

1.2 Hardw are

First of all the robots have to be intro duced. The lineup consists of six
Nomad Scouts and one Pioneer 2. Delft University of Technology and
the University of Amsterdam own three Nomad Scoutseach adapted for the
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Figure 1.3: Hardware setup of the Nomad Scout.

soccer game,while the Pioneer 2 belongsto Utrecht University.
The Pioneer 2 (¯gure 1.1) from ActivMedia Robotics usesa laser range

¯nder, 16 ultrasonic sonarsensors,odometry sensors,and a camerafor sens-
ing. It usesa pneumatic kick deviceas actuator.

The Nomad Super Scout I I (¯gure 1.2) from Nomadic Technologieshas
odometry sensorsand one camera for sensingand a pneumatic driven kick
device as e®ector.Its 16 ultrasonic sensorsand its tactile bumper ring are
not used for RoboCup. The speci¯cations of both types of robots can be
found in table 1.1.

A functional overview of the hardware setup of the Nomad Scouts is
shown in ¯gure 1.3.The low level motor board controls the original hardware
from Nomadic Technologieswhile the high level computer is connectedto
custom hardware like the camera,the kick deviceand the wirelessEthernet.

The only hardware sensorsusedare the cameraand the wheelencoders.
The encodersshouldbeable to tell the rotation of each wheel,from which the
robot's path can be calculated. However, Nomadic Technologiesdecidednot
to usethe valueof the feedback signal coming from the wheelencodersasone
would expect but instead the value of the control signal ascomputed by the
controller from the feedback signal and desired speed.The low-level motor
board converts this signal to the expectedspeedresulting from it, assuming
the robot is free to move. In practice this meansyou cannot discriminate
between normal driving or pushing against a static object with slipping
wheels.

The camera is a wide angle color PAL-camera from JAI Camera So-
lutions. Several features are con¯gurable on this camera, such as the auto
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Figure 1.4: The kicker, ball handlers and the ball handling mechanism.

white balance feature. Con¯guration can be done manually or by software
through a serial port. For reliable color detection is it necessarythat the
auto-white balancecan be disabled. A standard WinTV frame grabb er is
used;it has beenset to grab 12 framesper secondin 640£ 240pixels YUV
format at 3 £ 8 bits color depth.

The Nomads have beenheavily customizedand currently have four ac-
tuators: the wheels, the kick mechanism, the ball holder mechanism and
the sound system. The kic k device (¯gure 1.4) usescompressedair from
a 16 bar air container on top of the robot. It is located between the two
ball handlers and the distance between it and the convex hull is 7 cm (one
third of the ball diameter, as speci¯ed by the rules). The kicking device of
the goal-keeper is half a meter wide (the maximum allowed width), since
its objective is not to handle the ball carefully but to just kick it acrossthe
¯eld. On top of the kicker mechanism residesthe ball holder mechanism: a
small pneumatic deviceusedto trap the ball for holding. Current RoboCup
regulations have deemedthis device illegal, therefore it is no longer used.

The motors , sonars , and bump er ring are being controlled by a Mo-
torola MC68332processoron a low lev el motor board . New motor com-
mandsareonly accepted¯v etimes a secondwhich severely limits the amount
of control one has over the robot. The Nomad can for instance not be al-
lowed to driveat maximum speedbecausewhenobstaclesaresuddenlybeing
detected the robot might not be able to stop in time.

The software runs on the high lev el computer , an Intel Pentium 233
MHz based computer on an industrial board, of the so-called biscuit size
(5.75" by 8"). Communication with the low level board is accomplishedusing
a serial port, and a PC 104 card is used to control the kicking mechanism.
PCI slotscontain the frame grabber and a standard soundcard that together
with two small speakers form the sound system .

For wireless comm unication between robots a BreezeCOM IEEE
802.11wireless Ethernet system with a maximum data rate of 3 Mbps is
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Speci¯cation Nomad Scout Pioneer 2

Diameter 41 cm 44 cm

Height 60 cm 22 cm

Payload 5 kg 20 kg

Weight 25 kg 9 kg

Battery power 300 watt hour 252 watt hour

Battery duration in game 1 hour 30 min

Max. Speed 1 m/s 2 m/s

Max. Acceleration 2 m/s 2 2 m/s2

Special sensors Camera Laser + camera

Table 1.1: The speci¯cations of the robots.

used, allowing the robot to communicate with other robots up to a dis-
tance of 1 km. It uses the 2.4 GHz band and ¯nds a frequency which is
not yet fully utilized by meansof frequency hopping. During tournaments
the BreezeCOMsystem proved very reliable in contrast with the WaveLan
systemusedby other teams which su®ersheavily from interferenceof other
wirelessnetworking devicesin the 2.4 GHz band.

1.3 Soft ware Arc hitecture

The robots in the RoboCup are envisagedasautonomousagents. Figure 1.5
depicts an autonomous agent interacting with its environment. An au-
tonomous agent is a systemthat can reach a goal or perform a task that is
given in terms of parametersor properties of the world around it [32]. Since,
in the RoboCup each autonomous agent corresponds with a mobile robot,
and more than one mobile robot are involved in the game-play as a team,
one team can be seenasa distributed system.A distributed system is an
interconnectedcollection of autonomouscomputers, for which the existence
of multiple autonomouscomputers is transparent [31].

Since a team in the RoboCup is a distributed system, the software ar-
chitecture designedfor it should match the criteria typically associated with
such a system.The de¯nition of soft ware architecture I will usethrough-
out this thesis is: A system structure that consists of active modules, a
mechanism to allow interaction amongthesemodules,and a set of rules that
govern the interaction. The software architecture of Clockwork Orange, is
basedupon a world model sharedover all agents. Each agent maintains its
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Agent Environment

Sensor

Actuator

Figure 1.5: An agent interacting with its environment [29].

own idea of the world in a local version of the world model. Information
from the local model is combined with the local world models from other
agents, resulting in a sharedworld model. The sharedworld model contains
relevant gameinformation like the soccer-ground,the ball, the positions and
behaviour of other robots for teammatesas well as for opponents.

Comm unication

In the current architecture, an agent consists of a number of autonomous
software modules. These modules use interface functions on top of a mes-
sagepassingmechanism to communicate information. This messagepassing
system is usedfor intra- as well as for inter agent communication. For inter
agent communication this is e±cient enough,however information exchange
within oneagent can be achieved much more cost e®ective by implementing
a shared memory scheme. Another aspect of the explicit messagepassing
system currently in use in the RoboCup software which is not entirely sat-
isfactory, is that it makes the architecture rather static. When sending a
messagein this messagepassingsystem, a destination alias - consisting of
an IP-addressin combination with a module-id - has to be given explicitly .
This hasthe disadvantage that recon¯guring the architecture hasto be done
by hand by adapting con¯guration ¯les, before compiling the system.There-
fore runtime (dynamic) recon¯guration is out of the question. If an agent or
a module stops functioning, it is impossibleto let another agent respectively
module take over its task, becausethe messagesintended for it are still sent
to the non-functioning unit.

A way to circumvent this, is to intro ducean intermediate medium which
on one hand storesthe information relevant for more than one module, and
on the other hand can be requestedby a module on a subscription basis
to deliver a particular sort of such information to it. In this system, if it is
determined that a module or agent has died, it is possibleto start another
instance of it which takesover. The intermediate medium will be requested
by the new instance to deliver information of the sorts it is interested in,



1.4 Organization of this Thesis 7

and the gamecan go on.
The medium - a shareddata spacein combination with the subscription

paradigm - in this form just presented hasa disadvantage: if the agent which
maintains the shareddata spacefails, the entire systemwill fail. To rid our-
selvesof this single-point-of-failure the shareddata spacecan be distributed
over all agents. By selectively copying the information redundancy is intro-
duced, which should be of such an extent, that when m of the n agents
fail n ¡ m agents can continue operation without (catastrophic) information
loss.

The distributed shareddata spacecanbe implemented in such a way that
each agent hasa local cache, all modulesof an agent communicate with one
another through the local cache. All communication with modules of some
other agent will go through the local cache,which in turn communicateswith
the cache of the other agent. From this cache, the information will be sent
to the modules interested in it. The communication with the local cache can
be implemented in shared memory, which is more e±cient for intra-agent
communication than messagepassing.

An architecture basedupon a shareddata spacein combination with the
subscription paradigm, with the re¯nement mentioned above (distribution)
and many other re¯nements to make the architecture suitable for reactive
distributed systems, is SPLICE. SPLICE is discussedin subsection 3.4.3
(page 32).

1.4 Organization of this Thesis

This chapter intro duced some basic notions used throughout the thesis.
Chapter 2 discussescoordination modelsand their uses,with someemphasis
on the data-oriented classof coordination models and SPLICE. Chapter 3
describes the functionalit y of the robot soccer software architecture as it is
implemented at this time.

Basedon what is discussedin chapter 2 and 3; chapter 4 discusseshow
to approach a SPLICE-basedredesignbasedon the current implementation
of the software. Chapter 5 presents this redesignand in chapter 6 this thesis
is concluded.

The appendicescontain additional information related to - but not part
of - the main story. Appendix A consist of a discussionof the rules of con-
duct of the RoboCup middle-sizeleague.Appendix B contains a number of
enlargements of ¯gures found in the main text.





Chapter 2

Functionalit y

This chapter discussesthe current state of the software architecture of the
robots, it describes the functionalit y of its component modules, and the
meansof interaction of thesecomponents embodied by the communication
system.

2.1 Soft ware Arc hitecture

Delft / Amsterdam and Utrecht have chosendi®erent approachesin intelli-
gent agent design.This results in a greater challengein modelling the team
behaviour: the heterogeneousrobots should integrate seamlesslyinto a team,
it is not desirable to have the robots divided into homogeneoussub teams.

Utrecht University's Pioneer2 usesan extendedversionof the subsump-
tion architecture [10] in which particular behaviours such asGet Ball, Drib-
ble, and Score compete for controlling the robot. All behaviours can react
in correspondenceto the world model or to direct sensordata provided by
the local cameraand laser range ¯nder.

The Nomad Scouts operate on a hybrid architecture which looks like
a classical, hierarchical approach but whose units have a high degree of
autonomy. Figure 2.1 depicts a functional composition of this architecture.
On the lowest level reside the virtual sensors and virtual actuators ,
the higher levels implement the tactics of the robot and the strategy of the
team. A good example of an autonomous unit is the Player skills module.
It is a reactive unit as the arrow toward it from Vision object recognition
indicates, which allows it to adjust a direct move command from the Team
skills module when an obstacleappears.

One should keep in mind that the architecture has beendesigneda few
yearsago ([17], short version appearedin [19]) and evolved over time. Mas-
ter's students from two geographically separated universities each worked
on their small part of the project. A lot of e®ort was spent coordinating the
di®erent modules. The functional decomposition in ¯gure 2.1 describes the
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Figure 2.1: Functional architecture decomposition for one robot.

architecture usedfor RoboCup 2001.

2.1.1 Virtual sensors and actuators

The lowest level in the software architecture implements the link between
software and hardware. It consistsof virtual sensors and virtual actua-
tors , which provide an abstraction to the hardware. They don't communi-
cate directly with the hardware but use device drivers from the operating
system as intermediates instead.

Odometry

The Odometry module is a virtual sensorwhich keepstrack of the motion
of the robot. It gets it data from the motor board1, it provides an estimate
of the current position of the robot aswell asan estimation of the systematic
error inherent to odometry. To estimate this error, a University of Michigan
Benchmark test as described in [9] has beenrun. For a typical Nomad this
error turned out to be 20cm after driving a 3m square(1.7%).

1The Motion module passesthis data to the Odometry module, since only the Motion
module can communicate directly with the low level motor board.
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Vision ob ject recognition

The camera supplies the data for our two other virtual sensors.All vision
processinguses24 bit colour imagesof a 320 £ 240 resolution, half of the
original height. This reduction is necessarybecausethe frames the camera
producesare interlaced. The cameraand vision system on each robot have
to undergo a lengthy calibration procedure every time lighting conditions
change.

Vision ob ject recognition [18] extracts objects like the ball, the goals
and robots from thesecamera images.This is done by meansof image seg-
mentation basedon colour detection. For this purposethe HSI colour sys-
tem is very suitable. The HSI colour systemrepresents coloursin an intuitiv e
way becauseit useshuman colour perception as a basis. It is represented
by the following set of colour features: I(n tensity), S(aturation), and H(ue).
Becausethe I component is separatedfrom the others, the spacespanned
by the HS components can be used for colour recognition independent of
light-levels. This is important for object recognition, sincethe top and bot-
tom colour of a nearby ball can di®er considerablyin intensity, but both are
still red/orange.

Using HSI is too computationally intensive; fortunately a cube in HSI
maps on a pie segment in YUV , and since the frame grabber device pro-
duces YUV images it is computationally inexpensive to use. In the YUV
colour systemY correspondsto the luminance of a colour, and U and V cor-
respond closely to the hue and saturation of a colour. In the Vision object
recognition module, object coloursare represented by their UV components.
Object detection is basedon thesetwo components; luminance information
is discarded.

Sizeand position of theseobjects are estimated and this information is
passedon to the World model and to the Player skills. The latter is also
noti¯ed when a large portion of an image is white, which usually indicates
the robot is standing in front of a wall. The Player skills module can react
by taking appropriate measuresto avoid hitting it.

Vision self-lo calization

As knowing your own position is crucial for constructing a global
world model, the camera is also used for self-localization. Vision self-
lo calization [16] (summarized in [30]) usesthe lines on the ¯eld and the
goals.The self-localization mechanism involvesa global and a local method.
The global method ¯rst splits the image into multiple regions of interest
and ¯nds straight lines in each of these.The lines are matched to a model of
the ¯eld, giving an estimate of the position. Becauseof the symmetry of the
¯eld multiple position candidates are found. Multiple Hypothesis Tracking
is then used to follow all the candidates over time, updating them for our
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own movement.
The local method is used to verify these candidates and to correct for

changes.All the candidatesare checked, verifying their headingand distance
to the goals and the overall result given to us by the local method. The
processis repeateduntil onecandidate remains,which is usedto update our
position.

Our self-localization mechanism requires the robot to move around be-
causeotherwisecandidate self-positions cannot be discarded.For this reason
the Teamskills module is noti¯ed when we've lost our position. This occurs
when the con¯dencemeasuresupplied with the position estimate is below a
certain threshold. To give an idea of the performanceof the self-localization
during a game: for a total period of more than two hours our position was
known only 44% of the time.

Motion

Driving is controlled by the Motion module which communicates motor
commandsto the low-level processorof the Nomad. The Kic ker module con-
trols the pneumatic kick mechanism usedfor shooting at goal. The Sound
module plays soundson request of other modules for entertaining and de-
bugging purposes.

2.1.2 Tactics and strategy

On top of the lowest software level residesthe tactical level, in which local
control of the robot as well the building and maintaining of a world model
takesplace.The strategy level of the software architecture is responsible for
the team strategy and action selection.

Pla yer skills

The main reactive component of our architecture is the Pla yer skills mod-
ule [3]. It tries to ful¯ll the wishesof the Team skills module while at the
sametime keepingin mind its other behaviours with a higher priorit y. These
are the collision avoidancebehaviour and the licenseto kill behaviour. The
collision avoidance behaviour makes sure a robot does not run into obsta-
cles such as robots and walls. If a robot has the ball and seesa large por-
tion of the enemy goal the license to kill behaviour makes it shoot at it.
These two reactive behaviours get their information directly from the Vi-
sion object recognition system, while the non-reactive behaviours usually
also usethe World model. Theseinclude simple actions like Goto(x; y; Á;v),
ShootAtAng le(Á) and Seek(ball ) but also more sophisticated actions like
Dr ibbleToObject(enemyGoal) or GotoObject(ball ) areavailable. The Player
skills module noti¯es the Teamskills module when an action has beencom-
pleted or aborted, in which caseit speci¯es the reason.
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Summary of available actions, in which x; y is a position, Á is an angle,
v is a speedand object is either ball , yellowGoal or blueGoal:

² Tur n(Á), rotate the robot around its axis until it reaches the desired
heading, relative to the center of the playing-¯eld. Also anglesrelative
to the robot can be speci¯ed. The ¯rst is usedwhen the robot knows
its position on the ¯eld, the secondif it doesnot.

² Tur nT oObject(object), turn to face the object. The object parameter
refers to one of the objects stored in the world model.

² Shoot(), kick the ball straight aheadat maximum force.

² Tur nShoot(Á), kick the ball at speci¯ed angle. This is accomplished
by driving while turning followed by a Shoot() action.

² Goto(x; y; Á;v), move to speci¯ed position while avoiding obstacles.
Desiredheadingaswell asdesiredspeedat end point can be requested.
Forward and backward motion is supported, but since the robot can
only detect obstacles in front of it driving backwards is not recom-
mendedduring normal operation.

² GotoObject(object), if object is ball move toward the ball and try to
control it. The ball is considered\under control", onceit is inside the
ball holder. If object is oneof the goalsmove toward it until the robot
is one meter away from it (you usually don't want it to actually drive
acrossthe goal line).

² Seek(object), keepturning until the robot seesthe requestedobject.

² D r ibble(x; y; v), carefully drive to the requestedposition trying to keep
control over the ball. If the robot loses the ball don't immediately
declare the action a failure but try to regain it. Dribbling with the
ball is di±cult due to the shape restrictions and the limit of ¯v e motor
commandsper second.

² D r ibbleToObject(object), dribble toward one of the goals.The Player
skills module keepsa memory of the relative position it last saw the
goals, in order to be able to ¯nd them again. This may seemsuper-
°uous, neverthelessit is kept becausethe position and orientation of
the robot are often unknown. The relative position of the objects in
the Player Skills module is kept on the basis of odometry position
information only, which is always available but not as accurate.

W orld mo del

To enablea distributed form of control and improve robustness,the W orld
mo del [13] (summarizedin [15]) is alsodistributed. Each of the robots in our
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team locally maintains a world model. This model consistsof the dynamic
objects in the game(i.e. the robots and the ball), and the static objects (the
goals). Each of these objects has static features such as its colour and its
size,aswell asmore dynamic featuressuch as its position, speedand related
uncertainties. Given the observations by the virtual sensormodules of the
various objects in the game, it is up to the world model to combine them
into a view of the world as complete and accurate as possible.

Sincewe want to construct an absolute model, which enablesus to dis-
tribute it among our teammates (and thus facilitating cooperative team
behaviour), it is necessarythat the robot knows its own position. Two sen-
sors are used to estimate this position. The ¯rst is the odometry sensor,
the secondis the vision self localization. The odometry sensorcontinuously
keepstrack of the position of the robot. It will however, asexplained before,
lose its correctnessafter driving long distancesor after collisions. So from
time to time the vision self localization is used to reset the odometry posi-
tion. It is up to the world model to combine the information of these two
sensorsin order to maintain a good estimate of the position. The interval
between two vision-basedself-localization position updates is typically rel-
atively large (usually approximately 30 seconds),therefore the world model
has to keep a history of prior position estimates. This enablesit to com-
bine the vision-basedestimate with the odometry information at the time
the vision-basedself localization produces a new estimate. The new com-
bined position estimate will be the weighted averageof the two positions,
where the weights are given by the respective uncertainty estimates. This
will result in a position shift from the original estimate, which can be used
to adjust all odometry positions received later, giving us an as accurate as
possibleestimate of the position of the robot at that time.

The other objects in the gameare detected by the vision system. Each
observation will come with information about the shape and colour which
is observed (e.g. an orangeball or a black robot), and the position estimate
of the observed object relative to the robot (camera). Given the robot's
self position, the world model will convert the robot-relativ e position of the
observed object to a position relative to the center of the ¯eld. Next it will
try to match the observation to any of the known objects in the world model.
This is done by checking whether there is an object that matchesthe shape
of the observation within an uncertainty region. When an observation is thus
matched to an object, it will be inserted in the object's observation history.
Using the linear least squaresalgorithm the world model tries to ¯t a linear
function through this list of observations. Extrap olating this linear function,
enablesus to do an accurate estimate of the position of the object at that
time while simultaneously ¯ltering out noisy observations. It alsoenablesus
to estimate the speedand heading of the observed object.

The world model keeps a list of the objects which are being tracked
(which are all objects which have been observed no longer than 4 seconds
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ago),and a list of objects which areknown to be in the gamebut which aren't
trackedanymore. Oncea non-tracked object is beingperceived its status will
be changedfrom non-tracked to tracked, and tracking continues.This allows
the world model to keepa model without any falseor outdated information
without having to throw away potentially valuable future information.

Due to its limited ¯eld of view and the fact that parts of the ¯eld will
be occluded by the objects on them, the robots will often perceive only a
small part of the world. Maintaining a sharedworld model makesit possible
for a robot to shareinformation with the other robots in the team. Sharing
the local world models and combining these results in increasedaccuracy
and completenessof the world models of all the robots in our team. A good
example of this is the sharing of the position of the ball: when the ball is
perceived by only oneof the robots, all robots will be able to \p erceive" the
ball through the sharedworld model, and reasonabout it.

One of the other featuresof the world model is the ball possessionproto-
col. When a robot detects that the ball is in its possession(i.e. the ball lies
between its ball handlers) a noti¯cation is sent to the world model, which
will record that the robot has the ball and will senda messageto all other
robots in the team, telling them the team haspossessionof the ball. Detect-
ing whether the opponent team has possessionof the ball is slightly harder
since our vision system does not enable us to detect whether the ball is in
the opponent's ball handling mechanism. For now we assumean opponent
has ball possessionif the ball has beenwithin its reach for sometime, and
our team doesnot have the ball.

Team coordination

The advantage of a sharedworld model is that team coordination is greatly
simpli¯ed. The task of the Team skills is twofold: it coordinates team strat-
egy, and it choosesthe next action the Player skills module should execute.
The task of the team coordination is to decideon a strategy. Three strate-
gies are de¯ned: attack, defend, and intercept, each of which depends on
ball possessioninformation: if our team has possessionof the ball, the team
will attack, if the opponent team has ball possessiona defensive strategy is
chosen,if it no team is in ball possession- or it is unknown - the team will
try to intercept the ball.

Each strategy consistsof a number of roles for an individual player to
ful¯l. The roles comprise:DefendGoal,PassiveDefend,Activ eDefend,Inter-
ceptBall, AttackWithBall, AttackWithoutBall, and SelfLocalization. Utilit y
functions are used to compare the suitabilit y of a robot to ful¯l a certain
role to that of the suitabilit y of others to ful¯l that role. Utilities are based
on a subset of the world information. Three features are used:1. The time
the robot expects it needsto reach the ball, 2. A position basedrole evalu-
ation, 3. Whether or not a robot has ball possession.It is assumedthat for
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each robot theseinformation items are the same.Discrepanciesin the world
model are disregarded.

All robots calculate the utilities that the other robots and they them-
selves have for each role. The robots then send the utilities to each other.
Each robot waits a while for the utilities of the other robots to arrive. After
this, role selection takes place. Role selection is not based on an election
mechanism. Instead, the ¯rst set of utilities to arrive from another robot is
usedby each robot to selecta role. Sinceit is assumedthe information based
on which the utilities are calculated is the same, it is assumedthe utilit y
calculations for each robot are equal. The utilities are exchangedneverthe-
less,and utilities received from another robot have preferenceover utilities
a robot has calculated itself. According to the behavioural design, this is
becauseit intro ducesa level of redundancy.

If no utilities arereceivedfrom another robot, a robot will usethe utilities
it has calculated itself. Once it is established what set of utilities will be
used,the robot selectsa role. To selectits role, a robot comparesthe utilit y
scoresfor each role, in the order of the importance of each role to be ful¯lled,
starting with the most important role to be ful¯lled. The role a robot selects,
is the role which is the ¯rst role with the highest utilit y for it. In this way
it is assuredthat important roles are always ful¯lled.

From the above it is possible to conclude that: On one hand, the role
selectionis basedon the assumption the world models in all robots are iden-
tical and the results of the utilit y calculations on all robots should yield the
sameresults; and therefor each robot can decideits own role without further
communication. On the other hand all calculations are exchanged,and cal-
culations received from other robots have preferenceover those calculated
by a robot itself for selectinga role.

This contradicts with the assumption that each robot can decideits own
role without further communication. It is probably better to either choose
to make a decisionbasedon local world model information alone (which is
shared anyway) thereby ignoring inter-local world model discrepancies,or
to choose for an election baseddecision processfor distributing roles over
the robots.

Action selection

For each role a number of actions (see the discussionof the Player skills
module above) is enabled.To decidewhich action a robot should take, the
current state of the robot and its environment is evaluated. The state consists
of: whether the ball is in one of the goals, ball possessioninformation, the
role evaluation, and how well a robot is positioned in the ¯eld. In addition to
this information, a number of internal parametersare part of the state of a
robot: the current distribution of roles among the ¯eld players, whether the
self position is known or not, and the type of action the robot is currently
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executing.The state is evaluated, and the action with the highestprobabilit y
of successwill be selected.

2.2 Comm unication

Communication betweentwo modules is handled by a messagepassingsys-
tem. The systemis basedon UDP and usesLinux kernel messagequeues.In
a message passing system , processescommunicate by sendingeach other
messages.A message is an atomic unit with a messagetype and a string
of bits containing data. The messageis sent from one module to another
using a method of delivery. In a message-basedparadigm the abstraction is
that there are direct connections between modules that serve as conduits
for messages.Theseconduits do not necessarilyhave to exist on a physical
level. The routing for a messagethat travels from one module to another
occurs at hardware and lower software levels.

2.2.1 The Message Passing System

In the messagepassingsystem usedfor the robots, each module has a mes-
sagequeue.For every module, all incoming messagesare stored in the mes-
sagequeueof the modules in order of arrival. When a module is ready to
processa message,it will issuea request for the next messageon its queue
and processit. This processcontinuesuntil all messagesare processedor the
module terminates. Using messagequeuesallows a module to sendinforma-
tion when necessarywithout having to wait until the other party is ready to
receive. Without someform of bu®ering, modules would be subjected to a
blocking wait if the other party isn't ready. Such a situation can easily lead
to a communication deadlock for the involved modules.The messagepassing
system has beendesignedwith sharedmemory capabilities in mind, but so
far none have been implemented. Both the intra robot communication as
well as the In ter rob ot comm unication is basedon messagepassingfor
information exchange.

Communication betweenmodules in di®erent layersof the hierarchy can
only be initiated by the module which is in the higher layer. This ensuresthat
control always resideswith the higher module. In communication between
modules in the same hierarchical layer, each of the modules may initiate
communication. Three di®erent typesof communication werede¯ned in our
messagepassingsystemto accommodate for downward and upward commu-
nication °ows: Orders, Questions, and Triggered noti¯cations. Orders are
intended for the downward communication °ow. Questions and Triggered
noti¯cations should be usedfor the upward communication °ow.
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Orders

Downward communication through the hierarchy is establishedby using the
order communication type. The order type is typically usedwhen a module
asksanother module to perform a speci¯c action. The order type is usedto
sendorders toward the actuators. For instance, Team skills action selection
can sendorders to the Player skills module (e.g. D r ibbleToObject(object)),
which in turn can send orders to the Motion module. It should however
not be possiblefor the Motion module to sendan order to the Player skills
module (which resideson a higher level in the hierarchy).

Two types of communication are used for upward communication through
the hierarchy: questionsand triggered noti¯cations.

Questions

If a higher level module is interested in information from a lower level mod-
ule, the question type will be used to ask for the information. The lower
level module will answer the question. Upward communication through the
hierarchy is less trivial than downward. If it is not allowed for lower level
modulesto initiate communication with higher level modulesit is di±cult to
useevent-lik e constructions for receiving sensorinformation. Clearly, ques-
tions may be suitable to receive periodic information, but sincethey cannot
be initiated by lower level modules they cannot be used for event-lik e con-
structions. Also, each Question generatesone piece of information, so one
piece of information requires two messages:one question and one answer.
This intro ducesdouble latency and bandwidth, which is no restriction to use
it for sporadic or irregular information exchange.It is, however, for periodic
information exchange.It would not make senseto usethe question type for
periodic information, becausethe question would be repeated periodically,
which is a waste of bandwidth. Another communication type used in the
upward communication °ow which more or less solves these issuesis the
triggered noti¯cation type.

Triggered noti¯cations

The triggered noti¯cation type can be seen as a single request for a
particular type of information from a higher level module to a lower level
module which honors the request by sending the information to the higher
level module, either periodically or when new information is available. If the
higher level module is no longer interested in the type of information the
lower level module sends,it simply requeststhe lower level module to stop
sending.

The mechanism we usefor the triggered noti¯cation communication type in
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Figure 2.2: Communication details. The arrows represent the information
°ow.

someaspects resembles a subscription mechanism. A subscription mech-
anism is basedupon the so-calledpush strategy: as soon as a producer of
data has new data available it will publish the data so it is locally avail-
able to subscribers, regardlesswhether a subscriber needsthat particular
instance of data on that particular moment. When the moment arrives the
subscriber needsthe data, it simply readsthe data from its local bu®erand
continues processing.The main advantage is that when the data is needed
it has already beentransferred over the network, and is locally available to
the subscriber. An important di®erencebetween the triggered noti¯cation
and a true subscription mechanism is that a true subscription mechanism
has anonymous publishers/subscribers. In the mechanism we use the pub-
lisher and subscriber know where the information comesfrom, respectively
goes to. Therefore the architecture lacks the increasedmodularit y which
architectures basedupon a true subscription mechanism have.

2.2.2 Deviations from the comm unication speci¯cation

Given the typesof communication and knowing communication can only be
initiated by the highest module of two communicating modules, it should
be easy to identify which type of communication is used for an arrow in
¯gure 2.1. Unfortunately this is not the case.In ¯gure 2.2, a more detailed
picture of the communication typesusedin the architecture is given, in which
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a distinction is made betweenthe useof communication typeswhoseusage
corresponds to the speci¯cation of the communication typesas given in the
documentation of the messagesystem and the useof communication types
whoseusagedoesnot correspond to it. Most of the non-compliant usageof
the types, is the usageof the question type for periodic information, which
can for instance be seenin communication between the World model and
the Team skills module2.

A more serioustype of deviation is the reverseof the initiation of com-
munication which occurs in the communication between the Vision self-
localization and the World model module. The initiation of communication
by a lower module may seemvery innocent, but in an architecture in which
control is arranged hierarchically, it is very important control does reside
with the higher module. If communication is initiated from below, the higher
module has no control over the information it receives,and therefore is (at
least partially) dependent on when and if the lower module is willing to
sendinformation. It becomesunclear which of the two modules is in control
over the other. This is not a problem if the modules are part of the same
hierarchical layer. If however two modules from di®erent layers are involved
it should - metaphorically speaking - always be clear who is captain on the
ship.

2Note that the direction of the arrow represents the information °ow. The question is
initiated by the Team skills module; the answer containing the requested information is
sent by the World model module.



Chapter 3

Coordination

This chapter discussescoordination languagesand models, and distributed
reactivesystems.It will beshown that the facilities provided by coordination
modelscan conceptually be usedto meet designrequirements of distributed
reactive systemsin generaland the RoboCup scenarioin speci¯c.

I will ¯rst intro duce coordination languagesand models, present some
examplesof architectures incorporating explicit coordination models, after
which I will discussdistributed reactive systemswith their respective de-
sign issues,and present a number of examplesof architectures incorporating
explicit coordination models in reactive distributed systems.

3.1 Coordination Languages and Mo dels

Classicalviews of concurrency in programming languagesthat are basedon
extensionsof the sequential programming paradigm are ill-suited to exploit
the full potential of distributed systems.Instead this requiresprogramming
models that explicitly deal with the concurrency of cooperation among po-
tentially large numbers of active entities that distributed systems consist
of.

A number of models and metaphors that explicitly deal with the con-
currency of cooperation in distributed systemswere designedin the second
half of the 80's. The purpose of them being to (partially) abstract away
and encapsulatethe details of communication and cooperation between a
number of entities performing somecomputation from the actual computa-
tional activities performedby theseentities. Examplesof such modelsare the
blac kb oard [22] model and the actor [1] model. The combination of these
models and metaphors resulted in the coordination paradigm.
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3.1.1 The Coordination Paradigm

The coordination paradigm considersprogramming a distributed system
to consistof two distinct activities: the actual computing part consistingof a
number of processesinvolved in manipulating data, and a coordination part
responsiblefor the communication and cooperation betweentheseprocesses.

A number of coordination modelsand their associated programming lan-
guagesweredesignedand implemented. They sharethe sameintent, namely
to provide a framework which enhancesmodularit y, reuseof existing com-
ponents, portabilit y and languageinteroperabilit y.

The coordination paradigm can be used to distinguish computational
concernsof a distributed system from the communication ones.This allows
for separatedevelopment of thesetwo aspects of system designwhich leads
to increasedmodularit y and thereby to better designs,reduction of devel-
opment time, and lesserlikelihood of errors.

Increasedmodularit y also encouragesreuseof existing components: sep-
arate computational moduleshaveseparatefunctionalit y which canbeeasily
reusedif they are not entangled by coordination constraints.

By separating the coordination component from the computational one,
the coordination paradigm encourageslanguage interoperabilit y. The co-
ordination component views the processesthe computational components
consist of, as black boxes.The actual programming languagesusedto write
computational code play no important role in setting up the coordination
system. Also, since the coordination component o®ersa homogeneousway
for interprocesscommunication and abstracts away the machine-dependent
details, coordination doesnot discouragethe useof heterogeneousensembles
of architectures.

To be able to use heterogeneousensembles of architectures, most coor-
dination models are portable. Di®erent hardware platforms o®er di®erent
advantages. The more hardware platforms are supported by a software ar-
chitecture, the more universally applicable it is.

3.1.2 Coordination Mo dels and Languages

A coordination mo del can be viewed as a triple (E; L ; M ), where E rep-
resents the entities being coordinated, L the media used to coordinate the
entities, and M the semantic framework the model adheresto [33]. A coor-
dination language is the linguistic embodiment of a coordination model,
o®ering facilities for controlling synchronization, communication, creation,
and termination of computational activities [23].

Of the coordination models I discuss, only Linda and GAMMA have
entities being coordinated which are not entirely like application processes.
For the others can be said the entities being coordinated are represented
by application processes.In Linda the coordinated entities correspond to
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the active stage of a tuple. In GAMMA a simple program is a f Reaction
Condition, Actiong pair and its execution involvesreplacing those elements
in a multiset satisfying the reaction condition by the products of the action.
Linda and GAMMA will be discussedin more detail below.

3.1.3 Classi¯cation

Coordination models and languagescan be classi¯ed into two main cate-
gories:thosethat aredata-driven,and thosethat arecontrol-driv en.Control-
driven coordination models and languagesare basedupon the messaging
paradigm .

In the messagingparadigm, the basic unit of information is a message.
A messageis an atomic unit with a messagetype and a string of bits con-
taining the data. The messageis sent directly from one processto another,
using a guaranteed method of delivery. In a message-basedparadigm, the
true topology of the network is abstracted from, and any processcan com-
municate directly to another processwithin the system without necessarily
being directly connectedto it.

For the category of control-driv en coordination modelsand languages,
the changesin the coordination processare triggered by events signifying
changesin the states of their coordinated processes.Members of this cate-
gory are: PCL [28], Programmers Pla yground [14], and TOOLBUS [5].

Data-Driv en coordination models and languagesare basedupon the in-
formation paradigm .

In the information paradigm, the whole notion of connection has been
abstracted away. The connection between modules is through information
types.Thesemay be represented assharedbu®ersbetweenmany modulesor
as information nameswhich somemodules produce and others consume.In
information basedsystems,producersof data tend not to carewho consumes
their data, and consumersof data tend not to care who producesit.

For the categoryof data-driv en coordination modelsand languages,the
changeover time in the computation is driven by the types and properties
of data involved in the coordination activities. Linda [2, 11], GAMMA [4],
ETHNOS [25], NDDS [24], and SPLICE [6, 8] are examplesof data-driven
coordination models.

3.2 Soft ware Arc hitectures Incorp orating Coordi-
nation Mo dels

A soft ware architecture de¯nes the organizational principle of a system
in terms of types of components and possible connections between these
components. In addition, an architecture prescribesa set of designrules and
constraints governing the behaviour of components and their interaction. [7]
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In this section I will discusstwo software architectures incorporating an
explicit coordination model: Linda and GAMMA, two coordination models
belonging to the data-driven category. Like most of the members of this
category they are developed around the notion of a shared data space.A
shared data space is a common, content-addressabledata structure [26].
All processesinvolved in computation can communicate among themselves
only indirectly via this medium. Interprocesscommunication is done only
through the shareddata spaceand the medium's contents are mostly inde-
pendent of the life history of the processesinvolved. Therefore shareddata
spacesresult in decoupling of processesin both spaceand time.

3.2.1 Linda

Linda [2, 11] is basedupon the generativ e comm unication paradigm : if
two processeswant to exchangesomedata, then the sendergeneratesa new
data object and placesit in someshareddata spacefrom which the receiver
can retrieve it. No processneedsto know the identit y of other processes,nor
is it required of all processesto be alive at the sametime.

The data objects are referred to as tuples , the shared data space is
known as tuple space. Besidestuples containing data - which are called
passiv e tuples - the tuple spacecan alsocontain activ e tuples representing
processes.Activ e tuples turn into passive tuples after the completion of
their execution.

Linda consistsof a set of simple coordination primitiv es:

² out (t ) is a non-blocking primitiv e used to put a passive tuple t in
tuple space.

² in (t ) is a blocking primitiv e which retrieves a passive tuple t from
tuple space.

² rd (t ) is a blocking primitiv e which retrieves a copy of t from tuple
space(the original remains there).

² eval(p) is a non-blocking primitiv e which puts an active tuple p in
tuple space.A processthat executeseval(p) will carry on executing in
parallel with p, which will turn into a passive tuple onceit completes
execution.

A number of additional primitiv eswere intro duced into the basic model:

² inp (t ) which is the non-blocking variant of in (t ).

² rdp (t ) which is the non-blocking variant of rd (t ).

inp (t ) and rdp (t ) will return FALSE when the desired tuple is not
found in the tuple space.
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3.2.2 GAMMA 1

GAMMA [4] is a coordination model based on multiset rewriting. The
basic structure in multiset rewriting is a multiset , which can, unlike
an ordinary set, contain multiple occurrencesof the same element. The
multiset can be seenas the shared data spaceof GAMMA. The control
structure associated with multisets is the ¡ operator,

which is de¯ned as follows:

¡(( R1; A1); :::; (Rm; Am))( M ) =

if 8 i 2 [1; m] 8 x1; :::xn 2 M ; eRi (x1; :::; xn)

then M

else2 let x1; :::; xn 2 M ; let i 2 [1; m] such that Ri (x1; :::; xn) in

¡(( R1; A1); :::; (Rm; Am))(( M ¡ f x1; :::; xng) + Ai (x1; :::; xn))

Where f :::g represents multisets and (Ri ; Ai ) are closedfunctions specifying
reactions.

A processis a (Reaction Condition, Action) pair, and its execution in-
volves replacing those elements in a multiset satisfying the reaction condi-
tion by the products of the action. The result is obtained when no more
such reactions can take place.

In the ¡ operator, the e®ectof (Ri ; Ai ) on a multiset M is to replacein
M a subsetof elements f x1 ; :::; xn g such that Ri f x1 ; :::; xn g is true for the
elements of Ai (x1 ; :::; xn ). If the reaction condition holds for several disjoint
subsetsof M , the reactions can be carried out in parallel; this property is
called lo calit y .
The following examplecode implements a prime number generator:

prime num bers(N ) = ¡(( R; A))

(f 2; :::; N g) where

R(x; y) = mul tipl e(x; y)

A(x; y) = f yg

It speci¯es that multiple elements should be removed from the multiset
f 2; :::; N g. The remaining multiset contains exactly the prime numbers less
than N .

1This subsection is basedon the discussion of GAMMA in [23].
2 In the original discussion, the condition (incorrectly) was eRi (x1; :::; xn ) instead of

Ri (x1; :::; xn ).
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Although the operational behaviour of GAMMA is strictly implicit since
the order of execution is by default completely parallel, practical use of it
hasrevealeda number of program schemes,which are referred to as trop es:

² Transm uter (C; f ) applies the sameoperation f to all the elements of
the multiset until no element satis¯es the condition C.

² Reducer (C; f ) reducesthe sizeof the multiset by applying operation
f to pairs of elements satisfying C.

² Optimiser (<; f1; f2; S) optimises the multiset according to somecri-
terion expressedthrough the ordering between the functions f1 and
f2, while preserving the structure S of the multiset.

² Expander (C; f1; f2) decomposesthe elements of a multiset into a
collection of basicvaluesaccordingto the condition C and by applying
f1 and f2 to each element.

² S(C) removesfrom the multiset all those elements satisfying C.

3.3 Distributed Reactiv e Systems

The roles of a reactiv e system include: (1) processingof measurements
obtained from the environment through sensingdevices,(2) determination
of model parametersdescribing the environment, (3) tracking discrepancies
betweenthe desiredstate and perceived state, (4) taking corrective action,
and (5) informing the operator or team of operators about the current and
predicted state of a®airs[8].

In distributed reactiv e systems the computation necessaryto ful¯l
these roles is distributed among several computational nodes which com-
municate with one another through a communication network. Distributed
reactive systemsrange from large embedded systemssuch as tra±c man-
agement and command and control systemsto autonomous robotic soccer
teams. Although their functional requirements di®er, thesesystemssharea
number of non-functional requirements.

3.3.1 Data Flo w T yp es

Data °ow type properties de¯ne characteristics such ashow quickly the data
must be delivered (temporal constraints), whether or not the data gets to
its destination (reliabilit y), and what bandwidth constraints exist. Reactive
systemscan have ¯v e typesof data °ow: signals,commands,status, events
and requests[24].

Signals are typically rapid in nature, have short persistence,and can
require high bandwidth. This is becauseit is more important to have the
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most recent value than it is to get every value.Command data °ow requires
each instruction in the sequenceto be deliveredreliably onceand only once.
Commandsoften are time critical. Status data °ow requirements are typi-
cally lessrigorous, it usually persists for sometime, it usually is not critical
to be deliveredonly onceand may or may not be be time critical or reliable.
Ev ent data °ow requirements vary: For example, an alarm response can
have strict requirements for time-critical and reliable delivery. Requests
can vary from onerequest to another. For somerequests,the requestermay
not want to wait until the request is ful¯lled.

The requirements inherent to the data °ow in distributed reactive sys-
tems are part of the non-functional requirements.

3.3.2 Non-functional Requiremen ts

Distributed reactive systemshave non-functional requiremen ts in com-
mon, regarding temporal behaviour, robustness,availabilit y, and maintain-
abilit y.

Timeliness is one of theserequirements resulting from the demand for
the system to decide on the correct action in time. It would - for instance
- not do for a robot arm to be instructed after it smashedinto the car it
was building. A real-time system is consideredto function correctly only if
it returns the correct result within a given time.

A distributed system may su®erfrom various types of hardware failure
ranging from a lost messageto a hard disk-crash. Robustness , is the ex-
tent to which it is able to withstand such hardware failures. The abilit y to
continue providing serviceproportional to the level of surviving hardware is
called graceful degradation [27]. In contrast to systemsbasedon grace-
ful degradation, fault-toleran t systemsare designedto fully mask failures.
Fault-tolerance is usually achieved through hardware redundancy.

Main tainabilit y is a requirement which arises from the desire to be
able to adapt a distributed system to new functional requirements or to
resolve problems which surface when the system has been designed and
implemented. For a maintainable systemit shouldeasilybepossibleto adapt
it to new requirements, without seriously restructuring it.

The capability of a systemto adapt to an increasedserviceload is called
scalabilit y . Systemshave bounded resourcesand can becomecompletely
saturated under increasedload. Adding new resourcesmight solve the prob-
lem, but it might generateadditional indirect load on other resources.

All previousnon-functional requirements have to bemet with availabilit y
constraints in mind. A system meeting the availabilit y requirement should
meet all previous requirements and be on-line no matter what happens.
This meansadditional demandsfor, for instancemaintainabilit y: it shouldbe
possibleto replaceand upgradecomponents of the systemwithout switching
it o®.
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3.3.3 Coordination in Distributed Reactiv e Systems

Architectures using explicit coordination models can help ful¯lling the non-
functional requirements inherent to distributed reactive systems. Coordi-
nation models were developed for distributed systems.Additional require-
ments for robustness,availabilit y, maintainabilit y, scalability and temporal
behaviour can only be partially solved in software, neverthelessa form of
architectural support to meet theserequirements is desirable.

Data-driv en coordination models o®er a signi¯cant advantage over
control-driv en coordination models: modules do not have to be aware of
each other's existence,which increasesmodularit y and thereby loosensthe
constraints placed on the designfreedomby non-functional requirements.

A shareddata spacearchitecture is basedupon an ideal situation where
non-functional requirements neednot to be taken into account. If onewants
to employ a shareddata spacearchitecture in distributed reactive systems,
this architecture hasto be re¯nened to meet the non-functional requirements
of distributed reactive systems.

Reactive systemsbasedupon a shared data spacearchitecture need to
be robust with respect to single points of failure. This means the shared
data space cannot be located at a single centralized hardware node. By
distributing the shareddata spaceover all nodesa singlepoint of failure can
be avoided.

Robustness:Becauseprocessesare not aware of each other, they can
easilybe distributed over the system.For instance:a failing software module
or hardware node does not necessarilymean a complete breakdown of the
system: the functionalit y of the failing modules can easily be taken over by
(stand-by) processesin other parts of the system.

Maintainabilit y: if functionalit y has to be added in a modular systemin
which the processesare not aware of each other, new modules can be added
without having to adapt other modulesto accommodate them. New modules
simply consumedata which is produced elsewhereand produce data which
can be usedby old modulesand new modulesalike. Upgrading modulescan
be done in approximately the sameway by creating a new module which
publishesand consumesthe samedata typesas its predecessor.

Temporal behaviour: a data-driven coordination model may utilize the
subscription paradigm . In this paradigm the publisher sends data to
subscribersassoon asit is available, often beforethe subscriber is interested
in a particular instance of data. A bene¯cial result from a performance
perspective is the that the delay betweenactual production and useof the
data dependsmore on the consumingapplication processes,and lesson the
communication network latency.
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3.4 Soft ware Arc hitectures in Distributed Reac-
tiv e Systems

This section describes three software architectures which are used in dis-
tributed reactive systems. Each of these architectures comprisesa shared
data space,applications and a communication network, and all of the archi-
tectures are basedupon the information paradigm.

3.4.1 ETHNOS

ETHNOS [25] is a programming environment for autonomousrobotic sys-
tems, used in the RoboCup by the Azzurra Robot Team. It consists of a
distributed real-time operating system of the same name with an explicit
coordination model, a network communication protocol which extendsUDP
to support reliable data transmission, a programming interface and a set of
development tools.

The coordination model of the operating system is basedupon the con-
cept of exp ert , which is a concurrent agent responsible for a speci¯c de-
lib erate behaviour. Experts are members of a trib e, each trib e is located
in a separatenetwork computer, which is called a village . All experts are
distributed over trib esdepending on their respective computational tasks.

The functionalit y of the ETHNOS operating system performs three
tasks: processcreation, scheduling, and providing communication mecha-
nisms.Three typesof communication aredistinguished,oneof which is based
upon the information paradigm, and provides transparent inter expert com-
munication - for experts in the samevillage aswell asfor experts in di®erent
villages - through the creation of, and accessto, sharedrepresentations.

Scoping is a mechanism to provide scalability to an information
paradigm oriented architecture by de¯ning the processeswhich are inter-
estedin a speci¯c type of information. In ETHNOS a scopingmechanism is
provided in the form of comm unication clubs . Three scopesare de¯ned:
1. an expert may publish in its village, 2. it may publish in its village in a
speci¯c communication club, or 3. it may publish in all villages in all clubs.

The information paradigm and the notion of sharedrepresentations allow
the experts to be decoupledin execution. This makesit possibleto establish
a system which comprisesdynamic recon¯guration , allowing experts to
be integrated into the system while the system is operational.

3.4.2 NDDS

NDDS [24] is a network middleware that implements the subscription
paradigm with extensionsto control °ow semantics of the data. NDDS is
composedof a run-time library , a database,and tasks. The application is
linked with the library . The tasksperform all of the messageaddressing,and
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transporting. The architecture promotes a symmetric design : at the level
of the infrastructure all nodesare identical. Becausethere are no special or
privileged nodes,it is possibleto build scalablesystemswithout intro ducing
single points of failure.
Each node in the architecture is composedof the following:

1. Applications are connected to the daemons that share the local
database.

2. Database stores cross-references,and updates information on all lo-
cal and remote publications, subscriptions,client and serversbasedon
declarationsand refreshmessages.A declaration messageis sent when
a publisher declaresa publication, when a subscriber declaresa sub-
scription. A refreshmessageis sent when publications or subscriptions
change.These declarations as well as the refresh messagesare stored
in the database,and are used as references.For instance to locate a
publications of a certain type.

3. Daemons areresponsiblefor maintaining and refreshingthe database,
subscription management, and performing the messageaddressing.

NDDS is basedupon RTPS which is an extension of the subscription
paradigm for real-time applications. It provides:

² Deliv ery timing control : Real-time subscribers are concernedwith
timing; for examplewhen the data is deliveredand how long it remains
valid.

² Reliabilit y control : Reliable delivery con°icts with deterministic
timing. Each subscriber typically requires the abilit y to specify its
own reliabilit y characteristics.

² Request-reply semantics : Complex real-time applications often
have one-time request for actions or data. These do not ¯t well into
the subscription semantics.

² Flexible deliv ery bandwidth : Typical real-time applications in-
clude both real-time and non-real-time subscribers. Each subscribers
bandwidth requirements - even for the samepublication - can be dif-
ferent.

² Fault-tolerance : Real-time applications often require \hot standby"
publishers and/or subscribers.

² Thread priorit y awareness: Real-time communications often must
work without a®ectingpublisher or subscriber threads.
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² Graceful degradation : Each real-time logical data channel must be
protected from the others. That is, the slowdown or failure of one of
the publishers should not a®ecta subscribers receipt of publications
from other publishers.

² Robustness : The communication layer should not intro duce any
single-node points-of-failure to the application.

² Dynamic scalabilit y : The lifetime of real-time distributed systems
often exceedsthe individual lifetime of any onepublisher or subscriber.
Publishers and subscribersneedto be able to join and leave the appli-
cation at any time.

² E±ciency : Real-time systemsrequire e±cient data collection and de-
livery. Only minimal delays should be intro ducedinto the critical data-
transfer path.

In RTPS each publication is characterized by four parameters: topic,
type, strength and persistence.The topic identi¯es the data-°ow, the type
describes the data format, the strength indicates the weight of a publisher
relative to other publishers, and the persistenceindicates how long each
publication issueis valid. When multiple publishers sendthe samepublica-
tion, the subscriber acceptsthe issueif its strength is greater than the last
received issueor if the persistenceof the last issuehas expired.

Each subscription is also identi¯ed by a set of four parameters: topic,
type, minimum separation and deadline. Topic and type are again respec-
tiv ely the label that identi¯es the data °ow and a description of the data
format. Minim um separation de¯nes a period after receiving an issue,dur-
ing which no new issuesare accepted for that subscription. The deadline
speci¯es how long the subscriber is willing to wait for the next issue.The
minimum separation protects a slow subscriber against publishers that are
publishing too fast, the deadlineprovidesa guaranteedwait time that canbe
used for the publisher to take appropriate action in caseof communication
delays.

RTPS provides a mechanism to customize the determinism versus the
reliabilit y trade-o®for each subscription separately. This mechanism is sub-
scriber driven;publisherssimply sendpublication issues.To provide message
delivery reliabilit y, the publishers as well as the subscribers use bu®ersto
store issues.The publisher storesa history of the most recently sent issues,
to enablea re-sendwhen a subscriber missesan update. The subscriber uses
the bu®erto cache the most recently received issues.This makesit possible
to have messageslocally available when the subscriber is ready to process
them.

The subscription paradigm results in one-way communication from the
publisher to the subscriber. Real-time applications often needto sendspeci¯c
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requestsfor data. Requestsare inherently bidirectional, which is why they
do not match very well with the subscription paradigm. In NDDS this is
met by intro ducing the concept of named services.A service is identi¯ed
by a name and separate types for the request parameters and reply data.
An application can be a client, a server or both. When a client makes a
servicerequest,it speci¯es the serviceby nameand speci¯es a minimum wait
and timeout for the reply. If during the minimum wait a number of servers
have responded, the responsefrom the server with the highest strength is
accepted.If no servershave respondedduring the wait, and the timeout has
not yet expired, the ¯rst responsereceived is accepted.When the timeout
has expired the client call returns with an error.

3.4.3 SPLICE

SPLICE [6, 8] is a software architecture designed for large-scaleembed-
ded systemsthat incorporatesan explicit coordination model. The acronym
stands for Subscription Paradigm for the Logical Interconnection of Con-
current Engines.
The architecture is composedof four components:

1. Applications : Are autonomous,independent processeseach of which
implements part of the functionalit y of the system.

2. Shared Data Space: All communication between the applications
takesplace through a logically shareddata spaceby reading and writ-
ing elements to and from it.

3. Heralds : Every application interacts with exactly oneherald. A herald
provides storagecapacity for the application aswell ascommunication
facilities for the application with the rest of the system. All heralds
are identical and require no a priori knowledgeabout applications or
their communication requirements. Heralds communicate by meansof
messagepassing.

4. Net work : The network handles communication between heralds. It
should support broadcasting,but should preferably alsoprovide direct
addressingof heralds.

Applications

Applications are active, concurrently executing processesthat each imple-
ment part of the system's overall functionalit y. Besidesprocesscreation,
there is no direct interaction betweenapplications; all communication takes
place through a logically shared data spaceby writing and reading data
elements.
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SPLICE extends an existing programming languagewith coordination
primitiv es for creating processesand for interacting with the shared data
space.The application processesare created by applying one of thesecoor-
dination primitiv es:

² create (f ): createsa new application processfrom the executable¯le
named f , and run it in parallel to the existing applications.

Shared Data Space

The shared data spacein SPLICE is organized after the relational data
mo del [12]. The basic relational data model3 is de¯ned to consist of a com-
bination of three components: 1. a collection of data object types,2. a col-
lection of generalintegrit y rules, and 3. a collection of operators on the data
object typeswhich comply to the integrit y rules. In SPLICE the object types
de¯ned as sorts , which consist of a name and a number of record ¯elds .
Each record ¯eld has a type, such as integer, real or string. Additionally ,
type constructors such as enumerated types,arrays, and nestedrecordsare
provided to build more complex types.

The nameprovided with the sort makesit possibleto distinguish between
di®erent types of sorts. To enable further di®erentiation between data ele-
ments of the samesort, identities are intro duced in the form of key ¯elds .
Each element in the shared data spaceis uniquely determined by its sort
and the value of its key ¯elds.

In addition to create( f ) , SPLICE provides three other coordination
primitiv es. They can be seenas part of the collection of operators on the
data object typesof the shareddata space:

² write (®, x): inserts an element x of sort ® into the shareddata space.
If an element of sort ® with the samekey value already exists in the
shareddata space,then the existing element is replacedby x.

² read (®, q, t): readsan element x of sort ® from the shareddata space,
satisfying query q. The query is formulated as a predicate over the
record ¯elds of sort ®. In casea matching element doesnot exist, the
operation blocks until either one becomesavailable or until timeout
t has expired. If the latter occurs, a timeout error is returned by the
operation. The timeout is an optional argument: if absent the read
operation simply blocks until a matching element becomesavailable.
In casemore than one matching element can be found, one is selected
non-deterministically.

² get (®, q, t): operatesidentically to the read operation, except that the
element returned from the shareddata spacebecomeshidden from the

3Later referred to by Codd as \the Relational Model Version 1".
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application's view, that is, the sameelement cannot be read a second
time by the application.

SPLICE does not provide an operation for globally deleting elements
from the shared data space.Instead, data can be removed implicitly using
an overwriting mechanism. This mechanism is typically used to update old
data with more recent valuesasthe system'senvironment evolvesover time.

To allow distribution of the shareddata spaceover a network of computer
systemsheralds were intro duced.

Heralds

A herald embodiesa local databasefor storing data elements, and processing
facilities for handling all communication needsof the application processes.
Each application processinteracts with exactly one herald. All heralds are
identical and needno prior information about either the application process
or their communication requirements. Communication between heralds is
establishedby a messagepassingsystem.

Messagesbetween heralds are handled by the communication network
that interconnects them. The network must support broadcasting, but
preferably should also support direct addressingof heralds, and multicast-
ing. The interaction with heralds is transparent with respect to the shared
data spacemodel: application processescontinue to operate on a logically
shareddata space.

The heralds are passive servers of the application processes,but are
actively involved in establishing and maintaining the required inter-herald
communication. The communication needsare derived dynamically by the
collection of heralds from the read and write operations that are issuedby
the application processes.

The protocol that is used by the heralds to managecommunication is
based upon a subscription paradigm which preserves the order in which
data elements of the samesort have been written by an application. This
protocol makessurethe shareddata spaceis selectively replicated acrossthe
heralds in the network, each herald contains only data of those sorts that
are actually required by the application it serves.

Data Categories

SPLICE provides a number of data sort categories.A data category spec-
i¯es the way a data sort is handled for communication and storage.

² context : A copy of the data will be stored in the data space,and can
be retrieved when a new processis started. Context data is typically
usedfor automated initialization of processes.If a processhasfor some
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reasondied, the context data should provide the information to allow
a graceful restart of the process.

² perio dic : Periodic or volatile data is the most commonly used data
type. Periodic data is presumedto be updated frequently , and is trans-
ferred with an unreliable but fast protocol. The assumption is that if
an update is missed the previous or next update is good enough to
replaceit (and the data is not resent).

² persisten t : Persistent data is stored on persistent storage.This is to
accommodate system restart in situations like a total power failure.

Scoping

SPLICE provides a way to partition the data spaceby meansof worlds .
When an application publishesa sort this sort is published in a certain pre-
speci¯ed world. A subscriber to this sort will only receive copiesof this sort
when it is subscribed to this sort in this world. If other instancesof the same
sort areproducedin other worlds, they will not be receivedby an application
subscribed to the samesort in another world.

This mechanism exists to provide scalability. Sinceinformation often has
a certain locality property, it is possibleto publish it only within a context
wherein the data is used. This makes sure the transfer of this information
is not unnecessarilyconsumingbandwidth.

Another way to useworlds is to make sure opponents (of a competitiv e
nature - for instance in a strategic simulation) do not receive information
they should not be aware of. If for instancerobot A and robot B are of di®er-
ent teams, it would be unwise for robot A to provide information regarding
the position of the ball to robot B. In this situation it would be bene¯cial
to have separateworlds for each team of robots. Though this seemsa safe
way to separatethe data spacesof two teams, it is always possiblefor robot
B to subscribe to sorts of the team robot A plays in, therefore a malicious
team can easily eavesdropon communication of an opponent team. SPLICE
supports no security in this respect.

It is alsopossibleto publish a sort in more than oneworld, and subscribe
to sorts in more than one world, or all worlds. This makes it more easy
to collect data across the entire system, for collecting statistical data, or
gathering information for a user interface.

3.5 Discussion

When it is acceptedthat the facilities provided by coordination models can
conceptually be used to meet design requirements of distributed reactive
systems,what coordination model would be most suitable and convenient
to use in the RoboCup?
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It should be a data-driven coordination model. Data-driv en coordination
models- asopposedto control-driv en coordination models- are basedon the
information paradigm, which enablesprocessesto cooperate in a distributed
systemwithout them actually having to be aware of the existenceof the pro-
cessesthey are cooperating with. This is the result of using a shared data
space,which enablesto abstract away the notion of connection. Processes
not being aware of each other greatly simpli¯es designof the individual pro-
cesses,sincein the designstagethe actual functionalit y a processrepresents
only dependson the processitself and the shareddata space,not on other
processes.

Of the software architectures for distributed reactive systemsincorporat-
ing data-drivencoordination modelsdescribed,SPLICE is the most suitable.
Other software architectures for distributed reactive systemsincorporating
data-driven coordination models,such asNDDS useexplicit delivery timing
control mechanisms. While a certain amount of control over it is a good
thing to have, it is often hard to predict delivery timing demandsat design
time. Therefore it is convenient this is handled transparently in SPLICE.

SPLICE also o®ersthe advantage that its data spaceis based on the
relational data model. The SPLICE data spacecanbeaddressedwith queries
in an SQL-like fashion. Sincemost peopleare familiar with this concept this
will have a positive in°uence on the learning curve. Aside from this, the
notion of primary key allows for a clear insight in data duplication when
writing a data element.

To simplify the design of a new robot soccer architecture based on
SPLICE, do we needthe full functionalit y of SPLICE, or another data ori-
ented real-time architecture incorporating an explicit coordination model,
to be able to provide the functionalit y as is provided by the current imple-
mentation of the robot soccer architecture?

A new design should at least realize the functionalit y the current im-
plementation represents. However, as is shown in the following chapters, it
is much easier to design a system basedon SPLICE, than to develop the
featuresprovided by SPLICE independently . Such asa data storagesystem,
a robust communication system, fault tolerance, etc. Important features of
SPLICE such asdecouplingprocessesto the extent SPLICE allows, are hard
to implement if not by mimicking a systemlike it. In the end it would come
down to re-implementing SPLICE-lik e architectural support for RoboCup.



Chapter 4

Transition

This chapter discusseshow to approach a SPLICE-basedredesignbasedon
the current implementation of the Clockwork Orangerobot soccersoftware.

4.1 Requiremen ts

In the previous chapters, a number of issueshave been described in devel-
oping software for Clockwork Orange which can be translated into require-
ments. In the subsectionsbelow a number of observations which should be
kept in mind when developing a new designare discussed.

4.1.1 Structure

Communication in modules in di®erent layers of the current module hierar-
chy can only be initiated by a module which is higher in the layer hierarchy.
This policy is a result from the desireto make moduleswith a higher capac-
it y for \reasoning" have control over the initiation of an information °ow.
This allows them to decideon which information haspriorit y in terms of pro-
cessing,which is something a module with a lessercapacity of such should
not decideon. If we were to look at this from an information oriented per-
spective however, this picture seemssomewhatdistorted. Information °ows
are a question of supply and demand: the °ow originates from di®erencein
potential. Of course,what is in demand is determined by the information
consumer.But the choiceof what data to receive should not residewith the
part of the system which is responsible for the implementation of the func-
tionalit y of it, but should rather be the responsibilit y of the coordination
model, which should make sure information is available when it is needed
for processing.

Estimating the self-position of a robot is di±cult, but absolutely essential
if observations made by one robot are to be usedby another. It is however
not possibleto design a vision-basedself-localization mechanism which re-
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sults in a position estimate for which the con¯dence is one-hundred percent
at all times. This means that if position estimates of objects observed by
a robot through its camera, are translated to a representation shared by
more than one robot, an error is intro duced. In the current implementa-
tion, the Player skills module usesposition observations which are basedon
such a sharedrepresentation. This is not always necessarysincemost of the
actions as executed do not have to rely on information observed by other
robots. On the contrary: local observations are not only without the coordi-
nation translation error, but alsodo not su®erthe latency originating in the
communication system. Therefore it is better to use robot relative object
position estimates in combination with as little position estimatesmade by
other robots as possiblefor the action execution process.

The Player skills module consists of two distinct parts: a reactive be-
haviour generation part, and an action execution part. The reactive be-
haviour generation generatesactions to be executed by the action execu-
tion. The latter executesthe actions of the reactive behaviour generationas
well as the actions generatedby the more model-basedbehaviour genera-
tion. The reactive behaviour generation and the action execution should be
implemented in separateprocesses.

The trend towards large modules should be discouragedin a new archi-
tecture. The bene¯t of a number of small components each implementing
part of the functionalit y of a system, rather than a small number of very
large components have been shown in - for instance - the UNIX family of
operating systems.The current architecture exists of large modules, often
implementing several functional aspects of the system. A reorganization of
thesefunctional aspectsinside the modulesis thereforenecessary. Preferably
each functional component should correspond to a single SPLICE process
in a new architecture. This may cost someadditional e®ort when designing,
but will probably simplify implementation and maintainance of the system.

4.1.2 Autonom y

There are situations in the current designin which distinct functional com-
ponents are not implemented as single processes.To simplify design, imple-
mentation and maintainance it is important to designthe system as simple
as possible.Keeping the processesin the system small reducesthe chance
of mistakes made during design and implementation simply becausethe
complexity of small programs is usually lower than that of large programs.
Also by mapping onedistinct pieceof functionalit y to oneprocess,a process
can easily be replaced by another, which performs the same functionalit y
but through a di®erent approach, to assist in researching what method will
perform best.

The self-location of a robot is known only for 44% of the time. In the
current architecture self-localization functionalit y is a part of the Vision
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module therefore it is hard to adapt. It would be easierif the self-localization
functionalit y would be implemented as an independent SPLICE process.
This enablesthe possibility of implementing di®erent methodologies, and
allows for experimenting with di®erent solutions.

From a robustnesspoint of view, it is a good idea that modules are as
independent from each other as possible.Therefore the idea of maintaining
autonomous software components as used in the current implementation
should also be applied in a new approach.

When new functionalit y has to be added to the system, it will usually
be appendedto an existing module even if it justi¯es the creation of a new
software component, becauseof the e®ort involved in creating a newmodule.
This results in overly large, an unnecessarilycomplex modules.

The switch from a messageoriented paradigm to an information oriented
one will take more than a simple rewrite of the interface functions of the
modules. The attitude of the modules towards sharing information in the
existing architecture can be described as \on a needto know basisonly". If
a module indicates it needsinformation from another, then the information
will be provided by the other, not sooner. This is not very convenient since
at the time of a request, the requesting module usually already requires
the information for processing.In an information oriented paradigm these
indications are not provided to the module sending information. Instead,
information should be published into the shareddata spaceas soon as it is
available. Therefore the modules that produce information have to become
more (pro-)activ e in committing information.

4.1.3 Comm unication

Although the current messagepassing system was designed with shared
memory capabilities in mind, nonehave sofar beenimplemented. Communi-
cation via sharedmemory can be usedto reducethe overheadfor intra-rob ot
communication.

The Team skills modules as well as the World model modules in a team
share information which is relevant to more than one robot alone. This in-
formation is sharedby meansof a broadcast. In other words: all robots on
the samesubnet will receive this information. A competition betweenrobots
using the current implementation is hard, becausethe robots in opposing
teams would share information. It would be impossible to build separate
distributed world models for two teamsunlessthe opposing teamswould be
on di®erent subnets. This is impractical since it would require two Breeze-
COM basestations (seethe hardwaredescription in section1.2) and it would
require to modify the con¯gurations of the robots in one of the teams.

The current messagepassingsystemis basedon communication via UDP
and usesLinux kernel messagequeues.While this is fast, the choice for an
alternativ e communication protocol which supports reliable communication
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should be o®eredto the designersof the new system. Through a reliable
protocol it is possibleto usecommunication patterns basedon state changes
rather than complete states. Sendingcomplete states may be lessprone to
communication faults than sendingstate changes,but state changesare are
smaller in size than complete states and therefore have smaller bandwidth
requirements.

4.1.4 Addressing

The current implementation of the messagepassingsystemrelieson commu-
nication through so-calleddestination aliases.A destination alias consistsof
an IP-addressin combination with a module-id. This doesnot only make it
very hard to change the IP-addressof the robots but also results in a very
static architecture, from an adaptabilit y as well as from a robustnesspoint
of view.

Runtime or dynamic recon¯guration is out of the question: if an agent
or module stops functioning, it is impossiblefor another agent respectively
module to take over its task, becausethe messagesintended for it are still
sent to the alias of the non-functioning unit. Also important is the fact that
the messagessent while the agent or module is restarting are thereby lost.

In a simulation which simulatessensorreadingsof the robot and actuator
e®ectsto the world which usesthe modulesas in a game- it is impossibleto
simulate more than onerobot on a singleworkstation becausethe routing of
the messagepassingsystem relies on IP-addresses.Even if the workstation
would have four IP-addresses,there would be four world modules residing
in it, which would have identical module identi¯ers.

4.2 Reuse

The reason for reusing software is clear: all functionalit y already imple-
mented should preferably not be re-implemented. However, reusingsoftware
from the existing architecture is hard. Reusinga module in its entiret y should
not be too di±cult sinceeach module comeswith a well de¯ned external in-
terface. Sincereusing an entire module is not always an option (seeabove),
it is necessaryto determine functional components on a sub-modular level.
This is hard, since these components often do not exist in themselves but
as intertwined parts of the overall functionalit y of the entire module, and
therefore do not have a well de¯ned interface nor can they easily be identi-
¯ed.

Since the modules have over the years been designedby several people
with di®erent approachesto intra module design,identifying functional com-
ponents inside modules has to be approached di®erently for every module.
Neverthelessthe following more generalnotions can be applied to more than
one of them.



4.3 Information °ows 41

All modules in the virtual device layer - the layer that provides an ab-
straction to the underlying hardware - implement only one distinct func-
tional aspect of the overall functionalit y: they provide an abstraction of an
underlying devicedriver for a speci¯c sensoror actuator. The actuator mod-
ules should simply accept actuator related speci¯c SPLICE sorts instead of
actuator related speci¯c messagesystem orders, and the sensor modules
should produce their information in SPLICE sorts instead of sendingTrig-
gerednoti¯cations.

Most modules consist of multiple concurrently executing program
threads. A number of the threads can - with some minor modi¯cations -
continue their lives in a new architecture. This occurs in the Player skills
module. It consistsof two concurrently running threads which perform sep-
arate functionalit y: one governs the reactive behaviour of the robot, the
other executesactions provided by the Action selection part of the Team
skills module. The Team skills module also usesseparate threads for the
Team strategy and the Action selectionparts, but they are too large to be
implemented as only one functional component.

4.3 Information °o ws

Onceit is recognizedthat it is possibleto reusecomponents from the existing
architecture but that some reorganization has to take place, it should be
establishedwhat a new architecture should look like. Sincethe architecture
is information oriented, viewing the architecture from an information-°o w
point of view is probably a good way to start.

In essence,the information °ow in an autonomous system can be rep-
resented by a feed-forward graph from the sensorside to the actuator side.
Whirlp ools resulting from reasoningand control mechanismsare represented
by small feed-back loopsin this graph. The information °ow of a cooperating
robot soccer team consistsof four parallel information °ows which connect
in a number of places.

The information °ow consistsof information elements. They are repre-
sented in SPLICE as data sorts. Information will be read from the envi-
ronment by the sensorsand produced by an application in the hardware
abstraction layer in the form of a data sort. This data sort will be consumed
by another application which will produce another data sort of a di®erent
type. This alternation between processesand data communication will go
on, meanwhile continuously manipulating information, until it arrivesat the
actuator sideof the hardware abstraction layer. Finally, the information de-
rived from the environment and enriched by several layersof processing,will
be transformed back into actions in the sameenvironment.

All that has to be done to complete a new architecture, is identifying
what data elements should be usedand which functional components from
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the modules should represent the processesin it. This is shown in the next
chapter.



Chapter 5

Redesign

Chapter 2 discussesthe existing softwarearchitecture and describesthe func-
tionalit y of its component modules.Chapter 3 discussescoordination models
and softwarearchitectures incorporating an explicit coordination model, and
the advantagesof using such architectures. Chapter 4 discusseshow to ap-
proach a SPLICE-based redesign based on the current implementation of
the Clockwork Orange robot soccer software.
This chapter will present a redesignof the RoboCup software using SPLICE.

5.1 Hardw are Abstraction

The proposedarchitecture will build on the foundations of the existing ar-
chitecture. The hardware abstraction layer represented by the virtual device
modules will remain intact. The di®erencesbetween these modules in the
two architectures will be limited to using SPLICE for communication and
coordination, and a number of changesof name for processesto make their
nameslie closer to the nature of their functionalit y.

Three processesrepresent the sensorside of the hardware abstraction
layer: the Odometer process,Vision self lo calizer process,and the Vi-
sion shap e detector process,which are all depicted in ¯gure 5.1. The
Odometer processproducesa position and a headingof the robot in a coor-
dinate systemwith an arbitrary origin. A position is de¯ned as the distance
from the origin of a 2-dimensional Cartesian grid, therefore an origin is
neededas a referencepoint. The Vision self localizer processalso produces
a position and heading of the robot, only in a coordinate system with an
origin at the center of the ¯eld. The Vision shape detector producesshap es
resulting from cameraimagesegmentation. A shape consistsof a colour and
a size,besidesthat it is observed at a certain time an at a certain position.
The position of the shapes is in a coordinate system with the origin at the
center of the robot the camerais mounted on.

Three processeshave been described, and already we have three coor-
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Figure 5.1: The Odometer process,Vision self localizer process,and the Vi-
sion shape detector process,representing the sensorside of the hardware
abstraction layer. Basedon the sensorinformation, the Self position estima-
tor processand Shape position estimator processrespectively estimate the
position of the robot, and the position of shapesperceived by the robot. (An
enlargement of this ¯gure can be found in Appendix B on page64).

dinate systems to take into consideration: the coordinate system with an
arbitrary origin, the coordinate system with the center of the ¯eld as ori-
gin, and the coordinate system with the center of the robot as origin. The
¯rst two are used for the position of the robot, and the latter for objects
perceived by a robot. To be able to shareobjects perceived by a robot with
the other players, it is necessaryto represent the position of the objects in a
common coordinate system. This coordinate system is the ¯eld coordinate
system. A translation of the shape positions in robot coordinates to ¯eld
coordinates is therefore necessary. For this translation a robot should know
its own position in the ¯eld.

5.1.1 Self Position Estimation

The Vision self localizer processproducesa reasonablyaccurate robot posi-
tion in ¯eld coordinates. The frequencyit producestheseestimateshowever,
is very low. During a typical game,approximately onceevery 30 secondsan
estimate is produced. To bridge the gap between the estimates produced
by the Vision self localizer process,the position produced by the Odometer
processcan be used. When a self position update is received from vision,
the o®setbetweenthe odometer position and the ¯eld position can be deter-
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mined. In the time betweenthe vision ¯eld position updates, the odometer
position in combination with the o®setcan be usedto estimate the current
position in ¯eld coordinates. The systematic error intro ducedby the odome-
ter (seesection2.1.1) will not be a problem in this set-up, the odometer will
however get confused if a collision occurs. Fortunately, the e®ectsof this
can be minimized by doing a sanity check on the estimated self position,
by meansof which can be determined whether it is probably correct or not.
This check consistsof taking the self position and heading,and a segmented
cameraimage. If due to the position and orientation of the robot, the cam-
era should be facing the yellow goal and it is not - or vice versa - the self
position is most probably wrong.

Another approach is to usea so-calledparticle ¯lter to estimate the self
position of a robot. In this casethe Vision Self Localizer processproducesa
number of estimates and the con¯dence in them on a more frequent basis.
The estimates are used to update the particle ¯lter relative to con¯dence
in them. Meanwhile the Odometer processalso producesposition updates,
additionally these can be used to shift the particles in the particle ¯lter
to provide intermediate updates. The particles in the particle ¯lter usually
converge to one or more clusters. The essenceof extracting an estimated
position from it comes down to picking the right cluster and taking the
center of gravit y of that cluster as a measurefor the self position in particle
space,after which this can be translated to ¯eld coordinates. One of the
advantagesof using a particle ¯lter is the memory function it provides, you
could say it ¯lters samplesin the temporal domain.

Estimating the position an the heading of the robot, while taking into
consideration the points mentioned above, is the responsibilit y of the Self
position estimator process(shown in ¯gure 5.1). The Self position esti-
mator processproduces the self position and heading in ¯eld coordinates
and the self-mode. The self-mode can be either shared or local, respectively
depending on whether the self position is known or unknown. The mode is
usedto determine whether objects observed by a robot may be sharedwith
other robots, since there is no sensein sharing objects for which the ¯eld
position is unknown. Besidesthe self position and heading in ¯eld coordi-
nates, the Self position estimator processalso producesthe self position in
odometry coordinates (which have an arbitrary - but constant - origin). This
is usedwhen the position of the robot in ¯eld coordinates is unknown, but
it is still necessaryto know the relative robot position at di®erent times. For
instance to be able to determine the tra jectory of objects.

5.2 Ob jects

The Shap e position estimator process(also shown in ¯gure 5.1) con-
sumesthe self position, self-mode and shapes, and determines the position
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Figure 5.2: The Object tracker process,Trajectory migrator process,Object
identi¯er process,Object parameter estimator process,Player property de-
terminator process,Ball property determinator process,and Goal property
determinator process.Objects are tracked, identi¯ed, and parameters and
object speci¯c properties are determined. (An enlargement of this ¯gure can
be found in Appendix B on page65).

of a shape in ¯eld-coordinates or odometry-coordinates depending on the
mode. Once the position of a shape is known, it is called an ob ject . Like
shapes, objects comprise a colour, a size, an observation time, and a posi-
tion in cameracoordinates. Additional properties an object has, are: an ob-
server, a position in ¯eld coordinates, or a position in odometry-coordinates.
All objects for which the position in ¯eld coordinates is known are shared
between the robots. The observer identi¯cation is provided for robots to
make a distinction betweenaccurateposition information (locally observed)
and inaccurate position information (observed by other robots). The posi-
tion in ¯eld coordinates of the objects, is usedto make an estimation of the
tra jectory an object is pursuing.

5.2.1 Tra jectories

It is impossiblefor observations to be tracked unlesstheir position is known
in a coordinate system which is not related to the robot. Since the robot
moves around, the origin of its (robot relative) coordinate system moves
with it. Observations made by the robot in robot coordinates, can only
be correlated if the coordinate system their positions are represented in, is
based on a ¯xed origin as compared to the positions of the observations.
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Once shapes have becomeobjects their positions are represented in such a
coordinate system, and therefore it is possibleto keep track of shapes that
probably represent the sameobject. This is the task of the Ob ject trac ker
process(shown in ¯gure 5.2). Basedupon the objects producedby the Shape
position estimator processit producestra jectories and trac ked ob jects .
Tracked objects and tra jectories are codependent: Tracked objects cannot
exist without a tra jectory, and a tra jectory is basedon position information,
and thus can not exist without objects. Trajectories are basically a list of
similar objects which arealike in colour and shape,but di®erin their position
and observation time.

Depending on whether the position of an object is known in ¯eld coor-
dinates or in odometry-coordinates respectively shared or local tra jectories
and tracked objects are maintained. Since shared tracked objects have an
estimated position in ¯eld coordinates, it is possibleto sharethem between
the team players. Becauseof this, all objects observed by a robot when the
self position in ¯eld coordinates is known, can also be observed by other
robots. If the self position is unknown it is impossibleto useinformation ob-
served by other robots, and therefore it is equally impossibleto share local
observations with other robots. Neverthelessit is necessaryto track objects
for the robot to still be able to play the game, if this is not possibleas a
team player then as an individual player.

5.2.2 Parameters

Once the tra jectory of an object is known it is possibleto estimate object
parameters such as the heading, and the velocity, as well as the current
position. The position of the last observation of a tracked object is not
necessarilythe current position. It is possible to extrapolate on tra jectory
information to estimate the current position of a tracked object. Like the
current position, the (current) heading of an object can be estimated this
way; this is necessarybecausethe heading of an object cannot be deduced
from a cameraimageasperceived through the vision shape detector. Object
parameters are produced by the Ob ject parameter estimator process.
Object parameters are updated continuously, and added to the properties
of tracked objects.

5.2.3 Iden ti¯cation

For processesmaking decisionsregarding the behaviour of the robot, tracked
objects alone are not su±cient. Behaviour is de¯ned in terms of named
objects such asball, goal, and player. Thereforea processshould exist which
identi¯es objects and namesthem. It is possibleto identify objects for what
they are, basedon the tra jectory information of an object. This is the task of
the Ob ject iden ti¯er process,that producesnamed ob jects . It identi¯es
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and namesstatic objects such as the goals or the corner poles, as well as
dynamic objects like the players or the ball, based on the properties of a
tracked object like colour, shape, and tra jectory. The colour property is
most useful to identify the ball, which is always orange/red, or to make a
distinction betweenplayersof our team and the opponent team, which wear
di®erently coloured shirts. To make a distinction between the individual
players of the teams based on vision alone is di±cult since there are no
easilyobservable visual distinctions betweenplayersin oneteam. To identify
individual players, it is necessaryto usetra jectory information.

5.2.4 Prop erties

To support behavioural processesfurther properties speci¯c to a namedob-
ject should be determined. For each namedobject there is a speci¯c process
which determinesproperties which are speci¯c to the named object and are
of a higher abstraction level. For instance, rather than speaking in terms of
the position of a ball, the Ball prop ert y determinator processproduces
information like whether the ball is in possessionof our team or in posses-
sion of the opponent team, whether the ball is in oneof the goals,and what
time it takes to reach the ball. The Goal prop ert y determinator pro-
cessproducesinformation regarding to whether a particular goal is in view
and what angle it has to the robot. The Pla yer prop ert y determinator
producesinformation regarding the players on the ¯eld. All information of
a high level of abstraction regarding the named objects is produced in this
layer. If it is necessaryfor the behavioural processesto know whether a par-
ticular player is in view, and what angle it has to the robot, it is easy to
extend the Player property determinator processor to add a new process
which ful¯ls this function.

5.3 Team Coordination

The behaviour of the robots can be divided into two levels: team coordina-
tion, which should result in coherent team behaviour; and individual action
selection,which determines the behaviour of the robot within terms of the
role the robot performs in the team strategy. The team strategy is entirely
determined by possessionof the ball. Three strategiesare possible:A ttac k,
Defend , and In tercept , this is depicted in ¯gure 5.4. The processrespon-
sible for determining the current team strategy is the Strategist process,
which is depicted in ¯gure 5.3. It consumesball possessioninformation and
producesthe team strategy. If a robot detects a change in ball possession,
the robot can decide on a new strategy which is determined according to
the ¯nite state machine depicted in ¯gure 5.4, if this is the case,the new
strategy will be made known to all players.
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Figure 5.3: The Strategist process,the Possible role determinator process,
the Attractor, repeller and slope calculator process,the Position basedrole
evaluator process,the Role utilit y calculator process,and the Role selector
process.A strategy is decidedon, for which the possiblerolesaredetermined.
For these roles a utilit y is calculated. Role utilities of di®erent robots are
compared, and a role is selectedbased on the priorit y of the role and its
utilit y. (An enlargement of this ¯gure can be found in Appendix B on page
66).

5.3.1 Roles

Each strategy de¯nes a number of roles , for a robot to ful¯l. To make sure
the most important roles are always performed, the roles are ranked, rel-
ative to their importance in the current team strategy. The roles include:
DefendGoal , PassiveDefend , Activ eDefend , In terceptBall , A ttac k-
WithBall , A ttac kWithoutBall , and Sel°o calization . If for instancethe
strategy is Defend, roles like Activ eDefendwill have priorit y over Intercept-
Ball and AttackWithBall. Possible roles for the selectedstrategy are pro-
ducedby the Possible role determinator process.This processconsumes
the strategy and determines the roles to be ful¯lled, basedon the table as
shown in table 5.1. A number of roles are de¯ned in terms of an areaon the
¯eld. If a robot performs a defensive role, it should most of the time stay
on its own half of the play ¯eld. For a robot ful¯lling an o®ensive role the
opposite is true and it should maintain a position on the opponent half of
the ¯eld for most of the time. For a robot to determine on which side of the
¯eld it is, it is necessaryfor it to know its self position in ¯eld coordinates.
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Figure 5.4: Finite state machine to determine the next team behavior. [29]

Strategy #1 #2 #3 #4

Attack DefendGoal AttackWithBall PassiveDefend AttackWithoutBall

Defend DefendGoal Activ eDefend PassiveDefend Activ eDefend

Intercept DefendGoal InterceptBall PassiveDefend InterceptBall

Table 5.1: Distribution of roles associated with each team strategy. [29]
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Nonethelessa role like AttackWithBall can also be performed by a robot
which doesn't know its self position, since it involves moving/shooting the
ball into the enemy goal, which makes it a ball-oriented role rather than a
position-oriented role.

A robot selectsits role basedon the possible roles as produced by the
Possiblerole determinator, and a utilit y for each of theseroles for the robot
itself aswell as for the utilities other robots have calculated. This is the task
of the Role selector process.The utilit y of each role is calculated for each
robot, and compared.The robot which has the highest utilit y for a certain
role may ful¯l this role. If a robot has the highest utilit y for more than one
role, the one with the highest rank will be selected.This makes sure more
important roles are assignedbefore roles of lesserimportance.

5.3.2 Utilities

Utilities are determined on basisof the possibleroles, a position basedrole
evaluation, whether the ball is in view or not, the time to reach the ball, ball
possessioninformation, and whether the current position in ¯eld coordinates
is known in combination with a static set of formulae which quantify these
into a measureof suitabilit y for the robot to perform each role. Once thus
quanti¯ed, the utilities cannot1 be usedto comparewhich role is best for a
robot to perform, they can however be used to compare the suitabilit y of
robots to perform a role between the robots. Utilities for possibleroles are
produced by the Role utilit y calculator .

The position basedrole evaluation is usedby the Roleutilit y calculator to
calculatethe utilities of position-oriented roles.For each role deemedpossible
by the Possiblerole determinator, a position basedevaluation is made.This
task is performed by the Position based role evaluator process.Aside
from the possibleroles and the self position of the robot in ¯eld coordinates
it also consumesattractors, repeller, and the slope. The general°avour of a
role determinesthe slope. For an attacker it should be more desirableto be
closeto the opponents goal than to be near its own goal, for a defenderthis
is vice versa.The attractors and repellers respectively are objects or regions
whoseposition it is desirable for a robot to be at, and objects or regions
whoseposition it is not desirable for a robot to be at. The opponent goal
for instance has a positive in°uence on an attacker. A defendershould not
cross the half-way line, therefore the opponent half of the ¯eld is marked
as repeller. The attractors, repellers and the slope for the a possible role
and the self position in ¯eld coordinates are combined into a position based
role evaluation. The attractors, repellers, and slopesare determined by the
A ttractor, rep eller, and slop e calculator process.

1This is the result of a design choice made for the behavioural design: the utilities of
di®erent roles are basedon di®erent norms, and therefore should not be compared.
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Figure 5.5:The Strategic selfpositioning evaluator process,the Action simu-
lator world state composerprocess,the Action simulator process,the Action
evaluator process,the Action utilit y calculator process,the Action selector
process,the Reactive behaviour process,the Action executor process;and
the actuator side of the hardware abstraction layer: the Motion controller
process,the Kicker process,and the Sound player process.Based on the
selectedrole, all actions available to the role are simulated and evaluated.
Basedon utilities of the actions and the probable actions other players will
take, an action is selectedand executed. The Reactive behaviour process
monitors the current world state, and publishes re°ex actions accordingly.
(An enlargement of this ¯gure can be found in Appendix B on page67).

If for a robot its position in ¯eld coordinates is unknown, roleswhich are
position-oriented rather than ball-oriented, cannot be ful¯lled by it. Also a
position basedrole evaluation cannot be made. In this casethe utilities for
the ¯eld-oriented roles will all be very low. Utilities regarding ball oriented
roles are expressedin terms of the distance and angle to the ball, which
are measuresindependent of the self position of the robot. If it is unknown
where the ball is, the sameapplies for ball-oriented roles.

5.4 Action Selection and Reactiv e Behaviour

Basedon the selectedrole, a robot can decideon its next action to perform.
A number of actions are considered:Turn , Mo ve, Dribble , Shoot , Seek,
and Chase, of which for each role a subsetis de¯ned. An action is selectedby
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simulating all actions on the current world state. For this purposea model of
the world is generatedby the Action sim ulator world state comp oser
processas depicted in ¯gure 5.5, which consumesworld state information,
and produces a world state for a robot and its team-mates. The action
simulator generatesan estimated world state after action execution for all
actions. The simulation itself is fairly trivial, it for instance simply assumes
that actions always succeed.Neverthelessthe simulator predicts the next
state with su±cient accuracy to estimate the probabilit y of successof the
action. The simulator is incorporated in the Action sim ulator process.
Based on the simulated worlds an evaluation of successof actions can be
madeby the Action evaluator process.The evaluation results in a reward
and a probabilit y of successfor an action. The Action utilit y calculator
processdeterminesthe utilit y of the actions of this robot as well as predicts
the most likely action taken by its team players. Based on the utilities of
the actions in combination with the actions the team playersmost probably
make, an action is selectedby the Action selector process.

Actions produced by the Action selector processare consumedby the
Action executer process,wherethey are translated to commandsin terms
of the actuator side of the hardware abstraction layer. Move commandsfor
the Motion controller process,kick commands for the Kic ker process,
and play commands for the Sound pla yer process.The action executor
usesrobot relative information only, thereby ensuring that - even if the self
position in ¯eld-coordinates is unknown - action executioncan be performed
anyhow.

Besidesactions producedby the Action selectorprocess,re°ex actions
producedby the Reactiv e behaviour processare consumedby the Action
executorprocess.The Reactive behaviour processcontinuously monitors the
world for certain conditions to becometrue, and if they are - producesre°ex
actions. If for instance the ball is in possessionof the robot, the angle to
the opponent goal is correct, and the opponent goal is wide open, a re°ex
action (shoot) will be produced, which has priorit y over normal actions as
produced by the Action selectorprocess.

5.5 SPLICE mapping

In the previous chapter (section 4.3) it was mentioned that all that has to
be doneto completea new architecture, was identifying what data elements
should be usedand which functional components from the modules should
represent the processesin it. This has been shown above. Now only one
important step hasyet to be taken: the components of the functional design
as presented above should be translated in terms of SPLICE facilities.
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5.5.1 Data categories

All data sorts have to be categorizedinto splice data categories(seesubsec-
tion 3.4.3). Most data sorts can be categorizedas volatile, it may however
be bene¯cial if somesorts related to the team behaviour are decided to be
context data. Team strategy is something that will not changevery rapidly
over time. Therefore, if a robot or a number of (relevant) processeshave to
be restarted during a game,the team strategy or at least the role the robot
should perform for it should be restored.Useof the persistent data category
is not necessaryfor the presented architecture, although a future designcan
use it for - for instance - storing learned behavioural parameters between
two gamehalves.

5.5.2 Worlds

SPLICE has a scoping mechanism basedon Worlds (seesubsection3.4.3).
Worlds exist in order to provide a notion of locality in the shared data
space,in order to pro¯t from the locality property usually found in data.
This allows for partitioning the data spaceinto separatesections.The ¯gures
depicting the design discussedabove: ¯gure 5.1, 5.2, 5.3, and 5.5, on page
44, 46, 49, and 52 respectively, depict the data sorts as blue, greenor violet
ovals.

Blue ovals are usedfor sorts which are producedin another ¯gure. Green
ovals are sorts that are produced in the Rob ot n world , which is the world
processesof robot n use for exchanging local information; such as a shoot
action. Violet ovalsaresorts that areproducedin the Team m world , which
is usedby processesof robots in team m to exchangeinformation, relevant
to more than one player in the team; such as strategy and role utilit y sorts.
In a simulation of two competing teams, each with four robots, a total of
2 + 4 + 4 = 10 worlds are used to partition the data space.If more than
onesimulation of such a gameis run, it may be useful to intro duceseparate
worlds for di®erent simulations: each simulation publishing in a Sim ulation
p world . If two simulations are run, each simulation running two teams, a
total of 2 + 10 + 10 = 22 worlds are usedto partition the data space.

Although it is possibleto add worlds beyond the point of a simulation
level, it is di±cult to imagine what use they would have since it is always
possibleto use the so-calleddefault world which is used for publications
and subscriptions if no world is speci¯ed by the process.On a di®erent note:
it is possibleto useworlds for all kinds of purposes.For instance,worlds can
be used to publish statistics. It is possiblefor a processto subscribe to all
data in a speci¯c world, therefore a single processcan be usedto gather all
statistical data produced.
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5.5.3 Pro cesses

The mapping of processesas presented in the previous sectionson SPLICE
processesis one to one. This results in a system with 29 active processes
when operating; signi¯cantly more than the 9 processesin the existing im-
plementation. Since there are O(n2) possiblerelations between n modules,
instead of the mere72 relations the modules in the existing implementation
can have, some812 possible relations have to be taken into account. It is
true, however, that only a subsetof all relations have to be consideredsince
not every processeswill be connected to every other process;the increase
in level of complexity in terms of relations betweenprocesseswill be of the
samemagnitude as the increasein number of processes.

The new processesthemselves may be less complex, and easier to un-
derstand than the existing ones, but this means the complexity has been
moved from the processesinto the infrastructure. In other words: the inher-
ent complexity of the system has not disappeared, but has been moved to
the information interdependenciesof the new processes.The infrastructure
must now be able to handle thesecommunication dependencies.

This is where SPLICE comesin: basedon the information of what sorts
each processconsumes(requires) and produces (probably required by an-
other process), it is possible for SPLICE to work out the communication
details for every pair of processesand transfer the data in such a way the
information (often) hasbeentransferred before it is actually neededfor pro-
cessing.





Chapter 6

Conclusion

Basedon the research performed, this thesispresented a designof a software
architecture for Clockwork Orange basedon SPLICE. Although I have not
implemented this design nor evaluated the implementation, a summary of
the most important conclusionsI havebeenable to draw canbe found below.

² Documentation of the functional components is essential for future
generations of studentsand other participants of the RoboCup project.
It is very nice to have an architectural overview of a system,but with-
out a clear description of the internal components, every new partici-
pant in the project will basically have to reinvent the functionalit y of
a component module when starting to work on it.

² To a certain extent it is possibleto reusesoftware components from the
current implementation. With someminor modi¯cations, components
from the lower levels of abstraction can be reusedin a SPLICE based
architecture. For the higher levels of abstraction this is not the case.
It probably requires less e®ort to rebuild them than to reuse these
components in their entiret y.

² Using a coordination model - especially if it is data-oriented - for dis-
tributed systemsdesignresults in a °exible software architecture. Due
to the high degreeof modularit y in such an architecture, it becomes
moreaccessible,robust, maintainable, adaptable,extendable,and scal-
able. This makes it easier to focus on the functional aspects, rather
than on the coordination aspects of the system.

² The trend towards large processesshould be discouraged in a new ar-
chitecture. The bene¯t of a number of small components each imple-
menting part of the functionalit y of a system, rather than a small
number of very large components have been shown in - for instance
- the UNIX family of operating systems. Preferably each functional
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component should correspond to a singleSPLICE processin a new ar-
chitecture. This may cost someadditional e®ort when designing, but
will simplify implementation and maintainance of the system.

² To simplify design, implementation and maintainance it is important
to keep the structure of the system as simple as possible. A way to
realize this is by mapping onedistinct pieceof functionalit y to exactly
one process.A processcan then for instance easily be replaced by
another which produces the same data sorts. This allows for great
°exibilit y in terms of maintainance and researching what method will
perform best for a certain subproblem.

Implementation and evaluation of a SPLICE basedRoboCup software are
Future Work.

6.1 Future Work

At the moment of writing a so-calledProgress project with the title \A
framework for maintaining a sharedworld model in dynamic environments
betweendi®erentiated embeddedsystemsand allowing interacting with hu-
man supervisors" is in progress.

The RoboCup project will be one of the environments used for test-
ing conceptsfor this project. Solutions to interesting research problems re-
garding distributed systems,world modelling and user interaction will be
implemented on the Clockwork Orange robot team. SPLICE most likely
will provide the infrastructure on top of which thesesystemswill be imple-
mented. It is possible that these implementations will form the basis of a
new SPLICE basedRoboCup software architecture for Clockwork Orange.

Meanwhile, the RoboCup software implementation as it currently exists,
is being used for research by students in Delft and Amsterdam. This will
probably continue to be the caseuntil the time arrives when it is possible
to useenoughsoftware components from the Progressproject for RoboCup
that a SPLICE basedarchitecture can be developed. If it is shown that this
implementation performs equally or better than the current implementation
(in terms of research and won games), it will probably replace the current
implementation.



App endix A:
Middle-Size League Rules of
Conduct 1

The leaguein which the Dutch robot soccer team Clockwork Orange par-
ticipated is the middle-size league.Unlike the Sony four leggedleague,the
teamsin the middle-sizedleagueare free to choosethe type of robot, sensors
and actuators. However there are somerestrictions. The robot may not have
a con¯guration in which its projection on the °oor doesnot ¯t in a 60£ 60cm
square.A robot should also have a con¯guration (with all its actuators re-
tracted) in which its projection on the °oor ¯ts into a 50£ 50cmsquare.The
robot may not be any higher than 80cmbut should be at least 30cm(so it is
large enoughto be perceived by other robots). The ball handling mechanism
should be built in such a way that it is always possiblefor an opponent to
steal the ball. Thereforea ball handling mechanism may not include the ball
for more then 1/3 the size of the ball (see¯gure 6.1). It also is prohibited
to ¯x the ball to the body by using somekind of ball holding device.These
rules also make it more challenging to let the robot turn and dribble with
the ball. The robots should all be completely black and are supposedto wear
somekind of marker which is either magenta or cyan, dependingon the team
the robot is in. This makesit possiblefor the robots and the audienceto see
which team the robot is in. The robots should also have numbers on them
making it possiblefor the refereeto tell them apart. The markers should be
visible from all sides,have a minimum size of 10 centimeters and must be
positioned above 30 centimeters high and below 60 centimeters. Before the
start of each gamethe team leadersand the refereewill decidewhich team
will play with which colour.

The ball that is usedis the standard orangeFIFA size5 ball. The ¯eld is
greenand may vary in sizebetween8 and 10 meters in length and between
4 and 7 meters in width. The lines are white and closely resemble the lines
on a human soccer ¯eld. There is a line in the middle of the ¯eld, with a dot
in the middle, from which the kicko® is taken, with a 1 meter wide circle

1This text is taken from a section in the master thesis of Matthijs Spaan [29].
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Robot

Ball

Figure 6.1: The ball handler rule

Figure 6.2: The sizesand lines of a robot soccer ¯eld

around it, which must be empty apart from the taker of the kicko®and the
ball when starting a game. There are penalty dots on which the ball will
be positioned during a penalty shoot-out and there is a goal-areaon either
sideof the ¯eld. The ¯eld is surroundedby a wall, so the ball can't leave the
¯eld. There are two 2-meter wide goals,a blue oneand a yellow one,making
it possible for the robots to distinguish their own goal from the opponent
goal by colour.

The rules of the game are comparable to but not completely the same
as those of human soccer. If all robots would stay in line in front of their
own goal it would be impossiblefor the opponent to scorea goal. Therefore
only one robot in each team, which must be designatedas goal keeper, may
permanently stay in the team's own goal-area. Any other robot may not
stay in its own goal-areafor more then 5 seconds.Also only one robot at
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a time may enter the opponent's goal area and may stay there for no more
then 10 secondsand is only allowed there if the ball is also in the goal area.
This should prevent obstruction of the opponents goal keeper and by doing
that scoring goals in a unguarded goal. As in human soccer, a robot will
receive a yellow card when charging an opponent. The gameis stopped and
the opponent gets a free kick. When a robot receives a secondyellow card
this is considereda blue card and the robot must be removed from the game
until the next game restart. If a robot receives a fourth yellow card this is
considereda red card and the robot must leave the ¯eld for the remainder of
the game.Other rules, present in human soccer, like corner kicks, throw-ins
and the o®side rule don't apply to RoboCup at this moment. The duration
of a gameis 20 minutes, divided in two halvesof each 10 minutes. During a
15 minute half-time break teams can if necessarychange the batteries and
¯x their robots. The complete FIFA and RoboCup rules can be found in
[21].





App endix B:
Figures

This appendix contains enlargements of ¯gures placedin the main text which
contain text hardly readabledue to its size.Layout considerationsprevented
me to enlargethe imagesin the main text, thereforeenlargements are placed
in this appendix. All ¯gures are cross-referencedto the place they can be
found in the main text.
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Figure 6.3: This ¯gure is an enlargement of ¯gure 5.1 on page44.
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Figure 6.4: This ¯gure is an enlargement of ¯gure 5.2 on page46.
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Figure 6.5: This ¯gure is an enlargement of ¯gure 5.3 on page49.
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coordination paradigm, 22

Daemons,30
data category, 34

context, 34
periodic, 35
persistent, 35

data °ow type
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Event, 27
Requests,27
Signals,26
Status, 27

data-driven coordination models
and languages,23

Database,30
default world, 54
Defend strategy, 48
DefendGoal roles, 49
Delivery timing control, 30
distributed reactive systems,26
distributed system, 5
Dribble action, 52
dynamic recon¯guration non-

functional requirement,
29

Dynamic scalability non-
functional requirement,
31

E±ciency, 31
ETHNOS coordination model,

xiii, 23, 29
Event data °ow type, 27
expert, 29
expert robot competition league,1

Fault-tolerance non-functional re-
quirement, 30

fault-tolerant non-functional re-
quirement, 27

Flexible delivery bandwidth, 30
frame grabber, 4

GAMMA coordination model, xiii,
23, 25

generative communication
paradigm, 24

Goal property determinator pro-
cess,48

Graceful degradation non-
functional requirement,
31

graceful degradation non-
functional requirement,
27

Heralds, 32
high level computer, 4
HSI colour space,xiii, 11

IEEE, xiii
information paradigm, 23
Inter robot communication, 17
Intercept strategy, 48
InterceptBall roles, 49
IP, xiii

key ¯elds, 33
kick device,4
Kicker module, 12
Kicker process,53

league
expert robot competition, 1
middle-sizereal robot, 2
real robot, 1
software robot, 1

Linda coordination model, 23, 24
locality, 25
low level motor board, 4

Maintainabilit y non-functional re-
quirement, 27

message,17
messagepassingsystem, 17
messagingparadigm, 23
middle-sizereal robot league,2
model

actor, 21
blackboard, 21

module
Kicker, 12
Motion, 12
Odometry, 10
Player skills, 12
Sound, 12
Team skills, 15
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Vision object recognition, 11
Vision self-localization, 11
World model, 13

Motion controller process,53
Motion module, 12
motors, 4
Move action, 52
multiset, 25

name, 33
named objects, 47
NDDS coordination model, xiii,

23, 29
Network, 32
Nomad Scouts,2
non-functional requirement

dynamic recon¯guration, 29
Dynamic scalability, 31
Fault-tolerance, 30
fault-tolerant, 27
Graceful degradation, 31
graceful degradation, 27
Maintainabilit y, 27
Robustness,27, 31
scalability, 27
Timeliness, 27

non-functional requirements, 27

object, 46
Object identi¯er process,47
Object parameter estimator pro-

cess,47
Object tracker process,47
Odometer process,43
Odometry module, 10
order communication type, 18

PAL, xiii
particle ¯lter, 45
passive tuples, 24
PassiveDefendroles, 49
PCL coordination model, xiii, 23
periodic data category, 35
persistent data category, 35
Pioneer 2, 2

Player property determinator pro-
cess,48

Player skills module, 12
playing ¯eld, 2
Position basedrole evaluator pro-

cess,51
Possible role determinator pro-

cess,49
process

Action evaluator, 53
Action executer, 53
Action selector,53
Action simulator, 53
Action simulator world state

composer,53
Action utilit y calculator, 53
Attractor, repeller, and slope

calculator, 51
Ball property determinator,

48
Goal property determinator,

48
Kicker, 53
Motion controller, 53
Object identi¯er, 47
Object parameter estimator,

47
Object tracker, 47
Odometer, 43
Player property determinator,

48
Position basedrole evaluator,

51
Possiblerole determinator, 49
Reactive behaviour, 53
Role selector,51
Role utilit y calculator, 51
Self position estimator, 45
Shape position estimator, 45
Sound player, 53
Strategist, 48
Vision self localizer, 43
Vision shape detector, 43
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Programmers Playground coordi-
nation model, 23

Progress,58

question communication type, 18

Reactive behaviour process,53
reactive system, 26
real robot league,1
record ¯elds, 33
re°ex actions, 53
relational data model, 33
Reliabilit y control, 30
Request-replysemantics, 30
Requestsdata °ow type, 27
RoboCup, 1
Robot n world, 54
Robustness non-functional re-

quirement, 27, 31
Role selectorprocess,51
Role utilit y calculator process,51
roles, 49

Activ eDefend,49
AttackWithBall, 49
AttackWithoutBall, 49
DefendGoal,49
InterceptBall, 49
PassiveDefend,49
Sel°ocalization, 49

RTPS, xiii, 30

scalability non-functional require-
ment, 27

Scoping,29
Seekaction, 52
Self position estimator process,45
Sel°ocalization roles, 49
Shape position estimator process,

45
shapes,43
SharedData Space,32
shareddata space,24
Shoot action, 52
Signalsdata °ow type, 26
Simulation p world, 54

soccer server, 1
software architecture, 5, 23
software robot league,1
sonars,4
sorts, 33
Sound module, 12
Sound player process,53
sound system, 4
SPLICE coordination model, xiii,

23, 32
SQL, xiii
Status data °ow type, 27
Strategist process,48
strategy, 48

Attack, 48
Defend, 48
Intercept, 48

subscription mechanism, 19
subscription paradigm, 28
symmetric design,30

Team m world, 54
Team skills module, 15
Thread priorit y awareness,30
Timelinessnon-functional require-

ment, 27
TOOLBUS coordination model,

23
tracked objects, 47
tra jectories, 47
trib e, 29
triggered noti¯cation communica-

tion type, 18
tropes,26
tuple space,24
tuples, 24

active, 24
passive, 24

Turn action, 52

UDP, xiii

village, 29
virtual actuators, 9, 10
virtual sensors,9, 10
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Vision object recognition module,
11

Vision self localizer process,43
Vision self-localization module, 11
Vision shape detector process,43

wirelesscommunication, 4
World model module, 13
worlds, 35

YUV colour space,11




