 CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. B(1), 19-46 (JAN-FEB 1996)

Native and generic parallel programming
environments on a transputer and a PowerPC
platform

A.G. HOEKSTRA, PM.A, SLOOT, F. VAN DER LINDEN, M, VAN MUISWINKEL, 1.J.1. VESSEUR
AND L.O. HERTZBERGER

FParallel Scieniific Computing & Simulation Group
Computer Systems Depariment

Faculty of Mathematics and Computer Science
University of Amsterdam

Kruisiaan 409

1098 SJ Amsterdam, The Netherlands

SUMMARY

Genericity of parallel programming environments, enabling development of portable paral-
lel programs, is expected to result in performance penalties. Furthermore, programmability
and tool support of programming environments are important issues if a choice between pro-
gramming environments has to be made. In this paper we propose a methodology to compare
native and generic parallel programming environments, taking into account such competing
issues as portability and performance. As a case study, this paper compares the Iserver-Occam,
Parix, Express and PYM parallel programming environments on a 512-node Parsytec GCel.
Furthermore, we apply our methodology to compare Parix and PVM on a new architecture,
a 32-node Parsytec PowerXplorer, which is based on the PowerPC chip. In our approach we
start with a representative application and isolate the basic (environment)-dependent building
blocks. These basic building blocks, which depend on floating-point performance and com-
municatlon capabilities of the environments, are analysed independently. We have measured
point-to-point communication times, global communication times and floating-point perfor-
mance. All information is combined into a time complexity analysis, allowing comparison of the
environments on different degrees of functionality. Together with demands for portability of the
code and development time (i.e. programmability), an overall judgement of the environments is
given.

1. INTRODUCTION

Real success of massively parallel processing critically depends on programmability of
parallel computers and on portability of the parallel programs. We are led to believe that
‘parallel computing has come to age’. Although it is safe to say that parallel hardware has
reached a convincing stage of maturity, both the programmability of the parallel hardware
and the portability of parallel programs still pose serious problems to developers of parallel
applications. Today, an application programmer is usually faced with a situation as drawn in
Figure 1 (see also[1]). A parallel computing platform supports native environments, which
allow low level programming, or allow a more abstract view of the hardware. Furthermore,
generic environments, also available on other platforms, can be used. These environments
can be grouped in order of decreasing hardware visibility and increasing portability. Of
course, one expects that the price to be paid for portability is a decrease of control of the
hardware and associated degradation of performance.

In this paper we address the question of how to compare (native and generic) parallel
programming environments, taking into account issues such as performance, portability

" CCC 1040-3108/96/010016-28 B Received 7 July 1994
©1996 by John Wiley & Sons, Ltd. Revised 14 December 1994

20 A.G. HOEKSTRA ET AL.

A Native Environments Decreasing hardware
visibility
Increasing low level Occam
performance Increasing portability

more abstract view Parix
of hardware

Generic Environments
Express, PVM, or MPI '

Figure 1. A typical situation encountered by application programmers of parallel systems

and availability of tools. We propose a methodology and apply it to a case study of native
and generic environments on a transputer platform and on a PowerPC platform.

A typical example of native and generic environments is provided by the developments in
transputer-based parallel processing, The first generation of these parallel systems consisted
of transputers hardwired into grids, and they had to be programmed in the transputer’s native
language, Occam. The programmer had to know all the details of the paralle]l hardware,
routing of messages had to be done explicitly, and the topology of the network was fixed. The
next generation allowed software-reconfigurable topologies and programming of the system
in the standard languages C and Fortran 77, extended with message-passing primitives.
Furthermore, programming environments, like, for example, CS-Tools[2], allowed the
sending of messages between processes, not necessarily located on adjacent processors: the
routing was done implicitly by the system. The next step should have been systems based
on the new T9000 transputer, The delay in production of this chip forced manufacturers to
turn to other chips, or move back to T805 transputers and emulate the T9000 virtual channel
routing[3] in software. This resulted in, for example, the GCel series of Parsytec[4], with its
programming environment Parix[5]. Here, concurrent processes communicate via virtual
channels and the machine can be configured into virtual topologies.

Despite these efforts, portability of parallel programs, developed in native transputer
environments, to other parallel computing systems is rather poor. Fortunately, parallel pro-
gramming environments have been developed which are supported on a large number of
different parallel computers. These environments carry the potential of true source level
portability of parallel programs between very different types of parallel systems, including
clusters of workstations and heterogeneous systems. Two very popular environments are
now also available on transputer-based systems. Firstly, the Express[6] system of Para-
soft, which is available on, for example, networks of workstations, or the Intel Paragon,
is also available on transputer systems. Secondly, the PYM environment([7}, which has
become the de facto parallel programming environment, has been ported to the Parsytec
GCel.

Summarising, nowadays an application engineer, developing parallel programs or port-
ing large sequential codes to massively parallel systems, has to choose between many
different programming environments (for an overview, see[8]). This choice will be based

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND FOWER PC 21

on competing issues such as development time, portability, availability of debugging and
profiling tools, ease of use, and last but not least, performance. Many research groups
have therefore compared parallel programming environments[9-13]. The majority of such
comparisons, however, concentrate around clusters of workstations, and have not analysed
the behaviour of programming environments such as PVM or Express on true massively
parallel machines. Furthermore, in many cases only the communication primitives of the en-
vironments were examined, without assessing the implications of the results for real paralle}
applications.

The goal of this work is to propose a strategy to compare parallel programming envi-
ronments, and to apply this to native and generic programming environments running on
a large massively parallel system. We compare two native parallel programming environ-
ments, Iserver-Occam and Parix, with two generic environments, Express and PVM, by
examining the behaviour of a representative parallel application implemented in these en-
vironments. These experiments are executed on a 512-node Parsytec GCel. As a case study
we have implemented an application from physics, i.e. elastic light scattering simulations
using the coupled dipole method[14-16] on the Parsytec GCel. This application has the
following characteristics:

» Itis areal application. This means that the application is actually used for simulations.

» The time complexity of the program is predictable. The execution time of the program
can be expressed in terms of problem size, number of processors and a small set of
basic system parameters (see, for example, the approach as described in[17]). This
allows a first comparison of the environments by measuring this very limited set of
parameters.

» It contains global communication routines. Global communication requires routing
of messages to all processors. Explicit coding of this in Occam, for example, is an
extensive programming effort, which is not necessary in environments like PVYM.

The implementation does not exhibit load imbalance. Load balancing is a research
area by itself, and would obscure our current experiment. The Parsytec GCel is a
monolithic platform, i.e, all processors have the same capabilities, unlike networks
of workstations, for instance. Therefore, the only possible source of load imbalance
in our experiment would be the program itself.

The coupled dipole application is an instance of a large class of applications where
matrix—vector products are the main computational effort. Many other applications using
iterative numerical solvers also fall in this class of applications.

We analyse the behaviour of the parallel coupled dipole method in the four environments
by analysing both basic and global communication routines, floating-point performance,
and actual execution times of the parallel program as a function of problem size and
number of processors. We investigate if the basic measurements can predict the run time
of the application, and if such basic measurements can be used as a heuristic to assess the
merits of a programming environment. In this way we can judge the trade-off which exists
between native environments, usually offering a better performance at the price of extensive
programming effort, and generic environments which allow development of more portable
programs. Finally, we apply our methodology io assess the merits of Parix and PYM on a
very recent architecture, the Parsytec PowerXplorer.

22 A.G. HOEKSTRA ET AL

GCel-3/512

=-1Atom ™ Atom T

Atom | }

1 F
1 |
el board -Iboal‘d et
| |
T[S u
T oo M= T
— i

Figure 2. Schematic drawing of architecture of Parsytec GCel-3/312 installation

2. DESCRIPTION OF THE HARDWARE AND THE SOFTWARE ENVIRON-
MENTS

2.1. The Parsytec GCel

The Parsytec GCel-3/512, which was installed at IC’A! in Amsterdam in January 1993,
consists of 512 T805 transputers, running at 30 MHz, with 4 Mbyte external RAM and
4 kbyte on-chip RAM each. The transputers are physically connected into a 16x32 two-
dimensional grid. The architecture of the machine is drawn schematically in Figure 2.

The basic logical unit of the GCel is an ‘atom’, constituting a total of 16 transputers. An o
atom consists of four boards each equipped with four transputers. The basic building block S o
of a GCel is a ‘cube’, containing four atoms, i.e. 64 transputers. GCel installations consist S

of multiple cubes, in our case eight.

All atoms are arranged in a large number of overlapping partitions which users can
request. In this way the user can obtain parts of the machine containing multiples of 16
transputers. Users access the machine via a front-end, a Sun Sparc 10 workstation.

2.1.1. The Parsytec PowerXplorer

Recently Parsytec has launched a new series of parallel computers which have the Motorola
PowerPC as the compute engine. Transputers are used for communication between the
nodes. In Amsterdam we have installed a 32-node Parsytec PowerXplorer. Each node
consists of 1 PowerPC-601 running at 80 MHz, with 32 Mbyte RAM and 1 T8Q:3 transputer
for communication. The nodes are connected in a 4x 38 grid.

' 1C*A is the Interdisciplinary Center for Complex Computer Facilities, Amsterdam. For more information,
e-mail: ic3a@fwi.uva.nl.

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 23

2.2. Parix

The standard programming environment for the PowerXplorer and the GCel is Parix[5], an
acronym for parallel extensions to Unix. All experiments described here are performed un-
der Parix release 1.2. Parix is a cross-development system. Applications are developed and
compiled on the front-end, and subsequently downloaded to the nodes. The programming
model is single program multiple data (SPMD)[5]; i.e. every processor contains the same
main program. However, depending on the data allocated to a processor, different branches
of the program can be executed.

The processors synchronise and exchange data by means of message-passing. Com-
munication is performed through so-called virtual links, and can be synchronous and a-
synchronous. Every processor can define a virtual link to any other processor in the net-
work. Parix takes care of routing the messages through the network. A set of virtual links
between different processors can be grouped into virtual topologies. Users can define their
own virtual topologies, or can use existing virtual topologies, such as rings, meshes or trees,
by calling appropriate functions from the virtual topology library of Parix. These library
functions guarantee an optimal mapping of the virtual topology on the actual physical
two-dimensional network of the parallel system. Messages can also be exchanged without
using virtual links: however, this mechanism is not very efficient. Furthermore, new releases
of Parix will contain global communication routines, such as broadcasts or global sums.
However, during development of the application these routines were not yet available, and
are therefore not included in the experiments described in this paper.

Parix programs can be developed in ANSI-C or Fortran 77, and all standard Unix tools
can be used. Communication between processors is performed through library calls. Input
and output to the front-end is performed transparently through remote procedure calls
to appropriate Unix system calls, and communication with the front-end is also possible
through Unix sockets. Parix 1.2 is equipped with a performance analyser called Patop.

2.3. Iserver

The Iserver-Occam environment consists of the Occam toolset to develop Occam 2 pro-
grams and run them on, in our case, the Parsytec GCel. The transputer and Occam were
developed together, and Occam can be considered the native language of the transputer. Oc-
cam altows maximal exploitation of the transputer hardware. Programs are developed and
compiled (compiler version d7205} on the Unix front-end, and subsequently downloaded
on the Parsytec. Mapping of transputer links to Occam channels, and configuration of the
network, are carried out by a special configuration file, which is included in the Occam
program.

Occam can only handle synchronous communication through Occam channels. If such
a channel is mapped onto a transputer link, parallel processes running on neighbouring
transputers can exchange data. To send data to an arbitrary processor the programmer has
to route the data explicitly through the network.

2.4. Express

The Express system[6,18} is a product of Parasoft, and is based on the early work of Fox et
al.[19]. Express is available on a wide range of platforms including Suns, Cray systems and

24 A.G, HOEKSTRA ET AL.

Meiko systems. Currently we have a G-version ranning on the Parsytec GCel[20]. Express
consists of a set of libraries to describe the parallelism in the program. For instance, a
communication library is present, offering primitives for sending messages between nodes,
and high-level global communication routines such as broadcast and global data gathering.
Furthermore, Express contains a parallel graphics system that offers a variety of graphical
functions to ail nodes in the system. Express supports C and Fortran77 programming,
and contains a number of programming tools such as a parallel debugger and a graphical
performance analyser.

Express offers two different working modeis: the host-node model and the so-called
cubix model. In the host-node model one dedicated node, usually the front-end machine
of the parallel system, starts and controls the computation on the parallel nodes, and all -
/O operations have to be performed by the host. In the cubix model a dedicated host node
does not exist, and all work is performed by the parallel nodes. Operating system services,
that the parallel nodes may require, are transparently redirected to the front-end. The cubix
model implies SPMD programming and is comparable with Parix’ programming model.
The coupled dipole program is implemented in the cubix model.

A cubix program is executed as follows. First, a partition is booted in the Parsytec GCel.
Next, Express is initialised by loading the Express kernel and the routing tables on each
transputer in the partition. Finally, the program is started by loading it on a user-specified
number of processors inside the Express partition.

On the Parsytec version the user has no control over the mapping of the parallel pro-
cesses into the partition. Furthermore, the physical location in the partition is unknown,
only process identification numbers can be assessed. However, by using, tor example, the
exgridinit call, the parallel processes can order themselves into N-dimensional grids and
communicate in, for instance, the left or north direction. This is comparable to the virtual
topologies of Parix.

2,5, PVM

PVM (parallel virtual machine) is a system to support heterogeneous distributed comput- LR
ing[7,21]. A virtual machine may include heterogeneous computers, such as workstations, i /_\
vector machines or monolithic massively parallel machines. PVM was developed by a .

collaboration between Qak Ridge National Laboratory, the University of Tennessee, and
Emory University, all in the United States of America. PYM is public domain software.
machine. The PVM deamon handles communication between nodes, provides a robust fault
tolerance to the virtual machine, and creates new PVM processes. The second part of PYM
is a library, containing routines to be called by the user program. The routines are used to
send and receive messages, to spawn processes or to modify the virtual machine. PVM3,
which we have used, implements the SPMD style of parallel programming.

Point-to-point data transfer is performed by send/receive pairs. The sending routine is
asynchronous, the receiving routine may be synchronous or asynchronous. Before sending,
the data must be translated to a machine-independent format and put into a buffer. The
sender process sends the buffer to the deamon, which in its turn sends the buffer to the
deamon running on the destination computer. Finally, the receiving deamon delivers the
buffer to the receiving process. After receiving, the data is unpacked, and translated to
machine-specific format.

" PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 25

The data transfer as described above is the most general form of data transfer in PYM,
which is needed if one defines virtual machines consisting of heterogeneous architectures,
loosely coupled by means of local- or wide-area networks. In many cases, however, it
is possible to simplify the point-to-point data transfer considerably. Firstly, if the virtual
machine contains processors of one type, it is not necessary to translate the data to a
machine-independent format. Secondly, the user can force PVM to set up a direct link
between the sending and receiving process, thus circumventing the deamons. This will
result in a substantial increase in the performance of the point-to-point data transfer. The
multicast routine, which sends data from one node to a set of other nodes, is always handled
by the deamon.

The PVM design assumes that the nodes are connected by unreliable and unsequenced
point-to-point data transfer facilities[22]. Therefore, to guarantee reliability and sequencing
of data transfer, PVM comrmunication is based on the UDP/IP protocol.

2.6, PVM on the Parsytec systems

PVM was recently ported to the Parsytec systems in a joint effort by Parsytec GmbH, Genias
GmbH and our group[20]. The experiments on the GCel, as described in this paper, were
carried out with a very early 3-version of PVM for Parsytec systems. The PowerXplorer
experiments, on the other hand, are carried out with the official release of PowerPVM
(version 1.1), which is PVM for the Parsytec PowerPC-based systems.

Following the philosophy of PVM, the GCel is considered as one node of a virtual
machine, with the deamon running on the front-end of the GCel, The PVM processes
running on the GCel node are actually executed on the transputers. If a GCel process
wishes to communicate with a process running on another node on the virtual machine,
it will always be handled by the deamon. If point-to-peint communication is performed
between processes inside the GCel (i.e. communication between transputers), it will not go
through the deamon, and the data translation is not carried out.

The multicast operation is implemented slightly differently than in standard PVM. If
the processes participating in the multicast are all inside the GCel, the multicast will not
invoke the deamon, This results in a major increase of performance of the multicast. This
implementation of PVM on the GCel is coined ‘heterogeneous PYM'.

PowerPVM for the PowerXplorer system is a so-called ‘homogeneous PYM'. Here, the
processors of the PowerXplorer are assumed to be the nodes of the virtual machine. Further-
more, the virtual machine can only consist of nodes in the PowerXplorer. The UDP protocol
layer is omitted, and data translation before communication is not necessary. Furthermore,
the deamons are reduced to very small processes to startup the virtual machine inside the
PowerXplorer. As a user, the functionality of this PowerPVM, and the commands needed
to start a virtual machine, are equal to the heterogeneous PVYM, However, communication
latencies are reduced significantly,

3. THE COUPLED DIPOLE APPLICATION
3.1. Functional aspects

The coupled dipole (CD) method[23} simulates elastic light scattering from arbitrary par-
ticles. The particle is discretised in ¥ small subvolumes, called dipoles. The simulation

26 " A.G. HOEKSTRA ET AL.

1 1 1 I

1
2 b+ [factor] x | 2 |=>| 2 ZIxLil=+R]1+[31->[]
3

3 3 3 3
3a: parallel vector update " 3.b: parallel inner product.
1 I 1
21> ; 2 X = | 2
3 Ty T 3

3.c: parallel matrix vector for a rowblock decomposed matrix.

Figure 3. A schematic drawing of the parallel implememation of the numerical operations. The
decomposition of the vector and matrix is symbolised by the dushed lines; a single arrow (->) means
a communication, and the implication mark (=>} means a (parallel) calculation

consists of two stages. Firstly, the internal electric field on the dipoles is calculated, and
secondly the scattered electric field is calculated using the previously obtained internal
field. The first stage can be formulated as a matrix equation Ax = b, with A a dense,
complex symmetric 3N x 3N interaction matrix, b a known vector of length 3N, and x
the wanted vector of length 3N containing the internal electric field. To solve this ma-
trix equation is the most demanding part of a CD simulation. The equation is solved by
means of the CGNR method[24], which is a conjugate gradient method suited for complex
non-Hermitian matrices.

The scattered field is calculated by summation of the radiation of all N dipoles at the
observation point. For every dipole one must calculate a matrix vector product Bx,, with
B a 3 x 3 complex matrix and x; a subvector, from the large vector x, with length 3. The
main computational difficulty of the CD method lies in the fact that for realistic simulations
the number of dipoles N has to be very large(15]; typical values for N are 10*~10°. The
calculation of the internal field is the most demanding part of the CD simulation.

We have developed a parallel version of the CD method[15]. Parallelism was introduced
by means of a data decomposition: each processor receives N /p dipoles (p is the number
of processors). In conjunction with the CGNR method, this decomposition is equivalent
with a row-block decomposition of the interaction matrix A[15]. We have studied parallel
versions of the CGNR method in great detail[25), and concluded that parallel CGNR with a
rowblock decomposition is very efficient if the number of rows (i.e. the number of dipoles)
per processor is large enough.

The CGNR method is an iterative method to solve matrix equations. One iteration
contains two matrix-vector products, three vector updates (y = ax + y) and three inner
products (r = x e x). Figure 3 shows schematically how these operations are performed in
parallel. The vectors represent electric fields on the dipoles, and are distributed among the
processors, Every processor has subvectors of length 3V /.

The vector update can be performed completely in parallel; all data are present in the local
memory of the processors. The inner product is calculated in two steps. First, all processors

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 27

calculate a partial inner product from their local vector data. This partial inner product is
sent to all other processors and all the results are summed (a scalar accumulate operation).
The rowblock decomposition of the matrix dictates how the parallel matrix-vector product
is executed. First the argument vector, which is distributed among all processors, must be
completely known by all processors. This means that all processors must send their part
of the argument vector to all other processors. We will refer to this as a vector gather
operation. After this vector gather the matrix—vector product can be performed in parallel,
The resultant vector is correctly distributed among the processors.

Assume that one floating-point operation takes 7.4, us. The execution time for the
parallel vector update is (remember, all elements are complex numbers)

N
TU“(N;P) = 24[?]"':::1[(; n

where [z] is the ceiling function of z. The parallel inner product has an execution time

T®(N,p) = (24[%1 - 2) Teale + lsa (2)

where {5, is the time to perform the scalar accumulate operation. Finally, the execution
time of the parallel matrix~vector product with row block decomposition of the matrix is

Tmu(N,p) = 3[%1 (24N - 2)Tca.lc + tug (3)

where £,,; is the time for the vector gather operation. In real CD simulations the decomposed
matrix A cannot be kept in the local memory of the processors. Fortunately we can compute
the matrix elements as they are needed. This is exactly what happens in the experiments
described in this paper. Therefore, an additional time to compute the matrix elements has
to be included in Equation (3). Every 3 x 3 block in A describing an interaction between
two dipoles requires 107 floating-point operations to be calculated. This results in

T™(N,p) = 3[%1 (24N — D)7earc + IOTN{%—'ITC,,;C + tyg 4)

Assume that the scattered field is calculated at w observation points (for instance scattered
field as a function of scattering angle). This means that every processor has to calculate the
contribution of its local dipoles to the scattered field at w observation points. To find the total
scattered field, the fields calculated in all processors must be accumnulated and summed.
The total execution time for the parallel calculation of the scattered fields is therefore

N
T4 (N,p) = wi ;1(66 + 107 Teqic + toa (5)

The factor 66 is due to the complex matrix~vector product Bx,, and the factor 107 is due
to the calculation of the matrix elements of B.
The time for one iteration of the CGNR method is

THer = 2T™ +3T% +3T% (6)

Assume that the CGNR method requires v iterations to find the solution vector x. The total
execution time for one coupled dipole simulation 77 is

28 A.G.HOEKSTRA ET AL

TCD — ,UTitef‘ + Tsf + TIO (7)

Here we included the time 77 needed for input—output operations.

We have now specified the execution time of the parallel coupled dipole simulation in
terms of floating-point operations and global communications. Both the global commu-
nications and the cost of a floating-point operation depend on the specific programming
environment. If we can measure T4, and the global communication cost we can estimate
the performance and scalability of the parallel simulation.

3.2. Implementation
32.1. General

Starting with the sequential coupled dipole C-source code, the parallel implementation in
Parix, Express and PVM is straightforward. First, some bookkeeping code to establish the
data decomposition must be implemented. Subsequently, the loop indices in the matrix—
vector products, inner products and vector updates must be adapted to match the data
decomposition. These additions to the source code are independent of the programming
environment, except for one call to obtain the number of processors available in the network,
and to find the location of each processor in the network.

Next, the communication routines must be included in the code. Before executing a
parallel matrix—vector product the argument vector must be gathered in each processor.
After calculating partial inner products in parailel, a scalar accumulate operation must be
performed. Finally, after calculating the scattered field of the local dipoles in parallel, the
resulting field must be accumulated. The implementation of these routines strongly depends
on the programming environment, and will be discussed in the following Sections.

The parallel coupled dipole method was first implemented on a Meiko computing surface,
containing 64 T800 transputers[14,25]. This implementation was in Occam, using the
Occam Programming System. This code was ported to the Iserver environment to run
on the Parsytec GCel. The structure of the implementation in Parix (in the C language)
strongly resembles the Occam version. The Parix version was ported to Express, and PVM
by adapting the communication routines and part of the bookkeeping code. We first discuss
the Occam version, followed by the Parix, Express and PVM versions of the program.

3.2.2. The Iserver—Occam program

The coupled dipole method with the rowblock decomposition of the interaction matrix was
implemented on a bidirectional ring topology. The vector gather operation is implemented
as follows:

1. In the first step every processor sends its local part of the vector to the left and the
right processor and, at the same time, receives the local part from the left and the
right processor.

2. In the following steps, the parts received in a previous step are passed on from left
to right and vice versa, and in parallel, parts coming from left and right are received
and stored.

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 29

After |p/2| steps (with |z] the floor function of z), every processor in the ring has
received the total vector. The scalar and vector accumulates are implemented likewise, but
in addition the processor must summate the received data with its local data.

The pseudo-Occam code for the vector gather operation is given below:

Vector Gather
PAR
SEQ —-- from right to left
PAR -- start the communication
send to left
receive from right
PAR 1=1 FOR "p/2-1" -- pass data from right to left
send to left which was received from right in the previous step
receive from right
SEQ -- from left to right
PAR -- start the communication
send to right
receive from left
PAR i=1 TO "p/2-1* -- pass data from left to right
send to right which was received from left in the previous step
receive from left

The operation consists of two parallel branches, one receiving data from the right and
sending data to the left, the other vice versa. Each branch consists of a communication
initialisation, which is the first PAR inside the SEQ branches. Subsequently the gather
operation is carried out in the replicated PAR operation. The Occam language is very pow-
erful to express such complicated communication patterns. Owing to the close relationship
between Occam and the transputer, this part of the code runs very efficiently on a transputer
(see Section 4). The complete Occarn source cade of the vector gather operation is, however,
much more complicated due to the complex datastructure needed to store the vector with
complex variables and due to the small load imbalance which is introduced if the number
of dipoles N is not a multiple of the number of processors p.

In our application, all transputers run two processes, a router and a calculator. Router
processes on neighbouring transputers are connected by a channel. These channels are
associated with hardware transputer links via a configuration file. The router process calls
communication routines, such as the vector gather operation. The calculator process per-
forms the work on the decomposed data. This work is divided in cycles, at the end of every
cycle a communication step occurs. The calculator sends a command, in the form of a single
character to the router process The router process rccelves this charactcr, mterprets itand

process is 1dlc After ﬁmshmg the communication, the router process sends a ready srgnal
to the calculater process, which then proceeds with the next cycle in the algorithm,

The original implementation of the Occam code for the Meiko system was carried
out in approximately eight months. Porting of the code to the Iserver environment took
approximately three weeks. The total Iserver—Occam source code contains 4500 lines.

3.2.3. The Parix program

The structure of the Parix implementation, developed in C, is similar to the Occam program.
A virtual ring topology is defined by a call to the virtual topology library, and two threads

30 A.G. HOEKSTRA ET AL

are started on each transputer, a calculator and a router thread. The main program is shown
globally below:

main ()}

{
/* main of parallel CD method */

MakeRing (...} /* Create Ring Topology */

GetRing_Data {...}; /* Extract information of Ring topology */
StartThread (Calculator,...); /* Start the Calculator thread */
StartThread (Router,...}; /* Start the Router thread */

Wait for threads to terminate

First, the ring topology is established; next the location in the ring is found by the
GetRing_Data call, and the two threads are started.

We could have mimicked the vector gather operation as described in the previous Sec-
tion using Parix’s asynchronous communication calls. However, to start an asynchronous
communication in Parix is very expensive, and would result in prohibitive startup costs.
Therefore we redesigned the vector gather operation. First, the data are sent in just one di-
rection, from Jeft to right, and the send and receive operations are synchronous. To achieve
this, the vector gather operation must start two threads: one 1o receive data from the left
and a second to send the data to the right. Furthermore, a mechanism to synchronise the
receiving and sending thread must be implemented.

The final vector gather operation is shown below:

Vector Gather

{
StartThread (Send_to_Right,...); /* Start sending thread */
StartThread (Recv_from_Left,...): /* Start receiving thread */
Wait for threads to terminate

}

Send_to_Right
{
/* pass data from left to right */
for (i=0 to p-1} {
Send (to right);:
synchronise with receiving thread

) e

Recv_from_Left

{
/* pass data from left to right */
for (i=0 to p-1} {
Recv (from left);
synchronise with sending thread

The synchronisation is implemented by establishing a virtual link between the sending
and receiving thread, and communicating ready signals between both threads.

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 31

This paralle] program was developed using the existing sequential C code, and the
experience we gained during the development of the Occam code. The parallel program
was developed in two weeks, the final version of the communication routines as described
above consumed two more weeks, and optimisation of the numerical parts of the application,
especially the matrix—vector product, lasted another three weeks. The complete C source
code contains 3800 lincs. The Parix program runs without modifications on the GCel and
the PowerXplorer system.

3.2.4. The Express program

The Express program is based on the optimised Parix C program. The main structure of
the Express program, however, is very different from the Parix implementation. Express
offers global communication routines which are used in our implementation. These global
communications free the application programmer from the notion of a topology. The
Express program consists of p parallel processes communicating via (global) message-
passing routines. The Express kernel takes care of placing the processes on processors and
of the actual routing of messages through the network.

The Express program consists solely of the calculator process. The calls in the original
Parix calculator to the router are replaced by calls to global communication routines of the
Inter Process Communication library of Express. Of course we could have implemented the
communication routines using constructs like the Parix program, but we feel that a typical
application programmer will use the global communication routines if they are available.
The numerical part of the code remained unchanged.

The vector gather operation is implemented using the exconcat function. This function
concatenates the data of each participating node into a single buffer. If the data of each
participating node are not equally sized (that is, it N /p is not an integer) the result of the
exconcat will be a buffer with ‘empty’ places in it. Therfore, the resulting buffer must be
compacted. The vector gather operation is now reduced to

Vector Gather

{ !
exconcat () ; kb
if necessary, compact the resulting buffer

The accumulate operations are implemented using the excombine function, which allows
each node to combine data from ali other nodes using a user-supplied function (i.e. in this
case addition).

Express uses buffers for the communication routines. The number of buffers and their size
can be adjusted by the user, and large buffers result in better communication characteristics.
However, it turned out that we had to choose very small buffers of 1 Kbyte to be able to
run Express on large partitions. This resulted in a small performance degradation of the
communication routines.

The time to port the Parix program to Express was three days. The resulting Express
version of the coupled dipole code runs without change on a cluster of warkstations, on
the Meiko Computing Surface and the Parsytec GCel. The total source code contains 2400
lines.

32 A.G. HOEKSTRA ETAL.

3.2.5. The PVM program

The PVM program is also based on the optimised Parix C program, and has the same main
structure as the Express implementation. PYM offers a global communication routine (the
multicast) which is used to implement the vector gather operation. The PVM program only
consists of the calculator process, with the calls in the original Parix calculator to the router
replaced by calls to global communication routines. The numerical part of the code remains
unchanged.

The vector gather operation is implemented using the multicast function. This function

sends data from the calling node to all participating nodes. Therefore, the vector gather
operation can be implemented by issuing a multicast on all processors, followed by p-1
receive operations to obtain the data from all other processors:

Vector Gather
{

prepare data for sending

pvm_mcast {...) /* the multicast operation */
for (i=0; i<p; ++i) {
pvm_recv(...) /* receive data from other nodes */

unpack data and put into buffer
}

if necessary, compact the resulting buffer

Before sending, the data are translated to a machine-independent format (the preparation
stage), and after all receives the data have to be translated into the transputer format. Finally,
as with the Express implementation, the resulting buffer is compacted if necessary.

The time to port the program to PVM was eight days. The resulting PYM version of the
coupled dipole code runs without change on a cluster of workstations, the Parsytec GCel,
and the Parsytec PowerXplorer. The total source code contains 2500 lines.

4. RESULTS

4.1. Methodology

The run time of the parallel coupled dipole implementation is determined by T4 and the
global communication times (see Section 3.1). In the Iserver-Occam and Parix implementa-
tion the global routines are explicitly implemented using (nearest-neighbour) point-to-point
communications. The global routines in Express and PVM are also implemented using basic
point-to-point communication, since the hardware does not support collective communica-
tions. However, as an application programmer we do not exactly know how these global
routines are actually implemented.

To compare the environments we have measured floatin g-point performance (i.e. Tcalc)s
the basic communication routines, the global communication routines and finally the execu-
tion time of the parallel coupled dipole method on the Parsytec GCel. Subsequently we have
compared PowerPVM and Parix on the PowerXplorer system by measuring floating-point
performance and relevant communication routines.

[H

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 33

t
l*"
8| -
6. 10 -
8l
4. 10
8]
2. 10

500 1000 1500

Figure 4. The execution time (in ps) of the matrix—vector product on one processor, as a function

of the number of dipoles. The ticks are the measurements: o for PVM, * for Express, + for Parix and
o for Iserver. The lines are the fits: PVM (—), Express (- - -), Parix (- —) and Iserver (- - - - -)

4.2. Floating-point performance on the Parsytec GCel

We have modelled the floating-point performance with just one parameter 7.4 (Section
3.1). Beside the raw power of the floating-point unit of the T805, this parameter should
also include the effects of loop overhead, memory access, cache behaviour, etc. Clearly
Teale depends on the type of operation that is performed, and one can argue that this
single-parameter model is to simple to predict the floating-point performance. However, by
keeping our specific application in mind we can use this single parameter.

The numerical work in the coupled dipole method consists of matrix—vector products,
inner products and vector updates. Since the largest portion of the numerical work is the
matrix—vector product, we have measured the execution time of the matrix~vector product
on one processor, as a function of the number of dipoles N. The parameter 7., was
extracted from the measurements by fitting them with equation (4).

Figure 4 shows the results of the measurements on the GCel, together with the fitted
functions. The 7q that resulted from the fits are: for Parix 74;c = 1.28 us/flop, for Iserver—
Occam T.q4c = 2.63 ps/flop, for Express 7.4 = 1.72 usiflop, and for PVM T, = 1.25
psiflop.

4.3, Basic point-to-point communication on the Parsytec GCe

We assume that point-to-point communication can be described by a linedr|two-garameter
model. The point-to-point communication time ¢,,, is

tpp = Tsetup + ATsend (8)

with n the number of bytes sent, 7s.¢up a setup time to initialise and start the communication,
and Tsenq the send time to transfer 1 byte. Here we have neglected effects due to buffering.

34 " A.G.HOEKSTRA ET AL,

In Occam all communication is synchronous and between neighbouring transputers. We
have measured tp, as a function of n. The results were perfectly linear (data not shown),
and were fitted to equation (8) with a least-squares method. We could distinguish three
different situations: communication between transputers inside one atom (see Figure 2),
communication between neighbouring transputers in two adjacent atoms inside one cube,
and communication between neighbouring transputers in two adjacent cubes. Table 1 shows
the results of the fits, together with estimates of the error. The setup time is almost constant;
the send time increases with increasing ‘distance’ between the nodes.

Table 1. Send and setup times for nearest-neighbour point-to-point communication for Iserver—

Occam
" Communication Tond (US/OYE) Toenp (11S)
inside atom T071+001 3731002
between atoms inside cube 0.87 £ 0.01 382+0.02
between cubes 090+ 0.01 3.84 £ 0.02

Parix’s virtual links allow point-to-point communication bet eeh dry
of Parix routes the messages through the hardware. However, in the |coupl
mentation (see Section 3.2) the only point-to-point communication consis

send/receive pairs between adjacent processors in the virtual ring topolo
een nei

physical two-dimensional mesh such that neighbouring processors|in|

we find Tyeng = 0.92 £ 0.02 ps/byte and Teepnp = 67 £ 2 ps.
The analysis of point-to-point communication in Express and

Express and PVM program we only use global communication
global communication functions are implemented using point-to}point/cor
do not know in detail kow these global functions operate. To obtain a1£

5§

communication performance of Express and PYM we measuredjall po
communications between node zero and all other nodes in an Express
and analysed the distribution in the resulting setup and send times.

Figure § shows all measured point-to-point communications in a236-n
PVM partition. We have fitted all experiments and generated histggrams of
The histograms are drawn in Figures 6 and 7,

For both PVM and Express we see two fast connections having a Tseny
0.9 us/byte and 1.0 us/byte. These numbers are comparable to the 7.
rest of the connections of Express clusters around 1.53 us/byte, .77

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 35

time time
4

Express

4. 4. 10
/"

4
2. 2. 10 /
LT -

. ot v
t
0 10000 20008 ~°° 0 10000 2008y s

Figure 5. All measured point-to-point communication times (in 11s) as a function of the number of
transferred bytes for a 256-node partition in the GCel

send time PVM L send time Express
100
60
75
40
50
20 25 ‘WL
L v d time b time
0.8 1.2 1.6 2 0.8 1.2 1.6 2

Figure 6. The histogram of the occurrences of send times (in us/byte) in a 256-node partition in the
GCel; the step size is 0.01 us/byte

setup time PVM # setup time Express
12 20
8
10
0 v I 4 | | 1 time 0 time
1000 3000 5000 100 200 300

Figure 7. The histogram of the occurrences of setup times (in us) in a 256-node partition in the
GCel; the step size is 1 ms for Express and 100 us for PVM

us/byte. Most of the PVM connections cluster around 1.8 us/byte. In conclusion, the 75.5.4
of PVM and Express are comparable. Clustering of 7e1p 0f Express is less obvious; a
large peak around Tsesp = 48 18 can be seen, and a very broad distribution between 100
and 300 pus. PVM shows a broad distribution around ~3000 us. Here we clearly observe a
difference with the other environments. PVM has much higher setup times for point-to-point
communication than the other three environments.

36 A.G. HOEKSTRA ET AL.

4.4. Global communication on the GCel

We have measured the time for the vector gather operation as a function of the number
of processors and as a function of the total vector length n in bytes. For Iserver-Occam
and Parix we know exactly how the vector gather operation is implemented, and we can
formulate a model for the execution time of the vector gather. In Iserver—Occam we have
to perform |p/2] point-to-point communications between neighbours on the ring. In each
communication step [n/p], bytes must be transferred. Therefore,

(tvg)lserver = I_p/ 2J (Taetup + [n/ P-l Taend) + Tinit ®

In equation (9) we have included a term 7;,;; which describes the initialisation time for
the vector gather operation. The setup and send times are known from the point-to-point
measurements.

In Parix the vector gather operation is almost identical to the Iserver version, but now
the data are transferred through a monodirectional ring and therefore we have to carry out
(p—1) point-to-point communications. This results in

(tvg)Pam = (p - 1)(Tsetup + rn/p]Tsend) + Tinit 10)

Although Express’ exconcat function is described for hypercube architectures by Fox
et al.[19] [chapter 14], we will not attempt to find a detailed model for the exconcat
as implemented on the two-dimensional grid of the Parsytec GCel. We assume that the
exconcat is linear in n because is uses point-to-point communications which are linear
in n. The same is assumed for the vector gather operation as implemented with PVM’s
multicast function.

For each value of p we measured communication time as a function of 1. We have fitted
the measurements to ¢,y = 7,1 + 73; Table 2 shows the results of the fit.

For the Iserver and Parix results, the goodness of fit, as defined by, for example, Press
et al.[26] [chapter 14] was in all cases very close to 1, indicating that the linear model is
satisfactory to describe the global communication routines. The errors in 7, and 7, for the
Iserver and Parix results are estimated to be smaller than 1%.

Table 2. Result of fitting the global communication time as measured on the GCel to a linear model

tvg =Tn+ T
Ta (ps/byte) b (us)
Iserver Parix Express PVM Iserver Parix Express PVM

2 — 1.0 0.6 3.2 — 98 x 10> 28x10* 6.6 x 10
4 0.3 0.9 1.8 36 50x100 12x10° -92 2.7 x 10°
8 0.4 0.9 42 35 53x100 12x10° 83x10® 2.1 x10*
16 0.5 0.9 5.6 38 69x10° 34x10° 15x10* 45x10*
32 0.5 1.1 13 50 13x10° 61x10° 84x10* 9.5x10*
64 0.5 1.0 20 93 28x10° 12x10* 31x10° 1.7x10°
128 0.5 1.1 32 17 61x10° 23x10* 13x10° 56x10°
256 0.5 1.1 60 21 13x10* 53x10* 60x10® 1.9 x 10°
512 0.5 1.1 — — 26x10* 10x10° — —

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 37

The situation for Express and PVM is quite different. The Express measurements show
a very clear buffering effect, resulting in jumps in the execution time if the buffers are
completely filled. The reported fit results are based on measurements before the first jump
occurs. The PVM measurements show a linear relationship as long as n > 1000 bytes.
For smatler n we observe a levelling-off of the data. In this case the fits are based on
measurements for n > 1000 bytes.

Comparison of the 7, and 75 for Iserver—Occam and Parix with equations (9) and (10)
shows that the observed behaviour is quantitatively in agreement with the models for the
vector gather operation. The parameter 7 is in both cases linearly dependent on p. However,
fitting 7 as a function of p to a line results in much larger values for T,.¢y,, for example,
as those expected from the point-to-point communication measurements (data not shown).

The fitted values for 7, of Iserver—Occam agree very well with the model, as can be seen
by comparing Table 2 with Table 1 and equation (9). The agreement in the case of Parix is
also satisfying, especially for large p.

We can observe two fundamental differences between the PVM and Express results with
the Iserver-Occam and Parix results. First, 7, depends on p, and increases sublinearly
{probably as log(p) for Express) in p. Furthermore, the initialisation ; increases faster
than linearly with p, which results, for large p, in (unacceptably) high initialisation times
of 6 s, for example, for Express on a 256 partition. This result is a very good example
of the tradeoff of programmability against performance. The Express and PVM vector
gather operations consist of just one call to a global communication routine, and trivial
buffer compacting. However, the price to be paid is bad scaling behaviour, as compared to
Iserver—Occam or Parix.

4.5. Performance of the coupled dipole implementation on the Parsytec GCel

We have measured the execution time for one conjugate gradient iteration, for the calculation
of the scattered field and for a total coupled dipole simulation {including I/O) as a function
of the number of dipoles N in the simulation and the number of processes. The number of
dipoles was limited to 2176 to prevent prohibitive execution times on one processor.

We only show the result for the execution time of one conjugate gradient iteration (see
figure 8). The time for one iteration is shown for N = 32, N =552 and N = 2176. All
other problem sizes show comparable behaviour. Note that in all following figures the solid
lines are for PVM, the short-dashed lines for Express, the long-dashed lines for Parix, and
the dotted-dashed line for Iserver. Furthermore, note that in Figure 8 both the number of
processors and the execution time are drawn on a logarithmic scale.

From the measured execution times one can calculate speedups and efficiencies. We
show the efficiencies of one conjugate gradient (N =32 and ¥ =2176, Figure 9) and of the
total coupled dipole simulation (N =32 and N =912, Figure 10).The efficiency is defined
as T(p = 1}/(pT(p)), with T(p} the execution time on p processors.

4.6. Comparison of Parix and PowerPVM on the Parsytec PowerXplorer

From the experiments in Sections 4.1-4.5 we can conclude that a measurement of the
environment-dependent building blocks results in a good first comparison between differ-
ent parallel programming environments (see also Section 5, discussion). Therefore, in this
Section we present measurements of the 7,1 and the point-to-point and global communca-

38 A.G. HOEKSTRA ET AL.

i " L
0.5 1 1.5 2 2.5 3 Lo (p)

Figure 8. The execution time of one iteration of the conjugate gradient method, as a function of the
number of processors, for N = 32, N = 552 and N = 2176: PVM (—), Express (- -), Parix (- - -}
and Iserver (- - - - -)

' L,
3 og (p)

Figure 9. The efficiency of one conjugate gradient iteration, as a function of the number of
processors, for N = 32 and N = 2176: PVM (—), Express (- -), Parix (- — =) and
Iserver (- - - - -)]

tion times of Parix and PowerPVM on the Parsytec PowerXplorer. These measurements
will give us a good insight of the performance of the large class of applications such as the
coupled dipole method, which are characterised by very regular data structures and kernel
routines such as a paratlel matrix—vector product.

We have measured a 7o, of 0.08 us for both Parix and PowerPVM, resulting in a
performance of 12.5 Mflop/s per PowerPC-601. For small vectors, fitting completely in the
32 Kbyte cache of the PowerPC, we have measured a performance of 54 Mflop/s. However,

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 39

£
l =
0.8
LY
N
by
0.6 \ '\.
A
\
0.4 \
hY
A Y
+
0.2
"
- L
0 0.5 1 1.5 2 2.5 3 beglp)

Figure 10. The efficiency of a total coupled dipole simulation (including /O) as a function of
the number of processors, for N = 32 and N = 912; PVM (—), Express (- - -), Parix (- ~)
Iserver(-- - -)

in normal production runs the vectors will usually not fit in the cache.

Figures 11 and 12 show the histograms for Tsenq and 7seep (as introduced in Section
4.3}, in the 32-node partion of the PowerXplorer system for Parix and PowerPVM.

Table 3 shows the results of fitting the communication time of the vector gather operation
in Parix and PowerPVM to &, = 7,1 + 7.

Table 3. Result of fitting the global communication time as measured on the PowerXplorer to a
linear model t; = 1w + 7

P T (us/byte) 7 (us)
Parix PowerPVM Parix PowerPVM
e 2 06 0.7 — 7.7 102
Lo 4 07 1.2 7.2x 108 94 x 107
8 09 16 L3x10° 91x10°
16 1.0 2.2 19x 10° 86x10°
32 1.0 3.7 51x 100 13x 10

5, DISCUSSION

This paper compares native and generic parallel programming environments, i.e. Iserver—
Occam and Parix as against Express and PYM. An exhaustive comparison between the
complete functionality of all four environments is not very useful. We need a guideline
in the form of an application that must be, or is, implemented in these environments. Our
particular application, the coupled dipole simulation, relies on a representative subset of the
complete functionality of the environments. The coupled dipole method can be viewed as

40 A.G. HOEKSTRA ET AL.

send time Parix # send time PVM
20 20
15 15
10 10
5 | |
I il time 0 1l | |||, il Cime
0.92 0.9%94 0.96 (.98 1, 0.92 0.94 0.96 0.98 1.

Figure 11. The histogram of the occurrences of send times (in ps/byte) in the 32-node parritioﬁ in
the PowerXplorer; the step size is 0.01 us/byte

S# setup time Parix S# setup time PVM

4 4

3 3

2 2

: l | h |
O30 a0 eo0 8o 1005 250 a0 s60 800 1000

Figure 12. The histogram of the occurrences of setup times (in ps) in the 32-node partition in the
PowerXplorer; the step size is 10 us

a representative of a large class of applications relying on iterative methods to solve large
systems of linear equations.

We analysed basic and global communication routines which are needed in the coupled
dipole program, floating-point performance and the execution time of the application on
the Parsytec GCel. In this discussion we compare the environments on the first three levels,
and investigate if we can predict the performance of the coupled dipole program. As will
be shown, this is indeed possible and this result shows that our basic measurements can
be used as a heuristic to assess the merits of parallel programming environments, We
have subsequently applied this heuristic to compare Parix and PowerPVM on a PowerPC
platform.

The floating-point performance, which in our definition is the lumped sum of floating-
point unit performance, loop overheads, memory access overheads and others, is basically
a test of the compilers. We timed a computational kernel of the coupled dipole method,
and therefore the resulting numbers should not be compared with other results for floating-
point performance. We can, however, compare the results of the same computational kernel
compiled by the different compilers. PYM and Parix have the best performance, with a Tcaje
of 1.25-1.28 us/flop. Express has the second best performance with Teq = 1.72 ps/flop
and surprisingly the Iserver-Occam result is much worse with a 744 = 2.63 us/flop. This
large Toq1c for Iserver—Occam is probably due to the way in which we were forced 10

-
:
.

g |

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 4]

implement the double-precision complex matrix—vector product, resulting in bad memory
access behaviour.

The point-to-point communication results for the GCel show the power of Iserver—
Occam. A setup time of only 3.8 us, compared to 67 us for Parix, 50 ps < Tsetyp < 300
for Express, and 2000 ps < Tgetup < 5000 us for PVM, shows that the Occam channels
are directly mapped onto the transputer hardware. The abstractions of Parix and Express
induce much larger setup times. The setup for PVM is extremely high, due to the presence
to the UDP layer (see Sections 2.5 and 2.6). We should mention that newer versions of
PVM on the Parsytec GCel, which use a heavily optimised intermediate communication
kernel, will have much better communication performance. First measurements on this
optimised heterogeneous PVM for the Parsytec GCel suggest drastically reduced latencies,
comparable to PowerPVM for the PowerXplorer (data not shown; for more information see
[20D).

The same is true for the sending time, but here the difference between Iserver—-Occam
and Parix is not that large, and the fastest connections in the Express and PVM partition also
compare very well with Iserver—Occam and Parix. Still, the situation as drawn in Figure 1
is confirmed for point-to-point communication.

The global communication routine reveals the same picture: decreasing performance as
the price to be paid for decreasing hardware visibility and increasing programmability. The
Iserver-Occam implementation has the smallest initialisation time and fastest transfer rate.
The initialisation time in Parix is a factor 2 to 4 larger than in Iserver-Occam, and the
transfer rate is a factor 2 smaller.

Except for very small partitions the Express and PVM vector gather operation are always
slower than Iserver—Occam and Parix. Furthermore, as shown in Section 4.4, the global
communication in Express and PVM has a fundamentally different scaling behaviour, i.e.
an increasing 7, as a function of p, and a faster than linear increase of 7} as a function of p.
This results in transfer rates of 60 us/byte? and initialisation times in the order of seconds! In
compute-intensive applications like the coupled dipole simulation, where the computational
work scales with N2, this does not need a problem (as can be seen in the sequel). However,
for applications where the computational work is linear in V, and which need such global
communications, this scaling behaviour will result in very bad performance on massively
parallel systems.

Figure 8 shows the execution time of one iteration as a function of p and N. The calcula-
tion time is of order O(IN2 / p) (see Section 3.1), whereas the total communication time is of
order O(N). Therefore, for large NV and small p we actually observe the floating-point per-
formance of the environments. The Parix and PVM implementation are the fastest. Express
is second, and due to its poor floating-point performance the Iserver—-Occam implementa-
tion is the slowest. However, if p is increased for a constant N, the communication time
becomes more important, and at some point becomes larger than the calculation time. Due
to the very poor performance of the vector gather function of Express and PVM, the results
already show an increase in execution time of one iteration for p = 100 and N = 552, for
example, whereas the execution time of the Iserver-Occam and Parix implementation still
decreases. For an even larger number of processors the Parix implementation also shows
an increase in execution time and for N = 552 the Iserver—-Occam implementation has a

2 Note, however, how this transfer rate 7, is defined in Section 4.4. It is not the same as the link speed of the
point-to-point communication, but is defined as the rate at which the total vector is transferred through the
network in the vector gather operation.

42 A.G. HOEKSTRA ET AL

comparable execution time to that of the Parix implementation.

Scalability of the parallel implementations is much better observed by looking at the
efficiency plots. From Figures 9 and 10 we can see that in all cases the Iserver—Occam
has the best efficiency, followed by Parix and finally by Express and PVYM. We have to be
very careful with this comparison. Iserver—Occam spends much more time in the parallel
calculations and will therefore have a better efficiency.

The efficiency plots, however, allow one important conclusion, which holds for the
parallel coupled dipole implementation in all four environments. If the number of dipoles
is very large compared to the number of processors (N / p >> 1), then the efficiency can be
very close to 1. However, for Express and PVM N /p has to be much larger than Iserver—
Occam, for example, to reach efficiencies close to L. In that situation, which is frequently
encountered in real production runs, the execution time is mainly determined by 7;q1., and
the Parix and PVM implementations are the fastest.

We should note that in principle we can implement the vector gather operation in Express
and PVM in the same way as in Parix. This would induce a large programming overhead,
but we may expect from the histograms as reported in Figures 6 and 7 that the vector gather
operation of at least Express will then be comparable to the Parix results. Finally, the next
versions of Parix also contain global communication routines. This greatly increases the
programmability of global communications in Parix, but experiments will have to establish
if the same price as in Express and PVM has to be paid.

Knowledge of the floating-point performance and the global communication capabilities
of the environments allowed us to interpret and understand the execution time and efficiency
of the application. Let us now investigate if we can predict the execution time of the coupled
dipole application. We only show results for the execution time of one conjugate gradient
iteration. We use equations (1}, (2}, (4) and (6} to calculate T*er as a function of p and
N. The times for the vector gather operation, and for the vector and scalar accumulate
operation, are calculated by using the results of Table 2, and finally 7.4, as reported in
Section 4.2 is used. Figures 13 and 14 show the comparison between the measurements (the
points) and theory of the execution time of one conjugate gradient iteration, as a function
of the number of dipoles N, for p = 32 and p = 256, respectively.

In all cases we can accurately predict the execution time of the Parix and Iserver—
Occam implementation. For small partitions (i.c. p = 32, see Figure 13) we can also
accurately predict the execution time of the Express and PVM implementation, However,
for larger partitions errors between theory and experiment as large as 30% are observed
(see Figure 14). Furthermore we observe that the predictions overestimate the execution
time of the Express implementation and underestimate those of the PYM implementation,
These errors can be traced back to errors in the fit parameters of the global communication
{especially the parameter 7).

We can predict the execution time of our specific application in the different environments
using basic performance measurements in these environments. Although the predictions
for the PYM and Express implementations are not very accurate, we believe that the
basic performance measurements, combined with a time complexity model as presented
in Section 3.1 and information on programmability and portability, allows us to compare
the environments. Table 4 compares the four environments on the Parsytec GCel on a
scale from good (++) to poor (——). The environments are judged on programmability
(Prog.), on source level portability between hardware platforms (Port.), on the availability
of tools, such as a performance analyser, or a debugger. These first three characteristics are

¥

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 43

T(p=32)
a_
2. 10
_/
'l’
8 ol
1.5 10 o'
K
lr '
‘I .'-'
8 -
1. 10 yod *
71
5. 10
0

500 1000 1500 2000 2500

Figure 13. The execution time (in ps} on 32 processors, for one conjugate gradient iteration, as

a function of the number of dipoles N. The ticks are the measurements; o for PYM, * for Express,

+ for Parix and e for Iserver. The lines are the theoretical predictions: PVM (—), Express (- - -},
Parix (- — -} and Iserver (- - - - -)

independent of the particular application. The rest of the columns are devoted to application-
dependent characteristics. These characteristics are the floating-point performance (FP), the
communication performance (Comm.), and the scalability, or efficiency, of the resulting
parallel program (Scal.). Depending on the importance of portability as against scalability
or floating-point performance, for example, an overall judgement of the environments can
be made.

Table4. A comparison of the Iserver—Qccam, the Parix and the Express environment on programma-

bility (Prog.), on source level portability (Port.), on the availability of tools (Tools), on floating-point

performance (FP.), on communication performance (Comm.}, and on scalability, or efficiency, of the
resulting parallel program (Scal,)

Prog. Port. Tools FP. Comm. Scal.

Iserver - - - - + ++
Parix + - - ++ + +
PVM + ++ +- ++ - -
Express ++ ++ + + - -

Finally, in Section 4.6, we applied our heuristic to compare the generic PowerPVM
against the native Parix on a new parallel system, the Parsytec PowerXplorer. The floating-
point performance of one node in the PowerXplorer is 12.5 Mflop/s. The communication
hardware, however, is still based on transputers, This means that in the particular architecture
of the PowerXPlorer there is a slight imbalance in communication and computation, as
compared to the GCel. It is therefore of utmost importance for generic environments,

44 A.G. HOEKSTRA ET AL.

T (p=256)
7

6. 10 ’,—'
7 © © J"p”

4. 10 © - *

500 1000 1500 2000 2508

Figure 14. The execution time (in ps) on 256 processors, for one conjugate gradient iteration, as

a function of the number of dipoles N. The ticks are the measurements; o for PVM, * for Express,

+ for Parix and e for Iserver. The lines are the theoretical predictions: PYM (—), Express (- - -),
Parix (- —-) and Iserver (- - - - - }

such as PowerPVM, not to introduce too much extra communication latency, since this
would strengthen the imbalance between communication and computation. Our heurstic,
based on measurements of the point-to-point histograms, as presented in Section 4.3, and
global communication as presented in Section 4.4, is a valuable tool to compare generic
PowerPVM with native Parix.

Figures 11 and 12 compare send and setup times for Parix and PowerPVM for a 32-node
Parsytec PowerXplorer system. Setup times for PowerPVM are ~1.5 times higher than
those of Parix, whereas the send times are comparable. This means that point-to-point
communication of PowerPVM is as good as in Parix; the extra PVM layer introduces no
additional communication latencies.

The global communication of PowerPVM, however, is still much more expensive than
the handcoded Parix vector gather operation (see Table 3). To our surprise, the vector
gather operation in PowerPVM is almost as expensive as the vector gather operation in
the heterogeneous PVM for the GCel (see Table 2), although the underlying point-to-point
communication of PowerPVM is much faster (compare Figures 11 and 12 with Figures 6
and 7). This indicates that the implementation of the global operations is far from optimal.

Global communication routines strongly increase the programmability of parallel com-
puters. However, in our case studies we have observed the poor scaling behaviour of these
routines, as compared to handcoded Parix routines that exploit data locality and point-to-
point communication on virtual topologies.

Currently the message-passing interface (MPI) standard has been defined, and the first
implementations of MPI have been reported[27]. Our group is working on an MPI imple-
mentation on top of Parix[20]. We will test the MPI implementation using the methods
as described in this paper. Furthermore, the global communication routines of MPI, such
as the MPI_BCAST, will be implemented such that the reported scaling behaviour of
comparable Express and PVM routines can be improved.

PROGRAMMING ENVIRONMENTS ON TRANSPUTER AND POWER PC 45

6. CONCLUSIONS

We have compared the Iserver-Occam, Parix, Express and PVM parallel programming
environments on a Parsytec GCel, by a detailed analysis of the performance of a partic-
ular application. Our approach, in which we start with an application, isolates the basic
(environment)-dependent building blocks which are analysed independently, and combin-
ing all information in a time complexity analysis, allows us to compare the environments
on all relevant degrees of functionality. Together with demands for portability of the code,
and development time (i.e. programmability), an overall judgement of the environments
can be made.

In general, we observe that increasing portability and programmability, in going from
Iserver-Occam, via Parix to Express and PVM, results in a degradation of, in particular, the
communication capabilities. The global communication routine of Express and PVM that
we tested has a very bad scaling behaviour which clearly shows up in the larger partitions.
This results in poor scalability of the Express and PVM implementation. Fortunately, in
real production situations, with large problem sizes, the application has an efficiency very
close to one, and the run time is mainly determined by the floating-point performance.
In that situation Parix and PVM are the fastest, but Express, offering portable and easily
implementable code, also has very good performance.

Application of our heuristic to compare PowerPVM with Parix on a Parsytec Pow-
erXplorer shows that point-to-point communication in PowerPVM is as good as Parix.
However, the global communication in PowerPVM is still far from optimal; future imple-
mentations of PYM and MPI should strive to more optimised global routines. In the future
we will apply our methodology to compare the currently emerging MPI implementations
with underlying native environments.

ACKNOWLEDGEMENTS

We wish to acknowledge financial support from the Netherlands Organisation for Scientific
Research, grant 810-410-04 1. Furthermore, we would like to thank P. Trenning, F. Ettema
and B. Jansen of the faculty of Mathematics and Computer Science of the University of
Amsterdam for their assistance in this work.

REFERENCES

1. O.A.McBryan, ‘An overview of message passing environments’, Parallel Comput., 20, 417-444
(1994).

2. CS Tools Documentation Guide, A technical overview, Meiko Ltd., 1989.

3. M.D. May, PW. Thompson and P.H. Welch, Networks, Routers and Transputers, 10S Press,
Amsterdam, Oxford, Burke, 1993,

4. F. Langhammer, ‘Second generation and teraflops parallel computers’, in M. Valero, E. Onate,
M. Jane, J.L. Larriba, and B. Sudrez (Eds.), Parallel Computing and Transputer Applications,
pp. 62-79.

5. Parsytec, ‘The PARIX programming environment’, in A. Allen (Eds.), Transputer Systems —
ongoing research, 108 Press, Amsterdam, Oxford, Washington, Tokyo, 1992, pp. 218-230.

6. J. Flower and A. Kolawa, ‘A packet history of message passing systems’, Phys. Rep., 207,
291-304.

7. 1. Dongarra, G.A. Geist, R. Manchek and V.S. Sundaram, ‘Integrated PVM framework supports
heterogeneous network computing’, Comput. Phys., 7, 166-175 (1993).

46

A.G. HOEKSTRA ET AL.

10.
il

12.

13.
14.

15.

16.

17.
18.

19,

20.
21.
22,

23.

25,

26.

27.

R. Hempel, A.J.G. Hey, O. McBryan and D.W. Walker, ‘Special Issue: Message Passing Inter-
faces’, Parallel Comput., 20 (1994).

M. Weber, ‘Workstation clusters: one way to parallel computing’, Int. J. Mod. Phys. C, 4,
1307-1314 (1993).

A.R. Larrabee, “The P4 parallel programming system, the Linda environment, and some expe-
tiences with parallel computing’, Sci. Program., 2, 23-35 (1993).

A. Matrone, P. Schiano and V. Puotti, ‘LINDA and PVM: A comparison between two environ-
ments for parallel programming’, Parallel Comput., 19, 949-957 (1993).

T.G. Mattson, C.C. Douglas and M.H. Schultz, ‘A comparison of CPS, Linda, P4, Posbyl, PVM,
and TCGMSG: two node communication times’, Tech. Rept. YALEU/DCS/TR-975 Dept. of
Computer Science, Yale University, 1993.

C.C. Douglas, T.G. Mattson and M.H. Schultz, ‘Paraliel programming systems for workstation
clusters’, Tech. Rept. YALEU/DCS/TR-975, Dept. Computer Science, Yale University, 1993.
A.G. Hoekstra, ‘Computer simulations of elastic light scattering:implementation and applica-
tions’, Ph.D. Thesis, University of Amsterdam, 1994,

A.G. Hoekstra and P.M.A. Sloot, ‘New computational techniques to simulate light scattering
from arbitrary particles’, in M. Maeda (Ed.), Proceedings of the 3rd International Congress on
Optical Particle Sizing ‘93 - Yokohama, 1993, pp. 167-172.

A.G. Hoekstra and PMLA. Sloot, ‘Simulating elastic light scattering using high performance
computing techniques’, in A. Verbraeck and E.J.H. Kerckhoffs (Eds.), European Simulation
Symposium 1993, Society for Computer Simulation International, 1993, pp. 462-470.

V. Balasundaram, G. Fox, K. Kennedy and U. Kremer, A Static Performance Estimator in the
Fortran D System, Elsevier Science Publishers B.V., 1992.

J. Flower and A. Kolawa, ‘Express is not just a message passing system: Current and future
directions in Express’, Parallel Comput., 20, 597-614 (1994).

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmen and D. Walker, Solving Problems on
Concurrent Processors 1: General Techniques and Regular Problems, Prentice-Hall, Englewood
Cliffs, New Jersey, 1988.

PM.A. Sloot, Private communication, for more information you can send email to peter-
slo@fwi.uva.nl.

V.S. Sunderam, G.A. Geist, J. Dongarra and R. Manchek, “The PYM concurrent computing
system: Evolution, experiences, and trends’, Parallel Comput., 20, 531-546 {1994).

V.S. Sunderam, ‘PVM: A framework for parallel distributed computing’, Concurrency: Pract.
Exp., 2, 315-339 (1990).

E.M. Purcell and C.R. Pennypacker, ‘Scattering and absorption of light by nonspherical dielectric
grains’, Astrophys. J., 186, 705-714 (1973).

S.F. Ashby, T.A. Manteuffel and PE, Saylor, ‘A taxonomy for conjugate gradient methods’,
Siam J. Numer. Anal., 27, 1542-1568 (1990).

A.G. Hoekstra, PM.A. Sloot, W. Hoffmann and L.O. Hertzberger, ‘Time complexity of a paraliel
conjugate gradient solver for light scattering simulations: theory and SPMD implementation’.
Tech. Rept. C5-92-06, Faculty of Mathematics and Computer Science, University of Amsterdam,
1992,

W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes in C, the
Art of Scientific Computing, Cambridge University Press, Cambridge, New York, Port Chester,
Melboumne, Sydney, 1988.

D.W. Walker, ‘The design of a standard message passing interface for distributed memory
concurrent computers’, Parallel Comput., 20, 657-673 (1994).

