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Grid Resource Allocation by Means
of Option Contracts

Anton Bossenbroek, Alfredo Tirado-Ramos, and Peter M. A. Sloot

Abstract—In Grid environments, where virtual organization
resources are allocated to users using mechanisms analogue to
market economies, strong price fluctuations can have an impact
on the nontrivial quality-of-service expected by end users. In this
paper, we investigate the effects of the use of option contracts on
the quality of service offered by a broker-based Grid resource al-
location model. Option contracts offer users the possibility to buy
or sell Grid resources in the future for a strike price specified in a
contract. By buying, borrowing and selling option contracts using
a hedge strategy users can benefit from expected price changes. In
this paper, we consider three hedge strategies: the butterfly spread
which profits from small changes, the straddle which benefits
from large price changes, and the call strategy which benefits
from soaring prices. Using our model based on an abstract Grid
architecture, we find that the use of hedge strategies augment the
ratio of successfully finished jobs to failed jobs. We show that the
degree of successfulness from hedge strategies changes when the
number of contributed resources changes. By means of a model,
we also show that the effects of the butterfly spread is mainly
explained by the amount of contributed resources. The dynamics
of the two other hedge strategies are best explained by observing
the price behavior. We also find that by using hedge strategies the
users can increase the probability that a job will finish before the
deadline. We conclude that hedging using options is a promising
approach to improve resource allocation in environments where
resources are allocated by using a commodity market mechanism.

Index Terms—Computational Grids, Grid economies, finance,
hedge strategies, options, resource allocation.

I. INTRODUCTION

UE TO limitations imposed by distributed computing
D technologies, high-performance applications often have
to be parallelized. In the past the only possibility to execute
such applications was by having access to a super computer
which could perform the calculations required. This approach
poses several issues; for instance, if more capacity is needed,
it may not be feasible in the short term or cost effective to
build or extend a parallel computer. While personal computers,
workstations or parallel computers at the local site may run at
full capacity, systems at other sites might be under used [1].
One of the most interesting recent approaches to the effective
use and sharing of distributed resources is offered by Grid
computing technology.
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Grid computing [2] is a distributed computing paradigm that
offers new possibilities to design architectures that provide se-
cure and seamless access to multiple distributed data and com-
putational resources. This is achieved by allowing users to share
such resources within multiple Grid virtual organizations (VOs),
supported by middleware based on open standards.

The vision of Grid Computing is based on the access to
computing and data resources from a virtual infrastructure that
mimics the electrical industry power Grid. That is, users should
not have to care where available computing resources are, as
long as there is a reliable and secure way to access them. This
persistent and multipurpose infrastructure will eventually come
at some cost, which is expected to be justified because it will
be amortized over many uses and users [3].

Different categories of Grids are identified in the literature
[4]. The most prevailing types of Grids are Computational Grids
and Data Grids. Computational Grids aggregate the power of in-
dividual computers into the computational capabilities of virtual
supercomputers. Data Grids, on the other hand, aim to create
aggregated virtual repositories that give users access to vast
amounts of data and storage capacity previously unavailable,
using transparent higher level services such as replica location
services.

In order to provide uniform views and access to resources,
Grids aggregate them in a highly controlled fashion [5]. Access
is controlled by local policies translated to sharing rules, which
clearly define under which conditions the resources can be
used. Resource providers and consumers with the same sharing
rules form specialized VOs [2]. Examples of such VOs are
loosely coupled consortia of institutions and companies with
requirements for high computational or storage services, such
as cycle providers, storage service providers, or hospitals with
large quantities of digitalized image data. Virtual organizations
can be similar to a real administrative organization, and may
span multiple administrative domains across geographical
boundaries.

Many issues have to be addressed to effectively share re-
sources in a Grid, and the issues involved differ per type and
purpose of the infrastructure to be built. For instance, to effec-
tively serve as an extension for parallel computers, computa-
tional Grids have to provide at least the same quality of service
as such systems. Effective sharing of resources makes it possible
for users within a virtual organization to perform computations
on resources contributed to the VO; the most straightforward
way to achieve this, naturally, is to let the user choose which re-
sources to use. Depending on the amount of resources needed,
this method might become tedious and inefficient, and a chosen
allocation scheme might be not optimal for either the user nor
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the Grid. In this respect, resource allocation in Grid environ-
ments is a crucial problem.

Regardless of who performs the resource search and selec-
tion, be it users or automated systems, decision makers are faced
with the difficult task of matching/mapping jobs to resources.
Services such as automated resource discovery help to circum-
vent some of these problems, by publishing information on local
resources in a standard manner. Another type of method which
can be useful to allocate resources employs a global scheduler
to which jobs are submitted to ensure some global optimum.
One disadvantage of a global scheduler, as its name implies, is
that it is of centralized nature. This may hinder flexibility and
scalability in large Grids which consist of dynamic virtual orga-
nizations.

Allocation schemes using an artificial economic marketplace
may be optimal for both, users and providers under certain con-
ditions. Virtual economic markets would allow users and Grid
resource providers to discover information and voluntarily par-
ticipate in the trade of resources. Mathematical model such as
the general equilibrium theory of Walras [6], [7] has to be used
to recreate economic markets in a Grid environment [8]. In order
to use these theories, we assume a demand function for Grid re-
sources. In our investigation, we only consider implementations
of economic markets in Grid environments where the demand
for a Grid resource, determined by demand functions, is driven
by a monetary value to which we refer as Buyyas (By$).

In addition to a possible optimal allocation scheme, the use of
a market mechanism to allocate Grid resources offers more ben-
efits. A market mechanism permits users and resource providers
to make their own decision to maximize the quality of service, or
profit [9]. Furthermore, markets are intuitive for users [10]. By
formulating the allocation problem in economic terms, we can
draw upon the vast body of economic research to help under-
stand the behaviour of VOs [11]. Additionally in [12], Wolski
et al. conclude that using Walras’ general equilibrium theorem
for economic markets is, although more complicated, more effi-
cient than auctions. Finally, if the currency used in the Grid can
be exchanged in a real currency, it would allow to charge users
for the use of resources and create an additional incentive for
resource providers to share resources within VOs.

A. Approach

In this paper, we assume that users demand resources by sub-
mitting jobs, and that when submitting a job a user specifies how
much budget he is willing to pay to process the completion of
the job. As resources are assumed to be scarce, it is possible that
an excess demand exists at a certain price. The price where this
excess demand is zero, or where the aggregated demand for re-
sources matches the aggregated amount of resources shared, is
called the spot pricel. Depending on the behavior of the users
and of the resource providers, the spot price of a resource may
fluctuate. As remarked by [13], price instability can have nega-
tive effects on applications and schedulers which base their de-
cision on the spot price. We argue that strong price fluctuations
also make the Grid unreliable in terms of cost of job execution,
and therefore unattractive to end users.

!In microeconomic literature, this price is referred to as the equilibrium price.
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To diminish the negative effects originating from large price
fluctuations, we propose the use of option contracts. These
contracts permit users to take advantage from expected price
changes. In contrast to other approaches which seek to reduce
the harmful consequences of price fluctuations, options can be
implemented as an extension of any Grid economy.

Option contracts are contrast which permit, though not ob-
ligates, the holder to buy or sell an underlying asset in the fu-
ture for a predetermined price. An option which protects a buyer
from soaring prices by permitting to buy for a maximum price
is called a call option. Sellers can protect themselves by buying
a put option contract which permits the holder to sell for a min-
imum price. The predetermined price at which the underlying
asset, in our case a Grid resource, can be bought or sold is re-
ferred to as the strike price. The future point in time where the
right stipulated in the option contract may be exercised is known
as the maturity time.2 When an asset is the underlying of an op-
tion it is said to be covered. By obtaining an option, the option
holder transfers the risks to the option issuer, the writer. The
risk originates from the uncertainty caused by price fluctuations.
Since the option writer cannot be exposed to infinite risk a price,
or premium is charged for the option.

Options can be bought or borrowed and than sold. The buyer
of an option is said to take a long position in an option. A short
position indicates that a party has borrowed and sold an option.
The payoff of a short position is always the inverse of the long
position. By combining short and long position in put and call
options users can construct portfolios. The strategy used to con-
struct a portfolio is referred to as a hedging strategy. By using
hedging strategies users can benefit from price fluctuations.

In order to use options, we first propose a Grid architecture
where resources can be traded as standardized commodities on a
Grid resource market place. To implement options we extend the
architecture with services which support the use of options. To
investigate the potential of options the design is implemented in
a simulation. Using the simulation the impact of three different
hedging strategy on the perceived quality of service is analyzed.
This paper is concluded with a discussion of our conclusions and
ideas for future work on the subject.

II. RELATED WORK

Current research in the use of financial derivatives in com-
puter systems is predominately available in the field of Grid
computing [13]-[15], Telecommunication networks [16], and
multi-agent environments [17]. In these systems futures and
call options are used to minimize risk for risk-averse agents or
maximize utility [18]. Two concepts borrowed from microeco-
nomics. To the best of our knowledge no research has yet investi-
gated the possibilities offered by taking long and short positions
in options to construct hedging strategies adopted from finance.

The prevalent financial derivatives used in computer archi-
tecture are futures. One of the first observations of the use of
such contracts to reserve resources on a PDP-1 at Harvard can
be found in [19]. In this account, Sutherland observes that this
reservation leads to higher utilization compared to other sites.

2The options used in this work are commonly known as European options.
These options can only be exercised at maturity time.

Authorized licensed use limited to: IEEE Publications Operations Staff. Downloaded on June 2, 2009 at 08:44 from IEEE Xplore. Restrictions apply.



BOSSENBROEK et al.: GRID RESOURCE ALLOCATION BY MEANS OF OPTION CONTRACTS 51

Load balancing in multi-agent environments using call op-
tions is considered in [17]. In their work, Bredin et al. conclude
that the use of European call options with a zero strike price
enables risk-averse agents to reduce the volatility of the com-
pletion time.

In [16] the authors consider the use of options to improve
the quality of telecommunication. The options used in the latter
work are call options which permit the holder to purchase a
given quantity at regular time intervals. The author concludes
that the use of this style of options permits to reduce the risk of
the communication being dropped before service completion.

Different hedge strategies employing long positions in put
and call options are researched in [15]. A hedge strategy which
is specifically tailored for acquiring a bundle of options with the
same maturity time is researched in [14]. This latter strategy is
of great interest in Grids where the ability to co-scheduling is
desired.

III. ABSTRACT ARCHITECTURE

There is no accepted consensus on how to define Grid ar-
chitectures [20], [21], though architectural characteristics are
often defined by the middleware and protocols [5] used to link
the system components. The architecture proposed in this paper
builds on existing Grid resource management architectures such
as [22], [23]. Our architecture consists only of the essential com-
ponents necessary to investigate the use of options in a Grid
environment, where resources are allocated using an economic
model and call options can be purchased.

We next discuss the services defined in our Grid architecture.
After having identified and defined their functions and roles, we
continue with a discussion on their interactions and dynamics.

A. Services

Each Grid is composed of services which interact to serve the
purpose of the Grid architecture. We identify two categories of
components: the first category comprises services that manage
or facilitate the processing of the jobs submitted by users who
can also be represented by agents acting on their behalf. The
components in this category are: Local Schedulers, Grid Infor-
mation Service (GIS), Grid Resource Broker (GRB), and the
Job Submission Service (JSS). The second category is made up
by services which decide whether resources are available for a
job to be processed. In our model, these decisions are primarily
based on economic rules. The services in this category are: the
Trade Manager, Grid Bank, the Derivative Broker, and the Op-
tion Issuing Service.

1) Local Schedulers: Local schedulers are gateways which
manage access to Grid resources. The Grid resources are mod-
elled as Virtual Workspaces (VWs) [24] running on Virtual Ma-
chines (VMs). Using VWs universal resources can be created
which support isolation, fain-grain performance control and im-
proved security without any restrictions on software such as op-
erating systems or libraries [25]. As Freeman et al. point out [26]
this offers the possibility to detach users from resource providers
and thereby enable division of labor [27].

A disadvantage of using VWs is that VM images can be of
considerable size. To circumvent this problem, VM futures have
been proposed. These future contracts specify when and for how

long a VM can be leased. Before the start of the Lease period
the VM image is moved to the resource provider site. Once the
Lease starts the VM image is run for the specified Lease. At the
end of the Lease the VM image is shutdown or suspended and
the image is send back to the user.

By issuing a VM future the issuing local scheduler announces
when and for how long a VM will be available. We assume
that local schedulers never default on a VM futures and that all
VMs boast the same features. Furthermore, all the VM futures
in the model have the same Lease period and start one Lease
period after being issued. Last, it is not possible to obtain ac-
cess without a VM future. Because of the limitations on this
VM future they will be referred to Leases. This Leases are the
quantification of VMs, and therefore also Grid resources. By
standardizing the access conditions and the underlying resource
access methods, Leases can be traded as commodities such as
electricity.

2) Grid Information Services: Grid Information Service
(GIS) stores and makes available the information needed by
other services to interact and discover each other. The GIS in
this architecture relies on other services to update its database.
Consistency of the database compared to the real state of the
Grid is fully dependent on the services which commit infor-
mation to the GIS. Although we are aware that this introduces
a single point of failure, this approach is preferred because it
greatly simplifies the architecture [28].

3) Job Submission Service: The jobs which are submitted by
users are bags of tasks. The tasks in the jobs can be processed
in parallel and independent of each other. Typically jobs of this
class are computationally intensive but have low requirements
on memory and data, as commonly found in bioinformatics and
molecular biology.

Users submit jobs via a Job Submission Service using a job
specification language to describe the requirements of the job.
In the proposed architecture, the job submission specification
can be used by the JSS to decide whether to acquire specific
resources at a specific time. The purchase of resources is central
to the architecture, and is done with the current balance of the
submitter at the Grid Bank and the remaining budget allowed
to be used to process the job. How the demand is computed
is not specified in the architecture; the only constraint to the
demand function is that it should map a price to a demand for
some quantity of Leases. This is necessary in order to use the
economic theory described in the introduction.

4) Resource Brokers: Resource Brokers assign resources to
jobs after having verified that the job can purchase Leases. To
reduce communication overhead caused by VM image migra-
tion the Resource Broker will attempt to concentrate jobs at the
sites of local schedulers. Before a Resource Broker seeks VMs
for the job, it verifies at a Grid Bank if the user can pay for the
use of the requested Lease. Once a best match is found, the Re-
source Broker sends the address of the local scheduler to the
JSS.

5) Trade Manager: The trade manager’s sole purpose is to
update the GIS with the spot price for a Lease. This spot price
is defined as the price at which the aggregated demand for Grid
Resources by JSS exactly matches the aggregated contribution
by local schedulers. How this price is determined is dependent

Authorized licensed use limited to: IEEE Publications Operations Staff. Downloaded on June 2, 2009 at 08:44 from IEEE Xplore. Restrictions apply.



52

Job Submission Grid Information

IEEE SYSTEMS JOURNAL, VOL. 3, NO. 1, MARCH 2009

! ) Derivative Option Issuing
User Service Service Resource Broker  Local Scheduler Grid Bank Broker Service
Request Option quotes-
| | I | Request
quote
| | Option quotes: I | |
Request Option »
| | | I Advanc_ed
reservation
Request
| | | I ) ) Option
[€—Assign option—
| | I #—Account use
—
Submit job—>» Resource spot
prce | | | | |
| - | L | |
Demand for resources————|
Request purchase approval—»
| Ij‘i | Resource spot | I
price
| | [ «——Purchase approved | |
Advanced
-« >
| i reservation | |
[¢——Assign local scheduler
| ! Send task T > |
Send processed task- -Account use—p| <7Account f)ptIOn
| | | exercise
Job status: |

Fig. 1. Interaction between the different Grid services.

on the implementation of the proposed design. For centralized
pricing algorithms, such as [29], the Trade Manager may be
used to establish a spot price. This functionality is no required in
frameworks where the price is established using a peer-to-peer
framework, as described in [30]. Although this entity is only
present in some economic Grid architectures, it is indispensable
in a generic architecture which is to support different pricing
mechanisms.

6) Grid Bank: Grid bank components are responsible for ac-
counting, verifying and facilitating transactions among Grid en-
tities. Accounting is effectuated when VMs are used and op-
tions are sold or borrowed. Verification is required when a VM
is assigned to a user and when options are lent. Furthermore,
any economic information related to a job or user, including the
portfolio, is stored in the Grid Bank. Implementations of Grid
Banks in existing Grid projects are discussed in [31]-[33].

7) Derivative Broker: A Derivative Broker component con-
sists of services which issue digital financial contracts (deriva-
tives), on behalf of services that provide derivatives which can
be used on the Grid. This service is unique to this architecture,
as no existing or conceptual Grid architecture in the literature
uses derivatives to the best of our knowledge. In our architec-
ture, the Derivative Broker only supports the issuing of options
offered by the Option Issuer Service.

Digital contracts representing options are generated by the
Derivate Broker and stored at a Grid Bank. The strike price, type
(put or call), exercise time, quantity of resources covered by the
option and the details of the Option Issuing Service are stored in
the contract. By issuing the digital contract the Resource Broker
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assures that the Option Writer service will be able to fulfill its
obligation when the option is exercised.3

To obtain a call option contract the future option holder has
to enter into a financial transaction with the Derivative Broker.
The transaction covers the purchase of an option, and the exact
price of an option is determined by the Option Issuing Service.

8) Option Issuing Service: The Option Issuing Service deter-
mines the price or premium of a call option. For this premium,
it offers an option holder to pay out the difference between the
strike price of the option and the current spot price of the GR
at maturity time, in case this is profitable for the option holder.
Options are not directly distributed by the Option Issuing Ser-
vice, but rather by the Derivative Broker.

As the Derivative Broker will only distribute options of an
Option Issuing Service which can fulfill its obligations, the Op-
tion Issuing Service should not expose itself to unnecessary risk.
This can be prevented by charging a premium for the option.
Furthermore, restrictions could be set on the amount of out-
standing options or resources covered. Both the computation of
a premium and the definition of restrictions are left for imple-
mentation.

B. Interaction and Dynamics

The Grid has to process jobs submitted by users. An overview
of the interaction between the previously described services is
given in Fig. 1.

31t is assumed that the market is liquid and that there will always be enough
resources to fulfill the contract.
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1) Job Submission and Queueing: In order to process a job,
a user or an agent acting on behalf of the user has to submit
it. The job submission specification describes in some standard
definition language at least the following information:

e the Grid Bank account of the submitter; this information

will be needed to approve financial transactions;

* any information on derivatives owned by the job submitter;

e the maximum makespan before which all the tasks in the
job should be processed; the maximum makespan of a job
is denoted as tmaxspan;

* although not strictly necessary, the specification is pre-
ferred to contain also the maximum budget which may be
used to purchase Grid Resources to process the tasks; from
this point forward, the maximum budget specified in the
job submission specification is considered as the initial
budget of a job, and is denoted as B.

The JSS which receives a job description stores it in its job
queue. At a specific event the JSS should probe its queue. During
the probe at least one of the following three job states is identi-
fied:

* all the tasks in the jobs are processed. This state of a job is

referred to as a successfully finished job;

* the maximum makespan is exceeded. In this case the job is
considered to have failed;

* the job is in none of the previously described states.

2) Price Establishment: The JSS is in charge of acquiring
resources for a determined spot price p. This price can be estab-
lished with any kind of algorithm, but has the property that the
Resource market clears at this specific price. Market clearance
occurs when the aggregated demand for resources articulated by
individual JSS matches the aggregated contribution of resources
by Local Schedulers. The lack of excess demand is of great im-
portance, because another price could lead to under- or over uti-
lization of resources. The former causes the Grid to under per-
form and the latter causes jobs to fail because the number of
requests for resources at the Resource Broker will be more than
the number of resources available.

The use of a specific pricing scheme to calculate the correct
spot price level is left to the implementation of our architecture.
Algorithms which could be used are the Walras algorithm [29],
the Arrow and Debreu theorem [12] or an implementation of
Smale’s theorem [34]. The spot price of a Lease will be denoted
as p*.

3) Resource Acquisition: Once the spot price is known, the
JSS submits the request for GRs to the Resource Broker, which
inquires the Grid Bank to ensure that the owner can pay for the
use of the GR.

A Grid Bank has to approve a request for resource acquisition
based on two job properties. The first is that the job owner has
sufficient By$ to pay for the use of the GR. After the Resource
Broker has obtained an approval from a Grid Bank, it makes
a reservation on the account of the user. In case the resource
fails before the end of a Lease, the reservation is withdrawn;
otherwise the Grid Bank accounts for the use of the resource
and transfers the By$ to the account of a Local Scheduler. Ad-
vance reservation as described is common practice in credit card
companies.
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When using a straddle hedge strategy the user takes a
long position in a put option and a call option. Both
options have the same maturity date and the same strike
price. This strategy should be employed when large price
fluctuations are expected.

Fig. 2. Payoff of a straddle hedge strategy.

4) Option Exercising: At maturity time, an option is exer-
cised when the payoffis positive. As can be seen in Fig. 2, taking
a long position in a put option is beneficial when the strike price
is higher than the spot price. A call option in contrary is favor-
able when the strike price is below the spot price. When the
holder is in a short position the payoff is the inverse of the long
position (see Fig. 3). The payoff of the long position in an op-
tion is obtained by exercising the right and immediately resell or
buy the Lease at the spot price. The profit of the short position is
obtained when the user borrows an option at zero interest from
the option writer and sells it to another user through the option
writer. In case of a short position, a loss is possible. This is pro-
voked when the option holder exercises the right stipulated in
the contract.

All the accounting necessary for the previous process is done
by the Option Issuing Service. The costs and benefits are sub-
tracted or added to the current budget. It is left up to the JSS and
the job submitter to decide if the payoff should be added to the
budget of the job.

5) Option Issuing: Before obtaining a digital contract repre-
senting an option, the future option holder solicits quotes from the
Derivative Broker. The quote holds the premiums, calculated by
Option Issuing Services given a strike price K, exercise time 7.

Based on the quote, the future option holder selects a Option
Issuing Service. This information is passed to the Derivative
Broker which ensures that the Option Issuing Service can fulfill
its hedge obligation. Second, the Derivative Issuer requests an
advanced reservation for the payment of the option premium or,
in case of a short position, the repayment from a Grid Bank.
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A portfolio which is used to construct a butterfly spread
hedge strategy consists of a long position in two call
options and a short position in two call options. All
options have the same maturity date but different strike
prices. The long position is taken in options with strike
price K — A and K + A. The short position is taken in
two options with strike price K. The setup costs are the
sum of all the premiums and is always positive. In
contrast to a straddle hedge strategy (see Fig. 2) this
strategy should be used when no large fluctuations are
expected.

Fig. 3. Payoff of a butterfly spread hedge strategy.

The digital contract is then generated and submitted to the Grid
Bank, at this point the Grid Bank transfers the premium which
was reserved in advance to the account of the Option Issuing
Service.

6) Interest Rate: In real economies an interest rate exists.
As put forward by [35] and later more precisely by [36], an
interest rate articulates that an individual prefers present goods
to an equal amount of goods in the future. In the architecture this
captures the wish of a user to minimize the makespan of a job,
and as such, prefers to acquire access to resources at the present
time rather than in the future.

To be able to acquire resources and options a user has to de-
posit By$ at a Grid Bank. Although our architecture uses By$ as
a imaginary currency, implementations could use this currency
as a virtual currency which can be bought with real currencies.
We argue that implementations which use an internal interest
rate will thrive. First, because as previously discussed job sub-
mitters will be compensated for a slow job execution. Second,
the opportunity cost,* will be lower than when no internal in-
terest rate would exist.

4The opportunity cost, is the cost of the second best alternative.
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IV. SIMULATION

In order to investigate the potential offered by the use of call
options, the abstract architecture is put to test in a discrete time
simulation. The simulation emulates the behaviour of the Grid
services described in the architecture. To evaluate the perfor-
mance of the Grid, monitors are implemented at the level of in-
dividual services. Traces collected from these monitors are used
to compute the performance in terms of basic performance met-
rics.

We next discuss specific implementation details and parame-
ters used in the Grid services, and then analyze the simulated
events. We conclude this section with a discussion about the
placement of monitors and the metrics used to measure the per-
formance of the Grid.

A. Grid Services and Parameters

In the simulation, the JSS receives jobs only from users.
When submitting a job, the job consists only of the tasks to
compute and a job specification which cites the initial budget,
and maximum makespan of a job. The user is modeled to have
always sufficient funds stored at the Grid bank.

1) Job Submission Rate: Statistics of workload at Grid, VO
and region level are analyzed in [37]. Although the authors
observe that a two-state Markov modulated Poisson process
(MMPP) results in the best approximation of the job arrival rate
at a Grid level, we prefer to use the analytically less complex
Poisson distribution.

2) Job Specifications: Empirical observations by [38] led to
the conclusion that process lifetime distributions in Unix sys-
tems can be approached with a Bounded Pareto distribution
[38]. This has lead to the use of the Bounded Pareto distribution
as the distribution of the job size in simulations of a network of
heterogeneous computers [39] and Grids [40], and as a distri-
bution of memory demand of jobs in a simulation of distributed
systems [41]. Since this has been deduced from empirical ev-
idence and used in models of distributed computing environ-
ments, we argue that it is reasonable to assume that the number
of tasks in a job follows a Bounded Pareto distribution.

The Bounded Pareto distribution has three parameters: «
the exponent of the power law, k the smallest observation,
and [ the largest observation. The probability density function
BPAR(k, I, @) of the Bounded Pareto distribution is defined as

ak®

= =y

—a—1

k<az<l. (1)

The Bounded Pareto distribution has a heavy-tailed property.
This property implies that, in the case of job size, most job sub-
missions will consist of jobs with a small amount of tasks.

In the simulation, tasks are quantified in Leases. This makes
the number of tasks in a job analogous to the amount of re-
sources needed to process the job. The initial amount of tasks
in a job is therefore J ~ BPAR(Kjob—size, ljob—size, Qtjob—size)-
The remaining amount of unprocessed tasks in a job is denoted
as n.

No empirical data was either available on the maximum
makespan of jobs or on the budget users are prepared to pay
to process the tasks in a job. For this reason, we propose
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an approach which we argue would best reflect a real Grid
environment.

The price the user is prepared to pay, i.e., the budget for a
resource, is estimated to be close to the estimated spot price of a
resource at time of the job submission. This assumption is based
on the presumption that a user will not be prepared to pay much
more than the current estimated price. Moreover, users who do
not have enough budget available to pay a price considerably
close to the estimated spot price are expected to refrain from
submitting jobs.

Future prices are estimated using an autoregressive moving
average (ARMA) model [42]. This model is commonly used in
time series analysis to predict values. The model consists of two
parts, the first is an autoregressive part (AR) and the second part
is the moving average (MA). The general form of a ARMA(p, q)
model is defined as

P q

Xi=eitc+y @iXes1+» bier )

i=1 i=1

where ¢; is an error term with a normal distribution with mean
zero and standard deviation o, and 6; is some parameter in the
model. In the simulation a ARMA(1,1) model is used with:

91:1n<{’*). 3)
Pi1

This parameter of the moving average captures the change be-
tween the two last prices. The value of (; explains how the pre-
dicted price is dependent on the last price. The model is solved
using a least square estimation. This estimation method is highly
fit for this application because it assumes an error which follows
a normal distribution, which is the same distribution of the error
in the ARMA(p, ¢) model.

The budget per resource is modeled as a random variable from
a Gaussian distribution with a mean equal to the estimated price
and a standard deviation a fraction e of the estimated price. The
estimated price is computed with the ARMA(1,1) model dis-
cussed before. The initial budget B specified in the job specifi-
cation is equal to B ~ N(p°, (ep®)?).

The histogram in Fig. 5 visualizes the previous parameters
of the job specifications. It shows that a strong concentration of
jobs consist of a small amount of tasks and have a normalized
budget per resource B.J/p° close to one.

The maximum makespan of a job is assumed to consist of the
time needed to process all the tasks sequentially and some slack
time. It is presumed that most users will want their job returned
quickly whereas just a few will have a more relaxed constrain
on the maximum makespan. This leads to the use of the bound
Pareto distribution to determine the slack time. As the number
of tasks is equivalent to the number of Leases needed for the
maximum makespan, fyaxpan is computed as taxspan = J+S5,
where S ~ BPAR(kmaxspan7 lmaxspana amaxspan)-

3) Hedging: By taking a position in one or more options
users can benefit from price fluctuations. The strategy used to
decide what position to take in which options with which strike
price is called a hedging strategy. In our research, three hedging
strategies are used to analyze the potential of options.

30
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A call option hedge strategy uses only a long position in
a call option. This strategy is used to benefit from
soaring prices..

Fig. 4. Payoff of a call option hedge strategy.

2.0

Normalized budget per resource

Jobsize

In this histogram the color intensity displays the frequency
of a pair occurring. This pair consists of a number of initial
tasks in a job, and the budget per resource normalized using
the Grid resource spot price at time of submission.

It is clear that most jobs are small and that most budget is
concentrated around one. This is the expected behaviour
over the probability distributions used to generate the job
specifications.

Fig. 5. Histogram of the number of tasks per job.

The first hedging strategy benefits only from soaring prices.
The payoff of this hedge strategy is displayed in Fig. 4. As can
be seen in this figure, there is only a profit whenever the strike
price higher than K + P. Considering this payoff this hedging
strategy can best be viewed as the strategy necessary for users
who wish to protect themselves from soaring prices.

The second hedging strategy, commonly referred to as
straddle, benefits from large price fluctuations. To construct the
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portfolio for this hedging strategy the user has to take a long
position in a put and a call option with the same strike price.
The profit of this strategy is shown in Fig. 2. If, at expiry of the
options, the spot price is close to the strike price a loss is made.
Otherwise a profit is made.

The last strategy uses a long position in two call options and
a short position in two other options. This strategy, in financial
literature referred to as a call option butterfly spread, permits
the user to make profit when the spot price remains close to
the strike price. The payoff of the individual options and the
total strategy is shown if Fig. 3. Especially in Grid environments
where the price is not expected to change much this strategy can
be of benefit.

In [43], Nabrzyski et al. argue that the users do not want to
be derivative traders. We agree with this and therefore the users
only specify a hedge rate at submission. This hedge rate is the
upper limit of the number of tasks which should be covered. The
user is assumed to have sufficient funds to pay the premium of
the purchased options and that the user will be able to pay the
loss in case of a butterfly spread hedge strategy.

To decrease the makespan of a job, it is more useful to have
a higher quantity of options just after the job submission than
later in the job’s life time. Especially with low hedge rates this
is even more important. Based on these constraints the quantity
of hedges made with an expiry date T is given by

qr = 2hJN (T, h?) 4)

where h is the hedge rate and N (7', h?) is the probability density
function of a normal distribution with a standard deviation h.
Since ffooo N(T,h?)dT =1, Zi‘;“}]""s‘“‘ g < hJ.

4) Resource Demand to Process Tasks: To process the tasks
in a job, a JSS acquires resources based on a demand function.
The JSS implementation employs a demand functions which
consider the remaining budget which can be used to process
the tasks, the number of remaining tasks and the current spot
price. Two demand functions are put forward and tested in the
experiments.

Essential to this model is that any call option associated with
the job and with maturity time equal to the current time, should
be used to take advantage of high spot prices. Because the Op-
tion Issuing Service will pay the option holder before the Grid
Bank approves resource purchases, the JSS can use the payoff
of the option with an exercise time equal to the current time to
acquire resources. Therefore, the JSS uses the budget constrain
B = b+ gr max{0,S — K}, where b is the budget remaining
and the second part of the equation is the payoff of the option.

The demand function which is used as the baseline demand
function only considers the budget of a job and the spot price

B
dy(B,p) = 7 4)

In Fig. 5, the demand is shown at different spot prices.

A major drawback of the demand function d, (%) is that it
always consumes the entire budget at once. Consider the case
when a job consists of N = 50 tasks and the budget is b = 100.
Using (5), all the tasks can only be computed when the Grid
Resource spot price is lower than 2 (see Fig. 5). If this is not

IEEE SYSTEMS JOURNAL, VOL. 3, NO. 1, MARCH 2009

Demand at spot
price 0.2 By$

Demand at spot
price 0.8 By$

\\\\\\\ N
LR 2 e SN
RN AR
RN [/ ] \\\Q\\ W
\\\\\‘\\\\\\,\\\%’%\)ﬁ 0 4 ....\\\\%\\/\\,\\g%ﬁ

W Numg’go’zto W

Demand at spot
price 1.4 By$

Demand at spot
price 2 By$

The demand function d,(*) leads to lower demand when
the price is high. However the budget is always entirely
consumed, a feature which is undesirable when p > B/n,
therefore this function is used as a baseline function.

Fig. 6. Demand function d, (%) at different spot prices.

the case, all the budget will be used and still some unprocessed
tasks will remain in the job. To prevent such job failures a second
demand function is needed.

This second demand function considers not only the budget of
the job but also the amount of tasks left. It uses these two prop-
erties to consider the ratio of the needed budget to the available
budget. This factor is used to reduce the demand. The function
is defined as

B
(14 np/B)p’

As can be seen in Fig. 6, the demand of a job decreases as the
ratio between the unprocessed tasks and the budget increases.
Comparing Fig. 6 with Fig. 5 illustrates how the demand de-
creases considerably at higher spot prices and low budget. This
behavior is used to circumvent the problem discussed previ-
ously.

It is important to note that both functions d,(x) and
dpn (%) have a constant return to scale, i.e., the demand does
not change when the price and budget increase with the
same amount. Furthermore, since lim,_,o d,(B,p) > n and
lim,_¢ don(B,n,p) > n both functions are bounded from
above, i.e., dg(*) = max{n, dg(*)}.

5) Contributed Grid Resources: For tasks to be processed,
Local Schedulers have to contribute resources to the Grid. In
VOs, the number of resources contributed by a local scheduler
depends on sharing rules set up by resource owners. In our sim-
ulation, these sharing rules are modeled as policies which de-
scribe how many resources are shared at a given price. It is con-
sidered that, on the short term adaptation to price changes are

don(B,n,p) = (6)

Authorized licensed use limited to: IEEE Publications Operations Staff. Downloaded on June 2, 2009 at 08:44 from IEEE Xplore. Restrictions apply.



BOSSENBROEK et al.: GRID RESOURCE ALLOCATION BY MEANS OF OPTION CONTRACTS 57

Demand at spot
price 0.2 By$

Demand at spot
price 0.8 By$

Demand at spot
price 1.4 By$

Demand at spot
price 2 By$

The demand function ds,, (%) leads to a lower demand when
the available budget is low, and many tasks still remain in
the job. This effect is amplified by a higher price. Compared
to dp(x) for equal n, p and B dp (%) > dpn (%)

Fig. 7. Demand function dy,, () at different spot prices.

hard to realize. That is, extending the amount of contributed re-
source could involve the purchase of the new hardware, and so
forth. Furthermore, it is considered that a price increase creates
an incentive for resource owners to contribute more resources.

Grids are prone to failure. Therefore, the resource providers
are modeled to have a dynamic availability of resources. The-
oretical and empirical research on resource availability has
been done in the context of optimal checkpointing [44] and
fitting probability distributions on availability [45], [46]. In
[45], Nurmi et al. conclude that both the hyperexponential
and the Weibull distribution are usable distributions to model
the resource availability in distributed environments where
workstations are used as computing nodes. Data on failures
of high-performance-computing systems is analyzed in [46],
where Schroeder and Gibson conclude that the mean time
between failures (MTBF) and mean time to repair (MTTR) are
best modeled with the Weibull distribution. Based on the con-
clusions from both papers, the MTBF and MTTR are therefore
simulated to follow a Weibull distribution.

The two-parameter Weibull distribution WEI(k, A) has a
probability density function given by

fulz) = E (f)k 16—(m/k)k @)
A

where k£ > 0 is called the shape parameter and A > 0 the scale
parameter.

The model for the number of contributed resources consists
of two parts. The first part describes the short term reaction of a
price change on the amount of resources contributed to the Grid,
and the second models the resource availability.

Job Submission

Local schedulers Services Trade Manager

Market clears? No
Yes Adjust price’

Spot price found?

Share resources
T

| Calculate demand ‘
T

" The price is adjusted using the equation
pi = pt + pe(D(pe) — C(pe))/C(p:), where p; is the last
price, D(p;) the aggregated demand for resources and
C(p:) the aggregated contribution of resources.

The spot price is the price used in the model.

Fig. 8. Tatonnement process.

Resource providers are considered to contribute a number
of resources depending on the price in addition to a constant
amount. Therefore, the contribution is modeled as

c(p) = Rp”. (®)

The assumption that short term adaptations are hard
to realize leads to a choice of a value for p such that
0 < E.p, = |(0c)/(9p)(p)/(c)] < 15and R € RT and
varies depending on the MTBF and the MTTR.

6) Price: The allocation mechanism used in the abstract ar-
chitecture is based on a pricing mechanism. This mechanism
ensures that the demand for contributed resources matches the
amount of contributed Grid resources.

In order to establish a price for a GR, a virtual Grid resource
marketplace is created which is organized by the Trade Man-
ager. To establish a price the Trade Manager organizes the
market by acting as an auctioneer which matches the demand
for Grid resource to the amount contributed. By following an
tdtonnement process the spot price at which the market clears
is found, see Fig. 8. This process is the core of the Walras algo-
rithm [6], which is based on Walras’ general equilibrium theory.
The algorithm was first used in a distributed environment in
[29] and later applied in Grids in [48]. As opposed to the Grid
environment discussed in the latter paper, our simulation deals
only with the allocation of a single type of resource. Therefore,
a simplified version of the algorithm can be used.

In the first step of the tAtonnement process, see Fig. 8, the
Trade Manager announces an initial price. Each JSS which
wants to acquire Grid resources replies with an aggregated de-
mand of all the jobs scheduled at the JSS. The Local Schedulers
reply with the amount of resources which they are prepared to
contribute. At this point it is possible that the demand does not
match the number of contributed resources.

To find the price at which the market clears, the Trade Man-
ager has to adjust the price to reduce the excess demand to zero.
The aggregated demand of all the JSS on the marketplace at a

5This choice for the function ¢(p) is based on the economic theory on price
elasticity of supply. This is a key concept in economy, and is well described in
economic textbooks such as [47].
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price p is denoted as D(p). The aggregated amount of Grid re-
sources contributed by all the local schedulers on the market-
place at a price p is denoted as C'(p). The excess demand is then
defined as

E(p) = D(p) — C(p)- )

To clear the Grid Resource market a price has to be found where
E(p) = 0. To find the spot price the Trade Manager adjust the
price as

E
p'=p+p%- (10

This is repeated until a stable price is found. This is price is then
the spot price of a GR.

A major advantage of this algorithm is that it recovers quickly
from possible communication failures between the participants
and the Trade Manager: if during the titonnement process some
information is lost it will quickly recover from this in the next
round [29] or, in case of price stability, use the price from the
last round.

7) Option Pricing: The Derivative Broker will only issue a
derivative from services which will be able to fulfill their obli-
gations. That is, an option issuing service should be able to pur-
chase the number of resources at the spot price, and sell them at
the strike price. By issuing an call option contract, the issuer is
prepared to take over the risk of the buyer. In order to be able
to fulfill its obligation, the issuer is only prepared to do so if it
receives a fair premium for the option contract [49].

Grid Resources cannot be stored for later use. This property
makes the pricing of options in our model complex, as currently
available option pricing techniques assume that the underlying
asset of a call option can be owned or borrowed at any time
during the lifetime of the option. But, as previously discussed,
this property is shared with electricity as a tradable commodity.
Therefore, we feel that option pricing mechanisms used on the
spot market for electricity are also applicable to call options on
Grid Resources.

On commodity markets, derivatives on electricity have been
used to allow participants on the electricity market (e.g., energy
producers) to protect themselves against price fluctuations. Re-
search on pricing techniques to value these derivatives has been
conducted in, e.g., pricing of exotic options [50] and swing op-
tions [51].

Major advances in the theory of stock option pricing were
achieved by [52] and [53]. In their work, the authors developed
a model which has become known as the Black—Scholes model,
which was awarded a Nobel price in 1997. One of the important
assumptions made in this model is that the price of the under-
lying asset of the option follows a Brownian motion. Moreover,
the Black—Scholes model assumes that an option writer can own
or borrow the covered asset at any time. This is not possible in
the electricity market.6

In most research on pricing electricity options this restriction is circum-
vented by considering the price of future delivery contracts (futures) as the spot
price of electricity. This approach for Grid environments is proposed in [29] but
left as future work in the simulation.
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The spot price of electricity does not follow a Geometric
Brownian motion’ [54], but follows seasonal trends, such as
a price increase during the summer months as in California
[55], combined with frequent peaks [56]. Such behavior is com-
monplace in a Grid environment [57]; due to seasonal holidays
Grid users could submit less jobs during a specific period of
time. Peaks could also occur due to unforeseen reasons, such as
the temporarily disruption of a network connection to a cluster,
which would cause a massive shortage of Grid resources within
one or more VOs.

Although the driving forces behind the price establishment of
Grid resources resemble the dynamics of electricity markets, the
market structures differ considerably. After the privatization of
the electricity market the supply industry was divided into four
categories: 1) generation; 2) transmission; 3) distribution; and
4) retail sales [58]. Furthermore, market rules are laid on the
market such as caps on the spot price and production planning.

The particular behavior of the spot price of electricity on
wholesale markets has lead to, among others, the development
of parametric option pricing techniques based on mean-re-
verting formulas which assume that on the long term the price
will converge to a mean value. In [54], Hjalmarsson argues
that although the Black—Scholes prices deviate considerably
from the prices found using the nonparametric and parametric
models proposed in his work, it is still the best available. More-
over the author claims that it would be difficult to find a model
which would achieve better results. We therefore consider the
use of Black—Scholes option pricing technique to price options
in our simulation.

The precise derivation of the Black—Scholes formula is be-
yond the scope of this paper and is well covered in textbooks
[49]. The formula for a call option is given by

P =p*®(dy) — Ke™ ™" ®(dy) (11)
where
In(p*/K) + (r + 02/2)T
dy = 12
: AT (12
and
* _ 2
5y _ W@ /K) + (r= 0?7 03

oVT

where the function ®(x) is the cumulative probability distri-
bution for a standard normal distribution, r the interest rate in
the Grid and o the volatility of the price of the Grid resource
(see Section IV-AS). The other variables are the same as used
throughout this work.

8) Volatility: The volatility of the spot price of a Grid
resource captures the degree of change of the spot price. In our
simulation we use the exponentially weighted moving average
(EWMA) to estimate the volatility. The EWMA technique
is a special case of the generalized regressive conditional
heteroscedasticity (GARCH) technique proposed in [59].

7A Geometric Brownian motion is a stochastic process which has the form
dS, = pS.dt + 05,dW,, where the stochastic process W, is a Brownian
motion with the properties W4,, — W, ~ N(0,n) and W, = 0. This process
is used in finance to model the price of a stock.
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In the EWMA model, the square of the volatility o2 is calcu-

lated with the equation

o7 = xo1-1 + (1 = x)u;_, (14)
with a smoothing factor x within the range [0, 1), and where u;
is defined as #; in (3). As can be deduced from (14), past values
have a weight which diminishes exponentially. Although the
optimal value of x can be found using a maximum-likelihood
algorithm, in the simulation a constant value is chosen.

9) Monitors: Monitors are implemented at the level of the
services to measure overall Grid behavior, as well as the perfor-
mance of the individual services. A monitor at the user level is
used to measure overall statistics on the job specifications and
the job states.

B. Events

The simulations emulate a fixed number of Leases, which are
classified into four periods. The simulated events are as follows.
* User Job Submission: The user submits a number of jobs.
All the aspects of the job specification are also included
in this event, e.g., budget specification, option purchasing,

etc.

o Start Tdatonnement: The Trade manager starts the taton-

nement process to reach a stable price.

» Stable Price: The JSS submits the tasks to the local sched-

ulers for processing.

* Accounting: All the costs made in the previous events are

accounted for at the Grid Bank.

* JSS Queue Processing: The JSS processes the queues of

jobs.
The events occur sequentially each Lease period

The simulation starts with a warm-up period, meant to fill
the queues of the JSS. During this period, no price estimation
or hedging is performed. The second period is also a warm-up
period, but during this period the price estimation method to
compute the budget is used, and hedging is performed.

The third period is the first period where the monitors in the
simulation are active and where the obtained measurements are
used as results. The last period is a cool-down period. This pe-
riod is necessary to be certain that every simulation where the
number of simulated Lease periods and the exponent of the
Poisson distribution for job arrival rate are constant, result in
the same amount of jobs used in the measurements. Only jobs
submitted during the third period are monitored, the other jobs
are ignored.

C. Metrics

Because Grids are dynamic in their nature, it is difficult to
benchmark and evaluate them. Moreover, there is no general
consensus on which metrics to use [60], [61]. Since our work
concerns the perceived quality of the Grid in terms of job com-
pletion, processing time, and costs, we introduce three metrics.
The first expresses the effectiveness of the Grid, whereas the
other two express the performance of the Grid which in this con-
text does not refer to the computing performance of the Grid, but

rather to the amount of time needed and the budget consumed
to accomplish a job.

The effectiveness of the Grid is measured using the return
states of the processed jobs. The success rate g}fcan’btf’m} re-
flects the ratio of the total number of jobs received during one
or more Leases to the number of jobs entirely processed be-
fore the deadline. The jobs are grouped by hedge strategy and
hedge rate h. For convenience, the hedge strategies are coded as
call, btf (butterfly), and str (stradle hedge). The rate employs the
amount of jobs which finished successfully S;Lcau’btf’m and

which failed to be processed F, écall’btf’m}. The ratio then is de-
fined as

S{(‘,all,btf,str}
h

= ca str ca str}’ (15)
-,F;E 11,btf,str} + S}E 1, btf,str}

{call,btf,str}
Sh

This metric reflects how successful the allocation of Grid re-
sources to jobs is, in terms of job completion. In a produc-
tion-level Grid the value will ideally tend to converge to one,
in contrast to a Grid where many jobs fail to be processed such
as an experimental Grid where the success rate will tend to con-
verge to zero.

The presented metrics is used in the next section to evaluate
the influence of options on the effectiveness and performance of
the Grid.

V. RESULTS

Grids, and VOs consequently, are dynamic in their nature.
Therefore, for options to be fruitful, the increase of the success
rate should be scalable. Furthermore, we are interested in the
consequences of options on the ancillary quality-of-service. In
order to build models which permit to investigate these ques-
tions, we generate four datasets by collecting traces from the
simulation. The first two datasets consist of the mean success
rate of users when varying the fixed amount of shared resources.
The second two datasets consist of job information at a certain
amount of shared resources.

Section V-A briefly discusses the settings of the essential pa-
rameters. We then proceed with a detailed analysis of the scala-
bility of the improvement offered by options. Section V-D dis-
cusses the effects of the use of options on the budget and make
span of a job.

A. Parameter Configuration

We set the number of jobs submissions to average 10 000 per
Lease, in order to reflect a large sized VO in terms of the number
of submissions. As we previously mentioned, options can be
implemented as an extension to any resource allocation system
which establishes a price for a resource. In such environments,
we deem it unrealistic that every user will hedge. Therefore,
only 10% of all the jobs are hedged. The jobs are hedged using
one of the proposed hedging strategies with a hedge rate ranging
from 0.1 to 1 with step size 0.1. This results in an average of 33.3
job submission per Lease per hedge rate for each hedge strategy.
Furthermore, resource providers are assumed to react only mar-
ginally to price increases. Therefore, the parameter p in (8) is
set to 0.1. For a detailed account on the implementation of the
simulation and the parameter configuration, we refer the reader
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TABLE 1
ESTIMATIONS OF SUCCESS COUNTS

Response Variable

Explanatory Variable

Success count Intercept R o Estimated Deviance
dem. strat. Estimate p-value edf* p-value edf p-value rank explained

dpyn (%) call 7.69 <2e-16 6.74 2.05e-4 9 72.5%

7.69 <2e-16 8.22 8.56e-8 9 89.3%

btf 7.69 5.26e-11 7.86 2.33e-4 9 74.1%

7.69 2.3e-10 1 1.29e-4 2 42.4%

str 7.90 <2e-16 549 1.07e-4 9 64.8%

7.90 <2e-16 7.37 1.0le-5 9 81%

dy(*) call 5.38 <2e-16 5.89 3.48e-4 9 74.2%

5.38 <2e-16 8.63 1.67e-5 9 86.3%

btf 3.50 3.03e-8 7.18 2.86e-8 9 92.5%

3.50 3.03e-8 8.60 1.84e-5 9 86.1%

str 5.50 <2e-16 6.08 4.34e-4 9 73.9%

5.50 <2e-16 850 3.97e-4 9 78.8%

This table summarizes the information on the parameters of the GAMs found. From the table can be concluded that for the
success count of the straddle and call hedge strategies can best be explained with the volatility. The butterfly spread instead can

best be explained with the number of contributed resources.
“edf: estimated degrees of freedom

to the source code of the simulation.8 The random number used
in the simulation are generated using the Mersenne Twister gen-
erator [62] part of the GNU Scientific Library [63].

B. Scalability of the Success Rate

Two data sets are constructed by altering the number of con-
tributed resources [the parameter R in (8)] for the two demand
functions. For each value of R traces from 500 Leases are col-
lected after a warm up period of 200 Leases. At the end of each
Lease the return status of the jobs returned during that Lease
with the same hedge rate and strategy are aggregated, in order
to compute the success rate [see (15)]. At the end of the simula-
tion, samples are constructed for each hedge rate and strategy.
The baseline is the situation where no hedging is used. This is
comparable to the success rate which would be achieved when
allocating resources using a commodity market without options
such as [12].

To analyze if the success rate at h > 0 is larger than the
success rate at h = 0, the mean of the samples for each hedge
rate and hedge strategy are compared with the baseline. This is
possible since the errors in the samples are normally distributed.
Using a t-test we decide if the means are significantly different at
a 5% level. The number of samples which fulfill both constrains
are counted by hedge strategy. From this point forward these
counts will be referred to as the success counts.

Based on a number of simulations, we observed that the
success counts of all the hedge strategies demonstrate local
nonlinearity relations with either the number of contributed
resources or the volatility. On this basis, we reject the use of
(Generalized) Linear Models (GLM). Studies observing data
with similar patterns have successfully applied Generalized

8The source code can be retrieved using svn. See for more details http://code.
google.com/p/cgsim/. The code is available under the terms of the GPL v3.

Additive Models (GAM)[64], [65]. To construct our model,
we use GAMs [66] with thin plate splines [67]. The local non-
linearity already demonstrates that the number of contributed
resources has effects on the success counts. To analyze if this
effect is significant at a 5% level we construct a model where
the success count is the response variable and the number of
contributed resources is the explanatory variable. The essential
information from the GAM is displayed in Table I.

However for the success counts when using a straddle or call
option hedging strategy, the number of contributed resources is
not the best explanatory variable. The volatility o of the price
(see (14)) results in a better estimation of the success count in
these cases. Based on the intercept and the p-value of the inter-
cepts we can conclude that hedge strategies are more beneficial
when using dy,,, (x). We attribute this to the fact that the standard
deviation of the volatility in a VO which usesd),(x) is a factor
1.4 larger (0.57 to 1.36). A second explanation can be found in
the models which can be used to explain the volatility based on
the number of contributed resources.

The data on the volatility exhibits a parametric relation be-
tween the volatility and the number of contributed resources.
When using d, (%) the volatility has to be transformed by taking
the log(). This is necessary to have an error factor which is nor-
mally distributed. Using this data, we find the model

log(a;) = 2.41 — 5.57-107*R.

Combining this model with our previous conclusion, we claim
that when few resources are available the low success counts can
be improved by increasing the number of resources. However,
this is only the case when the number of contributed resources
remains under the quantity of resources necessary for a success
rate of 1.
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The model for the volatility when using dp,, (x) defers from
the previous model. Here the error is normally distributed which
simplifies our analysis. The best parametric explanatory model
for the volatility is

&, = 1.15—3.25- 1078 R2.

This model shows us that when the success count is low due to
a high volatility the VO has to be expanded or reduced in terms
of the number of contributed resources to increase the success
count. Similar with our conclusion for the d,,(*) case, this only
holds as long as the number of contributed resources remains
below the case where the success rate is 1.

The intercepts of the GAM show that when using dy,,, (x) there
is no large difference between the straddle and the call option
hedge strategies. This is confirmed by a Wilcoxon rank sum
test. The test gives a p-value of 0.72 when comparing the suc-
cess count of the straddle with the call strategy. Comparing the
straddle and the call with the butterfly returns 0.03 and 0.08,
respectively. Together with the mean which is 7.90, 7.69, and
5.51, respectively, we can conclude that the butterfly spread
hedge strategy is inferior to the straddle hedge strategy. We can
make the same observations in a VO where the JSS uses the
demand function d, (x). However, the success counts of the but-
terfly spread are not significantly different at a 5% level for the
different demand functions.

C. Impact of the Hedge Strategy on the Budget and Make Span

The use of hedge strategies permits to increase the amount
of jobs which tasks are entirely processed before the deadline.
However we are also interested in the effects of options on the
auxiliary quality of service: the budget necessary to process a
job and the make span of a job. Furthermore, we are interested
if the effects of hedging is uniform for different job sizes.

1) dy(x) Case: We analyze a data set consisting of 85 jobs for
every hedge rate and hedge strategy using the demand function
d,(%) at R = 6700. The latter number is chosen because at this
number all the hedge strategies have a high success count. The
jobs are selected at random from a larger sample to minimize
possible covariance.

To explain the return status of a job a model is build

. BJ

logit(p) = —0.90 4 2.62log <p—F> +2.87h  (16)
where p is the probability of success. There is no difference in
the p-values of the parameters of the model which would in-
dicate if the hedge rate is a better explanatory variable than
the normalized budget per resource (NBR) B.J/p¢. Only by
building a model where only one of the two variables is chosen
as an explanatory variable we find that the Akaike’s Informa-
tion Criterion for the model which uses the NBR is lower than
for the model which uses the hedge rate. It is important to note
that the job size is not a significant explanatory variable for the
return status.

The model found indicates that the hedge rate can be used to
compensate a small NBR. To demonstrate this we select only the
jobs which have a log(NBR) below the first quantile (—0.25).
Using the same explanatory variable as in (16), we find a new

model where H is the only significant explanatory variable. The
model is defined as

logit(p) = —1.49 4 3.01h. (17)

From this model, it is clear that the probability for a job to return
finished is lower than for jobs with a higher NBR. However, by
hedging the user can improve the probability.

The used budget, which is defined as the remaining budget
minus the initial budget and the portfolio setup cost, is clearly
influenced by the hedge rate for the job which finish success-
fully. In a linear model consisting of the hedge rate, the job
size, and the hedge strategy, the hedge rate has a coefficient
of —52.84 compared to —2.57 for the job size. Moreover, the
straddle hedge strategy has a coefficient —59.77. On these
grounds, we conclude that the straddle hedge strategy is very
costly and that the primary costs are caused by the hedge
strategy (the model has p-value ~ 0, R? = 0.12, the low R2
value is caused by large outliers).

Due to the definition of the demand function d,(x) the make
span is always one Lease when not hedging. The hedging strate-
gies can in this case not be used to reduce the make span.

2) dpn(*) Case: We create a sample comparable to the pre-
vious data set in order to analyze the effects of options in a VO
where the demand function dy,, (%) is used by the JSS.

In this case, the model to explain the probability for success
is

logit(p) = —0.90 + 2.50log <%> + 2.87h.

The parameters of the model are only marginally different from
the ones in (16). This indicates that although the environment
differs the NBR and hedge rate have the same influence on the
final status. This shows that our approach is indifferent to the
demand function.

However, this is not the case for the more specific case where
jobs have a NBR below the first quantile (in this case —1.09).
For these jobs the explanatory model is given by

logit(p) = —0.54 + 1.44h

these values are less impressive than the parameters in model
(17). When using the demand function dy,, (%), jobs with a low
NBR benefit less from hedging than in an environment where
the function d,,(*) is used.

In contrast to the previous case, there is no statistical evi-
dence which shows that the remaining budget is dependent on
the hedge rate. Although it is dependent on the straddle hedge
strategy (a coefficient of —1192 in a model with a p-value ~ 0
and R? = 0.26, as with the model for d, (%) the low R? is caused
by large outliers). To error of the time left ratio is exponentially
distributed. Therefore, we transform it by taking the log of the
ratio. The best model (p—value ~ 0, R? = 0.65) of the time
consumed by successfully finished jobs is explained by

t— tosart BJ
log (%‘) = —0.47 — 0.11log (p—) —0.09.J.

This demonstrates that the hedge rate has no influence on the
time consumed ratio.
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D. Summary

The success count of the call and straddle hedge strategy are
best explained by the degree of price volatility, which has a
log-linear relation with the number of contributed resources in
case of dp(x), and a quadratic relation in case of dp,(*). The
butterfly spread, however, is best explained by the amount of
contributed resources. All the hedge strategies have a lower suc-
cess count when using dj,(x). By analyzing two data sets where
the success counts are high, we show that the probability for
a job to finish successfully is most sensitive to the hedge rate.
When considering jobs which are submitted with an NBR below
the first quantile the hedge rate is the only significant explana-
tory variable. We argue that this demonstrates that hedging is
favorable for users who do not have enough funds to pay the
current spot price. Lastly we found that the time left ratio can be
increased more by increasing the hedge rate than by increasing
the NBR. Finally, we have not found evidence that one hedge
strategy is significantly better than the other two.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an abstract architecture for a com-
putational Grid model, where Grid Resources are allocated to
jobs using a trading mechanism analogous to a market economy.
At the core of our architecture’s scheduling system lies a Grid
Resource market. On this market, the demand for and the con-
tribution of Grid Resources are aggregated, and the price where
both sums are equal is called the spot price. This spot price fluc-
tuates constantly due to dynamic state of Grids.

We argue that fluctuations in the spot price can degrade the
nontrivial quality of service offered by Grids. To counteract this
deterioration, and even profit from price fluctuations, we pro-
pose the use of option contracts on Grid resources. These con-
tracts permit to buy or sell a resource at a predetermined price in
the future. By buying or borrowing and selling a combination of
contracts, the user can setup hedge portfolios. These portfolios
are constructed to benefit from expected price changes. We find
that the butterfly spread is beneficial when there are only small
price changes, whereas the long straddle is of use when users
expect large price fluctuations. The call option strategy protects
users against soaring prices.

Unique to the proposed model are two particular Grid ser-
vices. The first service is a derivative broker. This service issues
derivatives on behalf of the second service which is the option
issuing service. The purpose of the derivative broker is that it en-
sures that the option service will be able to fulfill its obligations
specified in the option contract. We propose these services as an
extension to existing architectures where resources are traded as
commodities.

We claim that hedging improves the quality-of-service in a
Grid by causing more jobs to be processed before the deadline.
Moreover, we show that by increasing the number of options in
a portfolio a user can increase the probability of a job finishing
before the deadline more than by increasing the budget avail-
able at submission. This effect is strongest for jobs which have
a initial budget per resource below the first quantile. The cost
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of running a job are only significantly increased when using a
straddle to hedge. However, this strategy is the most successful
one.

By changing the number of contributed resources we show
that the improvement offered by the call and straddle strategies
are more dependent on the price behavior than on the number
of contributed Grid resources. For the butterfly spread however,
the number of contributed resources is the predominant reason.

We believe that interesting issues in future research include
more accurate pricing systems of the options by observation of
the price behavior. Since it is not possible to store Grid Re-
sources, a study on the use of future—or forward contracts could
consider these contracts to be analogous to the ownership of
Grid Resources. This would pave the way to risk reduction for
option issuing services.
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