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Abstract

Employing the combination of a kernel with low computational complexity, implemented
on powerful HPC systems, we are now able to push the limits of simulation of light
scattering from arbitrary particles towards particles with dimensions up to 10 micrometer.
This ailows for the first time the simulation of realistic and highly relevant light scattering
experiments, such as scattering from human white bloed cells, or scattering from large soot -
or dust particles. We use the Discrete Dipole Approximation to simulate the light scattering
process. In this paper we report on a parallel Fasr Discrete Dipole Approximation, and we
will show the performance of the resulting code, running under PVM on a 32-node Parsytec
PowerXplorer. Furthermore, we present results of a simulation of scattering from a model of a
small Human White Blood Cell. This model is the largest possible particle fitting in memory
of our parallel computer, and contains 1.1 million dipoles.

1. Introduction

Elastic light scattering (ELS) from arbitrary particles has many important applications.
Examples are ELS from human white blood cells, [e.g. 1,2,3] from interstellar and
interplanetary dust particles, [e.g. 4,5.6) from soot particles in combustion flames,
{e.g. 7.8] or from airborne particles [e.g. 9,10]. In many cases these particles are not
highly symmetrical (e.g. ellipsoidal or spherical), preventing separation of variables in
the Maxwell equations and subsequent analytical solution of the ELS problem.
Moreover, many of these particles also fall outside the range of approximation theories
of ELS, such as Rayleigh-Debey-Gans theory or anomalous diffraction [see e.g. 11 or
12]. Yet, the need to calculate ELS from these particles definitely exists. For instance,
when one has to verify models of particles, solely on the basis of ELS information, as
was the case for the interstellar dust particles, {4] or if one has to define an optimal
scattering experiment to detect subtle changes in particle morphology, as is the case in
our Flowcytometric experiments on human white blood cells {1].

The need to simulate ELS from arbitrary particles prompted much research to develop
methods that support numerical solutions of the ELS problem. One such method is the
Discrete Dipole Approximation (DDA) method [14], which has recently been reviewed
by Flatau and Draine [15].

In this paper we survey the computational requirements of the DDA for the simulation
of ELS from realistic, micron-sized particles and report on a parallel implementation of
a Fast DDA method (FDDA). Qur major interest is ELS from human white blood
cells. In this paper we investigate if the combination of the FDDA method, executed on
a powerful parallel system allows simulations of ELS from these realistic, micron-sized
particles. We will present results of the largest possible simulations that we have
;éerformed on a 32 node Parsytec PowerXplorer, modelling a small Human White Blood
ell.
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Figure 1: An example of a sphere discretised
into 4226 isotropic dipoles, which are
placed on a cubic grid.
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The Discrete Dipole Approximation
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y a monochromatic electromagnetic field

The Discrete Dipole Approximation
(DDA) method divides the particle into N
equal sub volumes. The size of a sub
volume, 4, must be small enough to
ensure that its response to an
electromagnetic field is the response of an
ideal induced dipole. Recommended values
in the literature range from A/20 < 4 <
A/10, with A the wavelength of the
incident light [13]. Figure 1 shows an
example of a sphere discretised into
dipoies.

The electric field on each dipole, due to an
external field and the fields radiated by all
other dipoles, must be calculated. Once the
electric field on the dipoles is known, the
scattered field is calculated by summing
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if we wish to simulate ELS from realistic, micron sized particles (see also the
discussion in [16]).
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Figure 2: The required number of floating point operation per iteration in the DDA, as a
function of the number of dipoles & used to discretise the particle. Lines for the direct DDA,
and the Fast DDA (i.e. accelerated using FFT) are shown. The range of N, needed to model
Human White Blood cells is indicated, and, by demanding that the maximum time for an
iteration is smaller than 10 minutes, the range of workstations and a 32 node PowerXplorer
are also indicated.

Goodman et al., pointed out that due to the property F;; = F;;, the matrix vector
products which appear in the DDA iterations can be reformulated as discrete
convolutions of electric fields on the dipoles {19]. These convolutions can be calculated
in an O(NlogN) complexity (using tast Fourier transformations), which is an enormous
reduction in operations as compared to the direct (O(N?)) calculation. The operation
count for one iteration of this Fast DDA (FDDA, i.e. DDA using the fast Fourier
transforms) is also indicated in Fig. 2. This suggests that Goodman's FDDA, when
executed on a 32 node PowerXplorer (i.e. a low complexity kernel executed on a
powerful HPC system) allows to cover a significant range of numbers of dipoies N
needed to model realistic, micron-sized particles. We therefore developed a parallel
FDDA, using the previously developed parallel version of the direct DDA [16].

The FDDA embeds the particle in a rectangular box, as demanded by the reformulation
into discrete convolutions [19). First, the box is decomposed in the z-direction, and the
slices are allocated to processors. A fast Fourier transformation is first performed in the
x-direction {completely in parallel). Next, the data box is transposed, giving rise to an
expensive giobal communication operation, and then single y-z planes are (in parallel)
2D convoluted using fast Fourier transformations and inverse fast Fourier
transformations. The data volume is transposed back again to the original z-
decomposition and finally the total 3D convolution is completed by inverse fast Fourier
transforms in the x-direction. This order of operations saves a large amount of memory.
Details are described elsewhere {20].
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The parallel FDDA was implemented in PVM. We have performed a number of
performance measurements on a 32 node Parsytec PowerXplorer, which has an 80 MHz
PowerPC-601 processor with 32 Mbytes RAM as compute node, and per node 1 T8
transputer as communication chip. In Fig. 3 we show the execution time of 1 iteration
of the FDDA as a function of P, the number of processors and N, the number of
dipoles. Even for the largest model fitting in memory of the full system (¥ = 1.1 108,
executed on 32 processors), the execution time for 1 iteration is only 150 s. If we
compare this execution time of FDDA to an execution time of 30 minutes per iteration
for a much smaller number of dipoles (N = 3.3 10% for the direct DDA running on 32
nodes of the PowerXplorer (see [16]), the enormous gain is obvious.
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Figure 3: The execution time (in seconds) of one iteration of the parallel FDDA, as a function
of the number of processors, for a range of the number of dipoles N, The program was
executed on a 32 node Parsytec PowerXplorer.

Since only the smallest problem size (N = 1.7 10%) fits in memory of 1 processor, we
are not able to measure parallel efficiencies of the code. However, the data for N = 1.7
104 5.7 104, and 1.4 10° suggest that after an initial good scaling of the execution
time, the speedup levels off. This behaviour is due 1o the relative expensive transpose
operation. We measured the total communication time per iteration. It turns out that
this communication overhead is almost constant, independent of the number of
processors (i.e. O(N), data not shown). However, the time spent in calculations
decreases with increasing p (i.e. O(N logN / p), which qualitatively explains the data in
Fig. 3. In order to assess to what extent the parallel execution is communication
bound, we plot, in Fig. 4, the percentage of communication overhead per iteration of
the FDDA. We can conclude that as p increases, the paralle] FDDA rapidly becomes
communication bound. However, if the problem size is increased the communication
overhead decreases again.

It is well known that the balance between communication speed and computation speed
of the Parsytec PowerXplorer is not very good (See e.g. our own measurements [21]).
We expect, with drastically increased link speeds of next generation systems, that the
communication overhead will become less pronounced than in this current set of
measurements.

However, for us the resulting execution times and the maximum size of the models
which we can simulate now are much more important that the efficiency of the paraltel
code. The parallelisation not only allowed us to use the computational power which is
present in the Parsytec PowerXplorer, it also allowed us to use the full one Gbyte
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memory of the parallel system, which is much larger than what we have available in
our local workstations. Therefore, the parallelisation not only results in small
execution times per iteration, but more important, it allows to alleviate the memory
bottleneck which we encountered on workstations, thus facilitating simulations of
larger models. The parallel FDDA could also be executed on a cluster of workstations,
thus allowing to use the combined memory which is present in the cluster.
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Figure 4: The percentage of communication overhead in one iteration of the parailel FODA,
as a function of the number of processors. for a range of the number of dipoles N. The
program was executed on a 32 node Parsytec PowerXplorer

3. A DDA simulation, with more than 1 million dipoles, of a
small Human White Blood Cell

An important type of a small Human White Blood Cell (HWBC) is the Lymphocyte,
which normally is nearly spherical, and has a large spherical nucleus [22]. However,
subtle morphological differences between Lymphocyte sub classes have been reported,
and pathological stages of Lymphocytes usually show clear morphological signatures
(such as a displacement or roughening of the nucteus; for a discussion of these issues,
see reference 3, chapter 1.3.3). It is our purpose to detect such biologicaly important
morphological differences through Elastic Light Scattering. The goal of our
simulations is to search for suitable ELS experiments which are most sensitive to
specific morphological differences between (subsets) of HWBC or between healthy and
malign HWBC. In this section we will demonstrate that with the current parallel
FDDA we will be able to pursue such [arge scale simulations.

The diameter D of HWBC is 4 < D < 16 pm {see e.g. 21, 23 table I, or 24, chapter 1].
The relative refractive index m of HWBC is in the range 1.01 $m < 1.08 [25].

In Fig. 5 we show results of a simulation of scattering from a homogeneous sphere
with a diameter of 7.2 im and a relative refractive index of 1.05. Next, Fig. 6 shows a
simulation of scattering from a small Lymphocyte, which is modelled as a concentric
sphere with an outer diameter of 6.0 Um and an inner diameter of 42 wm. The
refractive index of the nucleus, i.e. the inner sphere, is 1.05 and that of the cytoplasm
is 1.02. In both cases the particles are modelled in the FDDA with 1.1 10° dipoles,
which, to the authors’ knowledge, are the largest FDDA simulations ever reported.

The results are compared with analytical Mie theory. The correspondence between the
analytical theory and the DDA simulations is good. In the future we plan to start

o
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simulations of scattering from Lymphocytes with a non-spherical or rough nucleus,
with a displaced nucleus, or with non spherical cell shapes. Such simulations can no
longer be perfermed with analytical theories, and for them we will employ our paralie]
FDDA method.
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Figure 5: A FDDA simulation, on the 32 node Parsytec PowerXplorer, of the scattered
intensity from a homogeneous sphere with a diameter of 7.2 um and a relative refractive
index of 1.05; the number of dipoles in the simulation was 1.1 108, and the wavelength of
the incident light was 632.8 nm. The dots are the results of the DDA simulation, the soiid
line is a Mie calculation.
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Figure 6: A FDDA simulation, on the 32 node Parsytec PowerXplorer, of the scattered
intensity from a small Lymphocyte, modelled as a concentric sphere with an outer diameter
of 6.0 tm, an inner diameter of 4.2 um, an inner relative refractive index of 1.05 and an
outer relative refractive index of 1.02; the number of dipoles in the simulation was 1.1 109,
and the wavelength of the incident light was 632.8 nm. The dots are the results of the DDA
simulation, the solid line is a concentric sphere Mie calculation

4, Conclusions

In this paper we have presented a final step towards simulation of Elastic Light
Scatiering from realistic, micron sized particles.

The combination of a low complexity kernel, i.e. the Fast DDA method, implemented
on a powerful HPC system allows us to run DDA simulation with more than one
million dipoles. Although, even for the largest models, the parallel simulation spends a
significant percentage on communication overhead, the execution time of the parallel
FDDA is very small. Furthermore, the parallelisation allowed us to run much larger
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models, because we are now able to exploit all memory available in the (distributed
memory) parallel system. This conclusion, together with the small execution times is
much more relevant than a good efficiency of the parallel code. Therefore, the relative
high communication overhead is not of a great concern. The parallel FDDA is also
suited to be executed on clusters of workstations, allowing to exploit the combined
memory present in the workstations of the cluster.

The large scale simulations which we can now execute allow, for the first time, to
model small Human White Blood Cells. We have presented an example of a simulation
of scattering from a Lymphocyte, which was modelled as a concentric sphere with a
diameter of 6 wm. In the future we plan to perform simulations on more realistic
morphologies {i.e. a non spherical or rough nucleus, etc.). Furthermore, we plan to
simulate the total scattering matrix, allowing to investigate more subtle light scattering
experiments such as depolarization of the scattered light. Finally, with the availability
of more powerful HPC systems we expect 10 be able to cover also the domain of larger
Human White Blood Cells (such as Granulocytes or Monocytes), be able to include
biological variability into the particle models, and be able to average over the
orientation of the particles.
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