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Models for systems biology commonly adopt Differential Equations or Agent-Based modeling
approaches for simulating the processes as a whole. Models based on differential equations presuppose
phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach
often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose
an extendible systems model based on a hybrid agent-based approach where biological cells are
modeled as individuals (agents) while molecules are represented by quantities. This hybridization in
entity representation entails a combined modeling strategy with agent-based behavioral rules and
differential equations, thereby balancing the requirements of extendible model granularity with
computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis
involving an assay of 10> cells and 1.2 x 10 molecules. The model produces cell migration patterns that
are comparable to laboratory observations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A large part of Systems Biology (Kitano, 2002) involves the
construction of mathematical and computational models that aid
the understanding of how observed biological phenomena (such
as the human immune response) emerge macroscopically through
the integration of causal knowledge obtained from in vitro and in
vivo experiments performed on sub-parts of the system. We will
refer to them as system models in this paper. To simulate and
analyze these system-level dynamics, such system models often
sacrifice constituent details for computational tractability. For
example, they may focus on intercellular (Celada and Seiden,
1992; Guo et al,, 2005; Jacob et al., 2004; Nowak et al., 1991;
Perelson and Nelson, 1999) rather than intracellular molecular
interactions, such as the models for intracellular signal pathways
and genetic regulatory networks (Ander et al., 2004; Emonet et al.,
2005; Schaff et al., 1997; Takahashi et al., 2002).

As biological cell behaviors ultimately arise from intracellular
molecular interactions, extending the model granularity to the
molecular level becomes necessary in many cases, especially for
continual integration of new research findings. For example,
current drug treatments for HIV-1 through the use of reverse
transcriptase and protease inhibitors are designed to block
different stages of the reproduction process of HIV, which are
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processes taking place within the infected T helper cells (Fauci,
2003). Similarly, research on the conformational process of the
gp120 surface protein on HIV virions help determine ways that
inhibit their entry at target cell membranes (Stix, 2006). And
ultimately, to be able to use agent-based models to verify various
hypotheses of HIV pathogenesis on the human immune system
(Guo et al., 2005), significant amount of microstructural details
(e.g., gp120-induced cell syncytium and the filling of CD4
receptors) are required in order for the simulation results be
useful for decision support (Gross and Strand, 2000).

Two common approaches for developing system models are
Differential Equation (or DE, including ODE and PDE) models
and Multi-Agent (or MA) models. DE models (Stekel et al., 1997)
treat biological cells as populations (quantities), using an
aggregate approach that disregards the cell’s individual identity.
Therefore, the ability to handle complex (possibly spatially
explicit) heterogeneous cell behaviors that take place at the
individual level is reduced. On the other hand, MA models (Celada
and Seiden, 1992; Jacob et al., 2004) treat each cell as a unique
individual (called agent) with distinct state variables and interac-
tion history, thereby allowing possibly complex biological beha-
viors to be modeled for each cell type over a variety of
environmental topologies. Typically, the cell behaviors in MA
models are specified by a set of logical if-then rules. These two
approaches have been contrasted in terms of assumptions,
justifiability, realism, model granularity, implementation details,
and computational tractability (Guo and Tay, 2005). MA models
are believed to be more realistic (due to increased microstructural
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complexity) but face issues of computation intractability and
model scalability.

Though DE models and MA models are different modeling
approaches, they are not necessarily mutually exclusive. In this
paper we propose a hybrid agent-based modeling approach which
treats chemical molecules as quantities and biological cells as
individual agents. This is motivated by the morphological
distinction between cells and molecules: where, compared to
the former, molecules are much smaller (in the order of
nanometers vs. cells in the order of micrometers), more abundant,
have less complex behaviors and are well-characterized by
physical laws. Though this modeling approach is agent-based in
principle, DE techniques for characterizing macroscopic dynamics
(such as reaction and diffusion equations) can be applied to
molecular interactions on the cell surface and within the cells. We
apply this proposed hybrid approach to model cell chemotaxis, a
well-known phenomenon where cells are attracted to the source
of certain chemical molecules (known as chemoattractant) by
following the gradient. We choose this application for its
illustrative value of modeling interactions between molecules
and cells, a task that is difficult to achieve individually with DE or
MA models. An accurate model of chemotaxis will give us
increased confidence of modeling the higher level of biological
processes that base on chemotactic movement of cells, such as
lymphocytes migration in tissues during an immune response
(Eisenbach et al., 2004). It has been demonstrated that MA models
with accurately designed agent movement rules result in macro-
scopic behavioral patterns that better agree with observations
(Hosseini, 2006; Railsback et al., 1999; Railsback and Harvey,
2002).

This paper is organized as follows. Section 2 describes the
motivation for the hybrid treatment of cells as individuals and
molecules as quantities within a single MA model. Section 3
describes the hybrid agent-based design approach, which consists
of developing (1) an environment model for interactions between
quantity-based molecules and individual-based biological cells
(agents) and (2) specifying general and extendible agent beha-
viors. Section 4 presents the application of the hybrid modeling
approach to the chemotaxis phenomenon with an in silico Under-
Agarose Assay and cell-molecule interactions involving receptor
kinetics. Section 5 concludes the paper.

2. Motivation

Cells and molecules are basic building blocks in all biological
systems. Any nontrivial system-level modeling attempt (such as
to determine the efficacy of drug treatments for HIV-1 infections
within a virtualized laboratory (Sloot et al., 2006)) invariably
needs to deal with interactions of the two. Taking the human
immune system as an example, the major cellular players are
leucocytes, including phagocytes (mononuclear phagocytes, neu-
trophils, eosinophils), auxiliary cells (basophils, mast cells,
platelets), and lymphocytes (T cells, B cells, large granular
lymphocytes) (Janeway et al., 2001; Roitt and Delves, 2001). The
intercellular interactions take place through direct cell contact
and chemokine passing. Chemokines are molecules that are
secreted by one type of cell and received by another type of cell.
These molecules affect by binding to the receptor molecules
expressed on the target cells, starting a chain of molecular
reactions within the cell which leads to a state change of the cell,
such as activation or migration. For example, Th2 cells (a subset of
T helper cells) release cytokines such as interleukins IL-4 and -5,
which are required for B cell differentiation. In general, cells
interact in a deliberate and systematic way through direct contact
or through the exchange of information via chemokine secretion.

Naively, DE models for biological cell populations commonly
assume that collectively, cell interactions obey a mass action law
and the diffusion law for their movements. The former means the
likelihood that two cells will interact is proportional to the
concentration of each of the two types of cells, while the latter
implies that biological cells move randomly, like molecules.
However, the basic form of the reaction-diffusion equations are
not readily applicable to many biological phenomena, where the
cellular encounter is in reality, known to be more systematic
rather than random. As an example, cell distributions within a
lymph node are non-even: B cells and T cells concentrate in
different areas known as B zones and T zones (Janeway et al.,
2001). Research has revealed that T cells are recruited to the T
zone through the interaction between T cell’s CCR7 receptor and
its ligands, SLC and ELC (Cyster, 2000; Weninger et al., 2001),
though it has not been firmly established whether the movements
entirely attributed to chemotaxis (Wei et al., 2003). Similarly,
dendritic cells, which present antigens to T cells so as to trigger an
immune response, also bear CCR7 on their surface and are
attracted to the same T zone (Cyster, 1999; Sallusto et al., 1998;
Sozzani et al., 1998). As a result, the chance of interaction between
dendritic cells and T cells (and hence the chance that T cells
recognize antigens) are significantly increased as compared to the
simplistic assumption that they interact only through Brownian
cell movements. It is generally difficult for DE models to handle
the multiple roles that a biological cell may undertake in its
lifetime (especially for immune cells).

The need to use an individual-based approach for modeling
biological cells arises from their wide range of possible states and
nonlinearly interacting behaviors (Guo and Tay, 2005). In some MA
models (Guo et al., 2005; Kleinstein and Seiden, 2000), molecules
(e.g., antibodies) are also modeled as individuals. We believe,
however, that molecules and cells are sufficiently different to
warrant the combined use of distinct but complementary modeling
strategies for each type of entity. The primary reasons for
distinguishing between them (for modeling purposes) are:

(1) Relative scales: The size of molecules (in the order of
nanometers) are several orders of magnitude smaller than cells
(in the order of micrometers) (Nelson, 2004). The so-called
molecule-cell interaction is ultimately a molecule-molecule
interaction: some ligand molecules in the environment interact
with certain receptor molecules on the cell surface.

(2) Relative population sizes: The quantities of molecules are
potentially much larger than the quantity of cells. For
example, it is estimated that every plasma cell may produce
antibody molecules at a rate of 2000s~! (Merieb, 2006).
Modeling molecules as individuals would therefore be
computationally intractable.

(3) Relative complexity: The behaviors of molecules are much
simpler than those of cells. Individually, molecular interac-
tions can be considered as chemical reactions, and collec-
tively, the resulting dynamics are quantitatively captured by
the law of mass action. Their random movement at the
individual level is also captured by Fick’s law of diffusion at
the population level. Using mass action law and the diffusion
law eliminates the need to model molecules individually. On
the other hand, cells are much more complex and it is difficult
to describe their aggregate behaviors using mathematical
formulas without considerable simplification (which is the
main issue with DE models).

The above differences between molecules and cells motivate
our hybrid approach towards the modeling of biological cells as
individuals and molecules as quantities. In the next section, we
describe this approach in detail.
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3. A hybrid modeling approach for extended system models

To model a microbiological system of cells and molecules, we
consider model hybridization at two levels: globally in the
environment, and locally with a cell (on its surface and within its
body).

3.1. Environment modeling

The environment is where biological cells and molecules reside
and interact. The environment model handles the storage and
provision of spatial proximity information of cells and molecules.
It also handles environment level events that are exogenous to
individual agents, such as the spread of inflammatory signals,
blood flows, and lymphoid fluid flows. We view the environment
not merely as a passive ‘holder’ to place the agents, but as an
active entity with its own activities and special properties (e.g.,
blood flows) which can greatly influence the behaviors of the
agents (Weyns et al., 2006).

Our model of the environment consists of three functional
layers superimposed in the same space:

(1) An Agent Holder Layer, where all agents (cells) reside.

(2) A Molecule Space Layer, where all molecular distributions are
recorded.

(3) A Flow Field Layer, where background flows, such as blood
flows and lymph flows are modeled.

Each point in the environmental space is a composition of all
the layer functionalities at that particular coordinate. To illustrate,
Fig. 1 shows the environmental space as three layers of two-
dimensional (2-D) planes, but the concepts are not necessarily
restricted to a 2-D space but applicable to any number of
dimensions. The layers are classified into continuous and discrete
space layers. In continuous space layers, real values can be
specified for the coordinates but in the discrete space layers,
values are defined only at discrete ‘grid points’. When composing
discrete and continuous layers, values at intermediate coordinates
are determined using interpolation. Of the three layers, only the
Agent Holder Layer uses a continuous space. We next describe each
layer in detail.

The Agent Holder Layer contains all the agents. The agents
denote entities that are modeled at the individual level, and here
we mainly refer to biological cells. The location of each agent is
specified by its real coordinates in this layer. In the simplest case
where the agents are modeled as spheres, two agents collide if the
distance between their coordinates is shorter than the sum of
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their radius. This physical contact may result in more inter-agent
interactions (defined by agent behavioral rules).

The Molecule Space Layer and the Flow Field Layer share a
common mesh grid structure, which is a discretized version of the
space. We use AL to denote the distance between two neighboring
mesh grid points. The value of AL determines the granularity of the
discrete space. A grid point indexed by (i, j) corresponds to a real-
valued coordinate (i AL, j AL) in the continuous space of the Agent
Holder Layer. Therefore, each agent is necessarily located within
some grid cell. This correspondence in spatial locations is the
basis of the ‘communication’ between layers.

The Molecule Space Layer consists of multiple sub-layers, each
representing the spatial distribution of a certain type of molecule.
The local molecular quantity (number of molecules) at each grid
point (i, j) is denoted by Q;;. The change in the spatial distribution
of molecules is subject to the following simultaneously occurring
events:

(1) Production: Cells may synthesize and release cytokines into its
neighborhood.

(2) Diffusion: The molecules spread due to Brownian movement.

(3) External flow: For example, in the blood vessels and lymph
duct, the molecules are ‘pushed’ by the local fluid flow.

(4) Consumption/degradation: Certain molecules are ‘consumed’
by binding to cell receptors. Molecules also decay through
various pathways (e.g., instability, enzymic reactions).

The net change of Q;; over time At is the combined result of the
factors above:

AQij _ AQy . AQ;; AQ;
At At production At consumption At diffusion
N AQ;; AQ;; 1)
At decay At flow

As we are using agents to model individual cells, the first two
terms emerge from the collective interactions of cells and
molecules. Therefore, these two terms do not have explicit
mathematical expressions. The change of Q;; due to random
movement is modeled using the diffusion law. After applying the
finite difference method to the diffusion law over a 2-D space, we
obtain

AQ;;
At

D
aion E(QHJ + Qip1 + Qij1 + Qi1 — 4Qi))
yjusion

where AL is the distance between two neighboring grid points and
D is the diffusion constant. For this numerical solution to be
stable, it requires At<AL%/4D (Heath, 2005). Intuitively, Eq. (2)
says that AQ;;/Atlgigusion, the change of the molecular quantity at

(2)

o Agent Holder Layer
Continuous space o e}
P e o
— - Molecule Space Layer
Discrete space
L e S S S, S ST Flow Field Layer
c e e < — <« <«

Fig. 1. Three-layer structure of the simulated environment.
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(i,j) over a time step of At due to diffusion is the net summation of
the outflows and inflows at (i, j) from the neighboring grid points.
The number of molecules that are removed due to decay
within time-step At is approximated by
AQ;;
At

= —2Q;; (3)
decay
where 4 is the decay constant.

The Flow Field Layer characterizes the background flow in the
environment. It represents the systematic transport superimposed
onto the random movements (by diffusion) of molecules and
agents. At each grid point (i, j), the flow velocity is given by F; ;. A
simple example is laminar flow, which is the normal condition for
blood flow in most of the blood vessels: the flow velocity is the
highest in the center of the vessel and lowest along the vessel wall
(Klabunde, 2006). Turbulent flows occur when laminar flow is
disturbed, such as at the branch point of the vessels (Klabunde,
2006). These flow profiles are environment-dependent and are to
be modeled by the Flow Field Layer.

The flows specified by the Flow Field Layer influence the
spatial distribution of the molecules (in the Molecule Space Layer)
by shifting the distribution towards the direction of flow. Consider
a grid point indexed at (i, j) in Fig. 2 has the real coordinate is (i AL,
JAL). Its governing space, V;; is the rectangle (AL x AL) centered at
(iAL, jAL). Let Q;; denote the molecular quantity within V;;, and
let F;j(= (F;;, Fij,)) denote the flow velocity (vector) at (iAL, jAL).
Within At, the quantity Q;; is shifted along the direction of F;; by
(Fijx At Fijy Ab). Let V;; be an imaginary rectangle space (AL x AL)
centered at (iAL+ Fjj,At,jAL+F;j, At), that is, the “shifted”
space that contains Q;; after At. Let S,,_,;; denote the overlapping
space between V;; and V,,,, (i.e., the governing space of grid point
indexed at (u,v) shifted by its local flow F,,). Hence the
proportion of Q;; that remains in V;; is Q,-J-S,-J-ﬁ,-J-/ALz, and the rest
are distributed to the governing space of the neighboring grid
points. The molecular quantity within V;; after At is the sum of
the “shifted” quantities (due to flow) from all the neighboring grid
points that fall into V;;. Therefore, the change of molecular
quantity at (i, j) due to flow is

The position of agents in the Agent Holder Layer is affected by
both the Molecule Space Layer and the Flow Field Layer. A
biological cell is passively driven by the background flows (e.g.,
the blood flow). It also moves not only passively, but also actively
in response to the local molecular concentration and gradient,
exhibiting chemokinesis and chemotaxis. Formally, we model the
displacement Ap of an agent in time At as a function of the local
flow velocity Fp, the local molecular concentrations Cpm p and
gradients G, p for a set of molecules m (Eq. (5)). The definition of
d(-), that is, how an agent combines the effect of the external
field, chemokinesis and chemotaxis is determined by the agent
rule set, which is in turn an experimentally observable and
verifiable set of biological functions pertaining to some type of
cell. Some types of agents may be highly motile while others are
structural in function, hence immovable. The agent may be
observed to respond to only specific types of m, depending on
its type and state. Whether d(-) is expressed as mathematical
equations or if-then decision logics or a hybrid of both is generally
subject to the modeler’s knowledge or experience:

Ap/At = d(Fp, Cinp,Gmp) ®)

In our model, the environment provides agents with discrete
information on local concentrations and gradients of molecule
types as well as the local flow vector. Determining the local
effect of this information for an Agent’s position (within the
Agent Holder Layer) requires interpolations from quantities
defined at neighboring grid points. We adopt the bilinear
interpolation (for a 2D space) for its simplicity and efficiency as
it requires considerably fewer points than the cubic or spline
method (4 vs. 16 in 2-D space). Consider the agent in Fig. 3
(depicted by a circle), whose nearest grid points are indexed by
(i, j), (i, j+1), (i+1, j), and (i+1, j+1), respectively. The local
concentrationof molecule m at the agent’s position obtained
through bilinear interpolation is

Cmp = AL™*(Q;j(AL — AX)/AL — Ay) + Qi1 ;AX(AL — Ay)
+ Qij1(AL — AX)AY + Q4141 AXAY) (6)

The local flow velocity is

ug V! Fp = F;;(AL — AX)(AL — Ay)/AL* + Fi,1 ; AX(AL — Ay)/AL2
AQijliow =D D> QijSuv—ij/AL* — Qij (4) p = Fisl X V)/ X 14X 2}/)/
u=i-1v=j—1 + Fij 1 (AL — AX)Ay/AL" + Fiyq j1 AxAy /AL (7)
i1, j+1 i) j+1 i+1, j+1
AL S i, j+l
i s .
| o A : B: S jisl, )
g
I
Q; | : .
] : . /' 5 : C: Si,j—)i,j
PR | <N :
i-1, ' .
. e ] D: i, josi, o1
i o
,l__ ] ______: i+1,]
AL
AL
1, 1 AL A, j-1 i+1, j-1

Fig. 2. Modeling the effect of flow on molecular distribution.
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i, j+1 £ AL i+1, j+1
agent
fe———— AX —@ AL
Ay
| |
i, j i+1, |

Fig. 3. Sampling of the local molecular concentration and gradient by an agent
(cell).

The local gradient Gy, p = VCp, p is a vector with components:

Gy = AL™*((Qiz1j — Q)AL = AY) + (Qis1j1 — Qijr1)AY)
Gy = AL"*((Qij11 — Qij)(AL — Ax) + Qi1 141 — Qiy1))A%) (8)

We have described a hybrid model of the virtual environment
and the general interactions between agents (individual biological
cells) and molecules (quantities) in such an environment. Though
they reside in layers with different spatial granularities (discrete
or continuous), we have shown how interactions among layers
can be predicted through simple interpolation. We next introduce
the behavioral rule building scheme for the biological cells.

3.2. Behavioral modeling for agents

As described in Sections 2 and 3.1, biological cells are modeled
at the individual level as agents. Agent behavior models (for
biological cells) can be constructed with several levels of
granularities. They can include specific details on the (known)
intracellular dynamics of molecular signaling pathways and
genetic networks (Ander et al., 2004; Emonet et al., 2005; Schaff
et al., 1997; Takahashi et al., 2002), or abstract a number of if-then
rules (Grilo et al., 1999; Guo et al., 2005; Jacob et al., 2004) and
treat intracellular activities as “black boxes”. A complete bottom-
up approach (i.e., from molecular level or even atomic level to the
system level) is generally considered infeasible due to its high
computational cost (Takahashi et al., 2005). The common practice
is in line with the principle of Occam’s razor: only concepts that
are necessary for explanation are to be modeled. Therefore, the
justification of increasing the model granularity needs to be based
on identifying the limitations of the current models.

We examine a simple model for B cell’s behavior in collision
with a virus (Jacob et al., 2004):

IF collision with virus & active:
Increment virus-collision counter.
IF virus-collision counter >threshold:
IF enough helper T cells:
Secrete antibodies.
Create new B cell.

The rule simplifies the process of collision and of virus
recognition, both of which, in reality depends on the probabilistic
success of molecule-to-receptor chemical bindings, but these
molecular details are omitted in the above example. It suffices to
replace the molecular details with a set of higher-level if-then
statements, because (1) under normal and healthy human

conditions, the aggregate outcome of these interactions are
usually predictable and directly measurable and (2) the purpose
of the model is more for reproducing the qualitative patterns than
for making quantitative predictions.

Such phenomenological abstractions become a limitation
when the purpose of the application is to compare explanations
and verify hypotheses. For models that are developed for
infectious diseases, such as HIV-1, where the normal response of
the immune cells are interrupted and become less predictable due
to molecular level interactions between the virus and the cell,
such a simplification becomes insufficient. Several pathogenic
mechanisms have been experimentally verified to exist, which
motivates the construction of hypothesis verification models for
quantifying which mechanism is more statistically significant
(Guo et al., 2005). For this purpose, it is vital to model the
different hypothetical situations based on a common denomi-
nator, which is usually at the molecular level (based on literature
survey). For models that are more explorative than illustrative, the
incorporation of cell-molecule interactions into agent rules
becomes necessary in order to achieve necessary quantitative
accuracy.

On the other hand, computational tractability mandates that
the model be simple and avoid unnecessary details. The appro-
priate balance between the orthogonal dimensions of model
efficiency and granularity varies for each application and must be
carefully chosen with the expert’s domain knowledge against that
of the model's intended purpose. While much of scientific
modeling remains an art, we do expect that an agent’s behavior
model be “non-uniform” in that it needs to handle events at
different scales, such as

e Different types of cells are modeled at different granularity
levels: some incorporate selective signaling pathways, while
others are as simple as “black boxes”. This can be achieved by
applying suitable techniques (e.g., if-then rules or differential
equations) for different parts of the model.

e Events are taking place at different timescales: molecular
interactions occur at a smaller scale than compared to cellular
level events. This can be achieved by an event-scheduling-
based update scheme (Guo and Tay, 2007) which avoids the
use of a uniform update frequency throughout the model.

We next describe a simple example of a receptor kinetics model
for a biological cell that uses differential equations for updating
the agent’s internal status. The model is more detailed than a
“black box” as in many MA models, but is still far less detailed
than that of whole-cell models (Ander et al., 2004; Emonet et al.,
2005; Schaff et al., 1997; Takahashi et al., 2002). This simple
receptor kinetics model will be subsequently used for the
chemotaxis experiment to be described in Section 4.

3.2.1. Model for cell receptor kinetics

We consider three interdependent molecular events for
receptor kinetics (Zigmond et al., 1982):

(1) Receptor-ligand binding, where free ligand molecules bind to
receptors on the cell surface.

(2) Receptor internalization and ligand consumption, where the
receptor-ligand complex is internalized into the cytosol, and
the ligand is ‘used up’ or digested by other biological
processes.

(3) Receptor recycling, where the previously internalized receptors
are returned to the cell surface, to be made available for
binding again.
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Though our hybrid approach treats molecular interactions
macroscopically as quantities, it is instructive to understand
how the collective effects of these interactions give rise to the
macroscopic descriptions. Readers who frequently use a mathe-
matical modeling approach would find the following equations
familiar. However, we need to emphasize that instead of a global
description of the molecular kinetics, these equations are part of
the agent behavioral rules, that is, at the scale of individual agents.

Consider a microscopic event where an individual ligand L
meets an individual receptor R and binds to it, producing an
‘occupied receptor’ LR. This event can be described as a chemical
equation of the form:

L+R- IR (receptor—ligand binding) (9)

The left-hand side of Eq. (9) indicates that for a single binding
event, one L and one R are consumed, and the right-hand side
indicates the result that one LR is produced. Microscopically, the
parameter kj, is a quantitative indication of how likely the binding
would happen given that the two reactant molecules meet.
Macroscopically, each binding event reduces the R and L
quantities (by Eq. (1)) and increases the LR quantity (by Eq. (1)).
The rate at which the binding process takes place is proportional
to k, and the quantities (or concentrations) of R and L. Based on
the mass action law, it is straightforward to derive the corre-
sponding macroscopic description of Eq. (9) as differential
equations:

dL)| _dR)| _ dILR]| _
el = de|, = de |, = KR (10)
Traditionally, the notation [-] denotes the concentration of

molecules in the whole space (having units M or moleL™!), but
here we redefine it as the quantity of molecules in the proximity of,
or within the agent. That is, [L] is the local number of ligand
molecules ‘available’ to the agent while [R] is the number of
receptors expressed on the agent (cell) surface. The rate constant
K} is proportional to its microscopic counterpart k;, and denotes
the number of bindings per unit time per pair of reactants. One
would recognize K}, to be similar to the forward rate constant or
association rate constant in enzyme Kkinetics (Mathews et al.,
2000), except for the difference in the unit. Enzyme Kkinetics
typically deals with concentrations (assumed uniform distribu-
tion in space) while here we deal with quantities that are local to
each agent. For simplicity, we assume that the disassociation of R
and L is rare and can be ignored. The equations in Eq. (10) describe
the change in molecular quantity local to a single agent, therefore
they can be considered as agent rules expressed in equational
form.

We next consider the events of receptor internalization/ligand
consumption and receptor recycling. One example of these
processes is receptor-mediated endocytosis (Guyton and Hall,
2000), where a biological cell takes in molecules that are
too big to enter the cell through diffusion or transport proteins.
The bound ligand is disassociated from the receptor and
‘consumed’ by other biological processes. The freed receptor is
then returned to the cell surface. The microscopic chemical
equations are:

LR LN R* (receptor internalization and ligand consumption)
(11)

R* X, R (receptor recycling) (12)

where k; is the rate at which a single LR molecule converts to a R*
a free receptor molecule still in the cytosol, and k; is the rate at
which the receptor is returned to the surface. The corresponding
macroscopic (local to the particular agent’s environment)

differential equations are:

diLR)| _ dIR*|

|, = dt i_—K,[LR] (13)
diR*)| _ dR]| _ «

a | = dr r_—Kr[R] (14)

The effect of macroscopic Egs. (10), (13), (14) are expressed by
an agent’s behavioral rule (shown in Table 1). Since the molecular
events are taking place concurrently, we must avoid a predefined
order of performing these updates; that is, they should be
executed in parallel. One way is to randomize the order of their
execution. Alternatively, we can achieve true parallelism by
combining Egs. (10), (13), and (14) so that the factors affecting
the molecular quantity [X] are arranged to appear on the right-
hand side of the same equation. The rearrangement is mathema-
tically expressed as follows:

X dX]
o = 2dr

N

, wheres e {b,i,r}, X € {R,L,LR, R*} (15)

s

This gives rise to the system of coupled equations shown in the
right-hand column of Table 2. The revised version of the agent rule
from Table 2 is given in Table 3. These equations are used in the
action part of the agent rule to update the local molecule
quantities [L], [R], [LR], and [R*]. As the ligand quantity [L] varies
with the agent’s location, it adds nondeterministic factors to the
results, even the rules are expressed in terms of deterministic
equations.

The rule we specify here is quite flat as there is only one
proposition and all the equations appear in the action part.
However, it is possible to specify more complex situations that an
agent can be in, and the different responses it could make.

Table 1
Agent rule: receptor-ligand interaction

If Alive Then
Sample the environment: getcurrent local ligand quantity [L]:
Get the values of individually stored quantities [R], [LR], and
[R*]
Perform followingupdating rules in parallel:
(@) reduce [L], [R1by Kp[L] [R] At, and increase [LR]by
Ky [L] [R] At (receptor-ligand binding)
(b) reduce [LRI1by K;[LR] At, and increase [R*]by K;[LR] At (receptor
internalization and ligand consumption)
(c) reduce [R*1by K. [R*] At, and increase [R]by K,[R*] At (receptor
recycling)

End If

Table 2
Microscopic rules and macroscopic equations for receptor-ligand interactions that
are local to an agent’s environment

Individual reactions Quantity changes (combined updating rule)

Receptor-ligand binding

di _
) dr = —K5[LIR]
b
Lo AR Kyl + KR
Receptor internalization and
ligand consumption
ki
R, ¥ R _ gy juym) - KR
Receptor recycling
ke z
R* SR L[th | KifLRy = KR
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Table 3
Agent rule: receptor-ligand interaction (rewritten for parallel updating)

If Alive Then
Sample the environment: get current local Ligand quantity[L]:
Get the values of individually stored quantities [R], [LR], and
[R*]
computed[L],d[R],d[LR],d[R*] using equations inTable 2
Update local quantities: [X] = [X]+d[X] (Xe{R,L,LR,R*})

End If

3.3. Summary

We have proposed an agent-based hybrid modeling approach
and its implementation at both the environment and agent levels.
Hybridization here refers to the differentiated treatment of
biological cells and chemical molecules, with the former modeled
as individual agents and the latter as quantities (Section 2 has
provided the motivations). The accomplishment of this objective
requires three tasks. Firstly, we have shown how the proposed
approach combines the use of quantity-based differential equa-
tions and individual-based if-then rules. Differential equations are
applied to update the environmental level molecular distribu-
tions, and can also be nested in the agent’s if-then rules to update
the intracellular molecule levels. Secondly, in order to represent
the individuals and quantities at the same time in the environ-
ment, we have shown how the space is modeled both continu-
ously and discretely through functional layering. Individuals in
the continuous space learn about the local environment by
interpolating the molecular quantities stored in the grid points
of the discrete space. Thirdly, when cells are treated as individuals,
its internal properties (state variables and updating rules) can be
considered as a black-box or be explicitly modeled as a network of
rules and states that represent the molecular interactions. To
further enunciate the pattern of receptor-ligand interactions to
the level of intracellular molecular interactions, we have shown
how quantity-based differential equations can be nested within
individual agent rules.

In the next section we model the phenomenon of chemotaxis
as an example of our proposed agent-based hybrid modeling
approach.

4. Case study: modeling chemotaxis

Chemotaxis refers to the directed cell movement towards or
away from a chemical source (chemoattractant or chemorepel-
lent) by sensing and following the chemical gradient (Eisenbach et
al., 2004) in its immediate neighborhood. Through chemotaxis, a
sperm cell finds the ovum, a white blood cell finds the place of
injury or inflammation, and a nerve cell grows its axon to
establish synaptic connections (Eisenbach et al., 2004). Chemo-
taxis relates the movement patterns of cells to the spatial
distribution of molecules, hence they serve as a good benchmark
for illustrating the hybrid modeling scheme proposed in Section 3.

The phenomena of chemotaxis has been investigated as well as
modeled extensively. The most popular mathematical model is
the Keller-Segel model (Keller and Segel, 1971a, b; Sherratt, 1994),
which is a PDE model which describes cells and molecules as
population level quantities. The model is phenomenological in that
it abstracts away molecular details of the transduction of
extracellular signals to cell locomotion as the detailed molecular
interactions were not well-understood at that time. In the past
decade however, much of bioscience research has been devoted to
discovering the mechanisms that transduce the extracellular

chemical signals into cell locomotion (Firtel and Chung, 2000;
Jones, 2000; Lin et al., 2004; Mitchison and Cramer, 1996; Parent
and Devreotes, 1999; Sanchez-Madrid and Del Pozo, 1999). These
include molecular events such as G-protein activation, lipid
remodeling, protein kinase activation, calcium elevation (Eisen-
bach et al., 2004; Firtel and Chung, 2000), and cellular events such
as cell polarization, pseudopod extension, excitation and adapta-
tion (Eisenbach et al., 2004; Sanchez-Madrid and Del Pozo, 1999).
Therefore, it can be expected that newer chemotaxis models need
to incorporate intracellular mechanisms in order to model the
newer findings at the intracellular level. Our model presented
here is a preliminary version of such an attempt. The simple
receptor kinetics presented in Section 3.2 are incorporated as the
intracellular mechanisms of the chemotaxis model.

4.1. Agent rules for movement

The chemotaxis model consists of a hypothetical motile cell (or
M cell) population and the chemoattractant molecules L (ligand).
The M cell is capable of both random movement as well as
directed movement towards L. We describe the total displacement
Ap over an arbitrary update interval At, as a linear summation of
the random displacement Ap;andgom, displacement due to local
flow Apjow, and the chemotactic displacement Apchemo that take
place over At:

Ap = Aprandom + Apﬂow + Al:'cherno (16)

Eq. (16) is an instantiation of Eq. (5). APrandom has an arbitrary
direction (random movement). Its magnitude is the product of the
update interval At and the random movement speed (a random
value between 0 and ). Apgow is the product of the local flow
velocity F, and time duration At. Apcremo converts local ligand
concentration Cpy,p and gradient information G, into a vector,
which will be detailed later in this section.

For a particular M cell, the update interval At is the period of
time between two consecutive calls to its move method. We adopt
an event-scheduling-based update scheme (Guo and Tay, 2007)
that simulates all the biological processes as a series of discrete
events, which allows arbitrary lengths of time between events. For
efficiency reasons, the discrete event scheduler allows us to
incorporate a simple “negative feedback loop” between the
update interval At and the cell’s movement speed. Specifically,
we assume the following relationship:

Atyy1 = 5exp(—Ap/Aty) + 1 (17)

That is, the slower the current movement speed (Ap/At,), the
less likely that the cell will experience rapid movement in the
near future, hence the next update interval At,.; can be set longer
to reduce the computational cost. The update interval therefore
ranges from 1 (the update interval of molecular diffusions) to 6
(unit: minute) based on Eq. (17). Experiments have shown that
such an implementation does not alter the simulation results in
terms of aggregate cell movement behaviors.

For the chemotactic displacement Apchemo» We adopt the
quantitative hypothesis that chemotactic response is proportional
to the receptor difference in receptor occupancy of the front and
the rear of the cell (Devreotes and Zigmond, 1988). The equations
for receptor-ligand binding, receptor internalization and receptor
recycling are described in Section 3.2 (Egs. in Table 2). Here we
extend its formulation to determine the effect on chemotactic
movement. Let r and V represent the radius and the volume of an
M cell, and let [R], [LR], [R*] represent the quantity of the free
surface receptors, occupied surface receptors, and the internalized
receptors, respectively. The amount of ligand available at the front
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and the rear of the cell is approximated by

[L]front =(C+ |G\r)V/2 (18)

[Llrear = (C—|GINV/2 (19)

The number of newly bound receptors (LR) for the period At at
the front and rear of the cell are:

A[LR]fmnt = Kb[L]fmnt[R]front At (20)

A[LR]rear = Kp[Llrear[Rlrear At (21)

where [R]front = [Rlrear = [R]/2 by assuming the free receptors are
equally distributed on the cell surface. Recall from Eq. (10) that K,
is the binding rate of the ligand and the receptor.

From Eqgs. (20) and (21), the difference in newly bounded
receptors in At is therefore

AlLRlaigr = K ([Lfrone — [Llrear)[R1AL/2 (22)

Assuming linear dependency of the chemotactic displacement
on the difference in newly bounded receptors gives rise to

A
SPeno _ (A[LR )y /AD(G/IG) (23)

where k is a proportional parameter. The larger the value of k, the
more responsive the cell movement is to the occupancy difference
in newly bounded receptors at its front and its rear.

4.2. Experimental design

We conduct an in silico experiment to simulate the Under-
Agarose Assay, which was designed to investigate the in vitro
chemotactic behavior of leucocytes (e.g., neutrophils, macro-
phages, and monocytes) (Heit and Kubes, 2003; Lauffenburger
et al., 1983; Tranquillo et al., 1988). The configuration of the assay
is illustrated in Fig. 4. The tissue culture dish is filled with Agarose
(gel) and two wells are cut into the gel. One is filled with cells and
the other is filled with a chemoattractant. The cells were
described to have migrated towards the chemoattractant-contain-

containing

well

ing well by squeezing under the gel. Fig. 5 shows the results
obtained from the laboratory experiment (Hoffman et al., 1982).

To mimic the Under-Agarose Assay, we construct a virtual
environment, shown in Fig. 6(a). The virtual environment is a
3 mm x 2mm enclosed 2-D space. The space granularity AL (the
distance between neighboring grid points) is set at 20 pm. The cell
and attractant wells are both 250 um in radius and are placed
1 mm apart. Initially, the cell well is filled with 1000 cells, and the
attractant well is filled with attractant molecules at a concentra-
tion of 2500 particles per 20 pm x 20 pm area (for a total of about
1.2 x 10 molecules). By assuming a well height of 50 pm, we
create a cell concentration of 10%cellspL™! and a molecular
concentration of 107°molL~" so as to be comparable to the
original experiment setting (Heit and Kubes, 2003). The upper
panel in Fig. 6 shows the 2-D positioning of the wells, and
the lower panel shows the M cell histogram along the x-axis and
the cross-sectional view (at central y position, y = 1000) of the
attractant distribution. The cell radius is 4 pm and the maximum
random speed is 2 um min~. The molecules diffuse with diffusion
constant D =10pm?min~'. Table 4 summarizes the model
parameters mentioned above and for the various chemotactic
movement rules.

The real-time visualization of the simulation enables us to
monitor any transient pattern emerges in the course of simula-
tion. Fig. 6 shows a sample of the plot. The three panels are
aligned by their x coordinates. Panel (a) is the top view of the cell
distribution (cells as black dots) and molecule distribution (green
corresponds to high concentration and white corresponds to low
concentration). It is cropped to appropriate size to save the display
space without loss of information. Panel (b) displays the agents
(cells) distribution in the form of a histogram, with a bin width of
AL. The height of each bin corresponds to the number of cells
whose x coordinates happen to fall in the range that bin
represents. Panel (b) also displays the sectional view of the
molecular concentration distribution (in green) with the sectional
plane indicated in panel (a). Panel (b) is absolute in height that the
figure is not downscaled when the concentration drops or the cell
count decreases. This facilitates the comparison of simulation
patterns at different time instances. Panel (c) displays the x

Fig. 4. Illustration of the Under-Agarose Assay (figure adopted from Heit and Kubes, 2003).

)

N -~
| j

Fig. 5. Sample results of the Under-Agarose Assay (figure adopted from Hoffman et al., 1982).
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Fig. 6. Visualization of simulation result.

Table 4
Model parameters for simulating chemotaxis

Parameter Value Description

At 1 min Update interval of molecular diffusions

AL 20 um Granularity of the site grid

D 10 pm? min Diffusion constant of molecule L

2 Omin~! Decay constant of molecule L (no spontaneous
loss of molecules)

v 50 um? Volume of M cell

r 4 um Radius of M cell

I 2 pm min Random motility of M cell: max movement
speed

Reot 50,000 The total amount of receptor molecules R per
M cell

K 0.5min~" The recycle rate of internalized receptor R*

Ky 2 %10 ®min~! The association rate of L and R

Ki 0.3 min™! The internalization rate of occupied receptor LR

component of the molecular gradient at the sectional plane (i.e.,
the first partial derivative of concentration over x direction,
positive means gradient pointing to the right) and the relative
gradient (i.e., gradient divided by concentration, positive means
relative gradient pointing to the right). Panel (c) display is relative
in height that the figures are always re-scaled as the values
change, so that the displayed heights of the maximal gradient and
maximal relative gradient are fixed. The maximum values are
displayed in the legend.

To quantify the comparisons of cell migration patterns, we
measure the parameters shown in Fig. 6(a). The x coordinates of
the front and the rear of the M cell population are denoted by X;qx
and X, respectively, and the mean x-coordinate of the entire cell
population (i.e. center of mass) by X4, The initial values of Xqvg,
Xmax, and xmi, are 1000, 1250, and 750, respectively. Ly and L, are
the extensions of the pattern in the x and y directions. We use
their ratio L,/L, as an estimate of the elongation of the migration
pattern. Pattern elongation is caused by the speed difference
between cells at the front and at the rear of the population. When
the cell pattern is circular, L,/L, is 1. The larger the value of L/L,,
the more elongated the pattern.

The simulation model is implemented in Java. The simulation
is run on a Windows XP Professional system with 2.4 GHz
Pentium 4 CPU and 1GB of Memory. One single run of the
simulation of 5000 time steps takes approximately half a
minute with the visualization refreshed at the interval 100 time
steps.

4.3. Analysis of experimental results

As defined in Eq. (23), k is the proportional parameter that
relates a cell’s chemotactic displacement with the difference in
newly bound receptors between this cell’s front and rear. There-
fore, the larger the k, the larger the chemotactic displacement is to
be expected. Fig. 7 shows the simulation results at t = 5000 for k
at 3, 10, 25, and 50.

Table 5 shows the measurable parameters for each k setting.
The model produces a biased random walk pattern which is
qualitatively close to the laboratory observation (Fig. 5) for low k
values. Besides, following observations are made:

(1) As expected, the larger the k, the greater the displacement of
the cells towards the chemoattractant. However, it can be seen
from Fig. 7 that the cell population spreading towards right is
sparsely distributed. The majority of the cell population is still
concentrated in the cell well. This is further confirmed by
values in Table 5. The cell population front x4 significantly
increases with the increase of k, but the population center X,
only slightly increases on a much smaller scale than X,;qx.

(2) The pattern elongation along the y-axis is evident from both
the figures and the measurement of the parameters (i.e., L,/
L,>1) in Table 5.

(3) As for the cell population rear x;,,;,, it decreases as k increases,
that is, the cell population rear moves towards left.

(4) The molecule distribution exhibits a horseshoe shape, and its
shape coincides spatially with the edge of the cell population.
The area occupied by cells is low in attractant concentration,
reflected by their lighter background.
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Fig. 7. Simulation results at t = 5000 with different k values: (a) k = 3, (b) k = 10, (c) k = 25 and (d) k = 50.

Table 5
Cell migration parameters at t = 5000

k Xavg Xmin Xmax Lx/Ly
3 1018.98 409.29 1644.49 1.275
10 1055.59 525.61 1990.38 1.375
25 1130.81 553.06 2622.43 1.604
50 1235.53 482.27 2858.61 1.380

The above observation can be attributed to the interactions
between cells and attractant. As defined by the agent movement
rules, the receptor-ligand binding leads to internalization of the
ligand (attractant), effectively reducing the local concentration of
the attractant. The cell population thus falls in a “basin” of the
attractants concentration created by the cells themselves.
The cells spread towards left due to chemotactic movement
(as opposed to random movement), as the gradient at the
population rear is pointing to the left.

Fig. 8 shows the measurable parameters for k = 10 and 25 for
between the time t=0 and t=5000. The plots show the
consistent increase of x;;qx (population front) and the consistent
decrease of xp;, (population rear). The pattern elongation Ly/L,
gradually increases then decreases, implying that the spread along
y-axis become relatively more significant at the later stage of the
simulation.

To further investigate the correlation between the cell popula-
tion distribution, attractant concentration and gradient, we plot
the snapshots of the simulation for k = 25 at t = 1000 and 5000,
and compare them against the scenario where no cells exist in the
environment, as shown in Fig. 9. One could immediately see the
distinction in the smoothness of the gradient and relative gradient
between the two scenarios. When there are no cells, the molecular
distributions and the landscape of the gradient and relative
gradient are smooth. This is expected as in this case, the molecular
distribution is only affected by the diffusion equations and no
other factors, since the cells are not present. However, when the
cells are present, the landscape of the gradient and relative
gradient become rugged, reflecting the local interactions between
cells and molecules (that is, the cell receptors bind and “consume”
the molecules in the local space).

At t= 1000, the front of the cell population towards the
chemoattractant is evident, which spatially coincides with the
peak of the gradient. The negative relative gradient starts to appear
at the population rear, indicating that the gradient at that point is
pointing towards left, that is, the cells at the population rear will be
attracted towards left instead of right. This is in contrast with the
scenario when cells are absent, where the gradient is always
positive on the left to the attractant well (i.e.,, the gradient is
pointing towards right). For t= 5000, almost half of the cell
population falls in the area of negative gradients (which implies
that cells at the rear are moving towards left) and the other half fall
in the positive gradient (i.e., cells at the front are moving towards
right). When compared to the scenario where the cells are absent, it
can be seen that the gradient landscape is totally different, and the
molecular concentrations are much lower. This further confirms
that the basin-like distribution of molecular concentrations is
indeed caused by the cells themselves through interactions (i.e.,
molecule consumptions) with the environment.

We further study the long-term simulation results by extend-
ing the simulation to t = 20,000 and 100,000. The results are
shown in Fig. 10. It can be seen from the cell distribution (upper
panel) as well as the cell histogram (mid-panel) that the cells are
further spread over the space. The attractant concentration
becomes so low that their effects on the cells are almost
negligible. In the long run, cell movements become independent
of attractants and collectively, exhibit a normal diffusion pattern.

The efficacy of the hybrid approach for designing agent-based
models for microbiological systems has been demonstrated with
an in silico simulation of the Under-Agarose assay for showing
chemotaxis. The laboratory experiment for the Under-Agarose
assay typically take at least 2-4 h for neutrophils (not counting
the time for preparing materials and solutions), and can take as
long as 18 h for slower cells such as monocytes (Heit and Kubes,
2003). The computer simulation has the obvious advantage that it
completes much faster (in minutes in our example). As we are
able to view the real-time cell migration pattern with a computer
simulation, it is not so convenient to do the same in laboratory
experiment. Observing the cell pattern usually requires staining
the cells at the end of the experiment for them to be visible under
microscope (Heit and Kubes, 2003), which means that only
limited snapshots of the cell patterns can be obtained.
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Fig. 8. Cell migration parameters: (a) k = 10 and (b) k = 25.
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Fig. 9. Snapshots of the cell migration pattern, cell histogram, attractant concentration and gradient at t = 1000 and 5000 with k = 25.

long term, cells eventually spread like random diffusions. But we
do not yet know how long the laboratory experiment has to be in
order for this to be verifiable, as we have not established a formal

Though our model produces the cell migration pattern that
resembles the biased random work pattern, the similarity is
mainly qualitative. For example, our model predicts that in the
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Fig. 10. Long-term results at t = 20,000 and 100,000 with k = 25.

correspondence between the time in the real world and the time
in the simulation.

Our present model omits much of the intracellular mechan-
isms, but with the hybrid modeling approach, improvements on
both the environment level (such as compartmentalized environ-
ment in the in vivo system) and individual level (such as adding
intracellular signaling pathway that converts receptor-ligand
binding into cell locomotions), can be made as and when
granularity is justified by the hypothesis in question.

5. Conclusions

In the field of systems biology, system models are constructed
with the objective of integrating the knowledge of cellular and
molecular mechanisms for prediction of system dynamics as a
whole. In applications to verify HIV pathogenesis hypotheses (the
clinical patterns) against drug effects on immunological re-
sponses, it is necessary to increase the model granularity to
include intracellular level molecular interactions, but at the same
time keeping the model computationally tractable. Two com-
monly used modeling approaches, namely the Differential
Equation approach and Multi-Agent approach, have generally
been considered distinctive and mutually exclusive, but we have
shown how both methods can be combined to achieve a balance
in model granularity, computational tractability, and perfor-
mance. In our hybrid agent-based modeling approach, biological
cells are modeled as individual agents and molecules as
quantities. The hybridization of the quantity-based macroscopic
modeling (for molecules) and the individual-based microscopic
modeling (for cells) exists at both the environment and individual
levels. This is achieved by stratifying the environment into a
continuous space layer (the Agent Holder Layer) and two discrete
space layers (a Molecule Space Layer and a Flow Field Layer),
where agents interact with the environment (e.g., molecular
concentrations, gradients, flow directions) based on spatial
proximity. At the individual level, our model allows a mixed
representation of agent’s state variables, from less-accurate
discrete symbolic values (such as the healthy state) to more-
accurate real values (such as receptor levels) through different
types of update logics (or rules), ranging from simple value
assignment (for symbolic values) to sophisticated coupled
differential equations (for real values). Such a hybrid agent model

allows for mixed and extendible levels of model granularity to
cater to problem requirements. We demonstrate the efficacy of
this approach with models of chemotaxis (directed cell move-
ment), a phenomenon underlying many important biological
functions. The model simulates an Under-Agarose assay of 103
cells and 1.2 x 10° molecules. The model successfully produces
cell migration patterns that are qualitatively comparable to the
laboratory observations. We have elaborated on the extendibility
of this modeling approach in Guo and Tay (2008) with three
models of chemotaxis with increasing model granularity.
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