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Abstract

We give a short introduction to the Discrete Dipole Approximation (DDA), which is a method capable of
simulating elastic light scattering from arbitrary particles. We survey the feasibility of large scale simulations
using the DDA, both in terms of accuracy of the model and computational requirements. Finally, we show some
examples of DDA simulations of scattering by small Human White Blood Cells.

1. INTRODUCTION

Methods to simulate Elastic Light Scattering from complex, arbitrary shaped particles with
dimensions in the order of the wavelength of the incident light are slowly evolving into a state
which facilitates routine calculations of scattering by such complex particles, much like the by
now standard availability of Mie scattering codes. This optimistic statement is based partly on
the ever increasing computational power which is present in today’s (desktop) computers, but
more importantly on some very relevant improvements in the models and/or algorithms
underlying such simulations. This is certainly true for the Discrete Dipole Approximation
(DDA), which, after its introduction by Purcell and Pennypacker in 1973 [1], has witnessed a
steady development in both the model and the algorithms needed to solve the model equations.
However, only after a major algorithmic improvement in 1991 by Goodman, Draine, and
Flatau [2], involving the use of Fourier transformations, very large scale DDA calculations
needed to model realistic particles became feasible.

We will shortly introduce the DDA model, describe the most widely used algorithms to
solve the DDA equations, and give a number of examples of large scale simulations using the
DDA method. Next, we will survey the ranges of particle size and refractive index which the
DDA is currently able to cover. Finally, we will discuss some new directions in simulations
using the DDA model.

2. THE DISCRETE DIPOLE APPROXIMATION

The Discrete Dipole Approximation (DDA) is a flexible and powerful model for Elastic Light
Scattering from arbitrary shaped particles. The model is very intuitive and has a semi-
microscopic flavour. However, as shown in a series of papers by Lakhtakia, the DDA method
can be formally obtained from the macroscopic Maxwell equations, in the same way as the
Method of Moments [3-5]. The DDA method was reviewed two years ago by Draine and Flatau
[6]. For many details concerning the DDA we refer to this excellent review.

The DDA models a particle as a set of N point dipoles on a lattice. Each dipole i has a
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polarisability ¢&; (in general a 3x3 tensor), is located at position r;, and has a polarisation
P; = o;E; with E; the electric field on dipole i. The DDA consists of two phases, first the
electric fields on all dipoles are calculated, and next, the (differential) scattering cross sections
are obtained from these fields. The field on each dipole is obtained by summing the incident
field on the dipole and the fields radiated by all other dipoles. This coupling between dipoles
through their radiated fields gave the DDA its alternative name: Coupled Dipole method.

The electric field at r; radiated by a dipole at r; with polarisation Pj is given by [7]
ikr;;
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k is the wave number, defined by & = 27/A; ny; is the direction vector defined by m; =r;; / ry;,
and ry =r; —r;; r; = Iryl. Note that, in line with other authors, we use Gaussian units. For

a discussion of units and dimensions, see the Appendix of Ref. [7]. In Cartesian coordinates
Eq. 1 becomes
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where I is the 3x3 identity matrix and n;mn;; denotes a dyadic product. The electric field on
dipole i (1 <i < N), due to the external field EO(r) = EQ exp(ikr-iwt) and the field radiated by
all other dipoles, is

N
E(r)=E’r)+ Y F;P; ,1<i<N, 3)
J#i
with the matrix F; defined by Eq. 2. All fields are assumed to be monochromatic, and from
now on we simply skip the exp(-iewf) term. Furthermore, the particle is assumed to be non-
magnetic. Singham [8] extended the original DDA method to intrinsic optical active particles.
For the more general case of bianisotropic scatterers we refer to Ref. [4,5]. Note that the
summation in Eq. 3 runs over all dipoles, except dipole i. This term, the eigen-term or self-
term, is neglected in the original DDA method, but is present in the strong form DDA of
Lakhtakia [5]. It accounts for the field that is radiated by the small volume, which the dipole
models, to its own centre. Draine has also introduced such a term in the DDA [9], but he
introduced it through the expressions for the polarisability (see the discussion at the end of this
section).
Eq. 3 defines a set of 3N equations for the 3N unknowns (P«(r)), Py(r), P.(r)). These
equations can be reformulated as a matrix equation Ax = b, with
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The matrix A is the 3Nx3N interaction matrix. It is obvious from the definition of Fj;, that
F;; = Fj;. The polarisability tensor is symmetric, and so is its inverse. Therefore, the interaction
matrix A is complex symmetric,

After having solved Eqs. 3 the scattering cross sections can be expressed in terms of the
polarisation P; . Draine shows that extinction and absorption cross sections Cexy and Cgps can
be expressed as [9]
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The scattering cross section is found through Cyeq = Cexr - Caps. Finally, the scattered field
can be calculated from the internal field by summing all the electric fields radiated by the
dipoles. Draine shows that in the far field the scattered electric field can be expressed as [9]
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If we calculate the scattered field for perpendicular and parallel polarisation of the incident

light we can obtain the total scattering matrix S of the particle, as described in chapter 3.3 of

Ref. [10].

Before we can proceed we need to settle two more matters of the DDA model, first the

location of the dipoles and second expressions to find the polarisability of the dipoles as a
function of macroscopic optical properties of the scattering volume, i.e. the refractive index.

In principle the point dipoles in the DDA represent the polarisability of a small volume of the
scatterer. This means that one has complete freedom over the size, shape, and position of the
dipoles, as long as dipole i with polarisability &; is an accurate enough representation of the
real polarisation of the finite volume element V; . Despite this flexibility, most DDA models
assume that the dipoles are located on a cubical grid. The grid spacing d has to be much smaller
than the wavelength of the radiation, usually by a factor of 10 to 20. Furthermore, the
graininess of the resulting model particle must be small enough to allow for accurate
simulations of the scattering matrix (see for a discussion of these matters see e.g. Ref. [6, 9,
11]). The reasons to choose for a cubical grid are twofold. First it allows a more accurate
analysis of the question how to find the polarisability of the dipoles. Next, as will become clear
in section 3, such regular lattice allows to drastically reduce the execution time of the DDA
simulation. It should however be noted that some authors have tried other configurations in
modelling very thin layers or helical structures (see e.g. [12, 13].

In our discussion on the polarisability we will assume that the dipoles are isotropic, i.e.
&; = ;1. Originally, Purcell and Pennypacker obtained o; via the Clausius-Mossotti relation
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with m; the refractive index of the volume element V;. The Clausius-Mossitti relation is exact in
the dc limit, for an infinite cubical lattice of equal dipoles and it is assumed that for the finite
DDA lattice it is a good approximation. An important limitation of the use of the Clausius-
Mosotti relation lies in the fact that the optical theorem is violated. This is a well-known
problem and is treated in many textbooks in the context of e.g. Rayleigh scattering. Non-
absorbing particles with real m yield dipoles with real o according to Eq. 8. However, the
single dipoles in the simulation do scatter light and their polarisabilities should have an
imaginary part. As was noted by several authors [9, 14], this restriction does not introduce
severe errors in the simulation of the differential cross sections. Nevertheless, it remains an
important point of principle. As a consequence, the optical theorem cannot be used to calculate



total scattering cross sections of particles.

Several solution to this problem have been suggested. First, Draine [9] introduced an
imaginary part into the polarisability by considering a radiative reaction field on the dipoles.
Dungey and Bohren [15] introduce an exact formulation of the electric dipole polarisability of
small spheres in the DDA formalism. This formulation basically is the first term in the Mie
series, and includes the radiative reaction term of Draine as the third order term of an expansion
in the size parameter of the spherical dipole. Finally, Draine and Goodman derived the Lattice
Dispersion Relation by considering the question what polarisability « of an infinite cubical
lattice of dipoles would result in the same dispersion relation of a continuum with refractive
index m. [16] They show that '
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where a and € are unit vectors defining the direction and polarisation of the incident light. The
use of the Lattice Dispersion Relation results in more accurate DDA simulations, as compared to
other methods to obtain the polarisability [16].

3. SOLVING THE DDA EQUATIONS

The DDA method consists of three parts. First an initialisation, in which the dipole
positions, the incident field, and the other model parameters are specified. Second the
calculation of the field at the dipoles and third the calculation of the scattering cross sections.

Calculation of the electric field on the dipoles, Eq. 3, is the computational most expensive
part of the DDA method. From a numerical point of view, this calculation boils down to solving
a very large system of linear equations Ax = b, with A a nxn complex symmetric matrix, b a
known complex vector and x the unknown complex vector. Generally speaking linear systems
are solved by means of direct or iterative methods [17]. In the past both approaches were
applied to solve the DDA equations. For instance, Singham et al. used a direct method (LU
factorisation) [8], Singham and Bohren described a reformulation of the DDA method, which
from a numerical point of view is a Jacobi iteration to solve the matrix equation [18], and
Draine applied a Conjugate Gradient iteration [9].

Direct methods require O(n?) floating-point operations to find a solution, whereas iterative
method require O(n?2) floating-point operations, provided that the number of iterations is much
smaller than n. In many cases the size of the DDA interaction matrix alone forces us to use
iterative methods.

The Jacobi iteration is not very well suited for a large number of dipoles; already for a
relative small number of dipoles (N ~ 500), the Jacobi iteration becomes non-convergent {19].
A very efficient iterative method is the Conjugate Gradient method [17]. Draine [9] showed that
the Conjugate Gradient method is very well suited for solving the DDA equations. The number
of iterations needed to find the solution is much smaller than the dimension of the matrix. For
instance, for a typical small particle with 2320 dipoles (n = 6960) the Conjugate Gradient
method only needs 17 iterations to converge. Rahola and Lumme have recently compared the
performance of a number of different Conjugate Gradient methods for solving DDA equations

4




{20,21]. They show that the Quasi-Minimal Residual (QMR) algorithm can be 2 to 4 times
faster to find the solution of the DDA equations.

Although the use of direct methods to solve the equations has clear advantages (for
orientational averaging, see next section), currently most groups apply iterative CG methods,
allowing to handle systems with up to 5x103 dipoles, or when executed on very powerful
(parallel) computers, up to 105 dipoles [see e.g. 22]. However, the execution time needed for
such large systems is still to high. The O(n?) complexity of the CG methods needs to be
reduced to allow for real production - type of simulations of light scattering using DDA (see
also next section).

The major breakthrough came in 1991, when Goodman, Draine, and Flatau, inspired by
comparable techniques which are well-known in the Method of Moments, showed how to
reduce the O(n2) complexity to O{nlogn) by using 3D Fast Fourier Transformations in the CG
methods [2]. The key point is that due to the property F; = F;;, the matrix vector products,
accounting for the O(n2) complexity in the CG methods, are in fact discrete convolutions. If the
dipoles are located on periodic lattices, FFT methods can be used to evaluate these convolutions
in O(nlogn) complexity. Using FFT techniques allows to run DDA simulations with 104
dipoles in only a few minutes on workstations, and to move to systems with 106 to 107 dipoles
by executing the DDA on powerful supercomputers (see e.g. [23], and section 6).

A public domain DDA scattering code, by Draine and Flatau, employing CG iterations and
FFT kernels is available via anonymous ftp from astro.princeton.edu in the directory
draine/scat/ddscat. See also the links on the “scattering codes” home page of Dr. Wriedt;
http://imperator.cip-iw1.uni-bremen.de/fg01/codes2.html.

4. CURRENT RANGES OF APPLICABILITY

In principle the DDA is able to simulate light scattering by any arbitrary particle, only limited
by computational power and memory of a computer. In this section we will survey the current
ranges of applicability of the DDA. First, we ask the question how many dipoles we expect to
be needed in typical particle models. As our own interest lies mainly in scattering by complex
biological cells [see e.g. 22-25], we concentrate this discussion on compact particles.
However, comparable estimates can be made for porous aggregates as considered in e.g. [21,
26]. Next, we will show the computational requirements for large DDA models and discuss the
influence of the refractive index of the particles on the applicability of DDA and the added
problems when orientational averaging is required in the simulations.

Fig. | gives an estimate of the number of dipoles needed to model a compact particle, as a
function of the size parameter o!, with grid spacing 4 equal to /20, ¥10, and A/5. Even for
modest size parameters the number of dipoles is O(10% or larger. In our specific application,
simulation of elastic light scattering from human white blood cells, eis in the range of 20 to 80.
This means that we should be able to handle models with up to 108 dipoles, assuming that we
will need 20 dipoles per wavelength for e.g. accurate depolarisation simulations. Fortunately,
in many cases it is possible to employ larger dipoles, resulting in smaller models (see e.g. the
results on the simulation of total cross sections in Ref. [6]).

In general, if the size parameter is in the range of 80 or larger it becomes possible to employ
other, computationally less expensive approximate methods to simulate light scattering, such as

1 The size parameter is defined as &= 2nr/A, with r the radius of the particle
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physical optics approximations. This means that if it is possible to compute DDA models with
up to 108 dipoles we are able, with DDA, to cover the gap between low- and high-frequency
approximations of Elastic Light Scattering.

log(N)

20 20 60 80 100
o

Figure 1. Estimation of the number of dipoles needed to model a compact particle.

In Fig. 2 we indicate the number of floating point operations needed for 1 iteration of the
DDA (the line direct DDA, i.e. DDA with a Conjugate Gradient solver, without employing the
FFT’s), as a function of the number of dipoles N. In order to simulate ELS from human white
blood cells, which have diameters up to 16 pm, the number of dipoles needs to be in the range
105 to 108, In reference {22] we describe a parallel version of the direct DDA, and based on this
work we are able to indicate the range of operations which can be performed in less than 10
minutes®, when executed on a typical workstation (a Sun Sparcstation 20 at 50 MHz) or a
powerful parallel computer (a 32 node Parsytec PowerXplorer). It is obvious that the direct
DDA iteration is too demanding if we wish to simulate scattering from realistic, micron sized
particles (see also the discussion in [22]).

The operation count for one iteration of the fast DDA (i.e. DDA using the fast Fourier
transforms) is also indicated in Fig. 2. This suggests that Goodman’s fast DDA, when executed
on powerful supercomputers allows to cover a significant range of numbers of dipoles N
needed to model realistic, micron-sized particles. We therefore developed a parallel fast DDA,
using the previously developed parallel version of the direct DDA, and demonstrated DDA
simulations with up to 1.1 106 dipoles (see section 5 and Ref. [23]). The size of the models
was only limited by the available memory. Even for this large model the execution time for 1
iteration is only 150 s,

Another important issue is the memory consumption of the simulations. The fast DDA
program of Flatau and Draine requires ~0.58(N,NyN,/1000) Mbytes, where NxNyN; is the
volume containing all the N dipoles [6]. The calculations are performed in double precision.
This means that for a particle fitting in a 323 portion of a lattice (such as a sphere modelled with
17,904 dipoles) ~19Mbyte of RAM is needed. We have recently optimised the memory
consumption of the fast DDA by only storing the dipoles, and not the complete computational
box holding the particle. Furthermore, we perform our calculations in single precision, which
give the same accuracy as in double precision [27]. This results in a memory consumption of
234 bytes/dipole, resulting in a requirement of ~ 4 Mbyte for the sphere model mentioned

A typical DDA run requires 30 to 50 iterations. An upperbound of 10 minutes per iteration therefore is
realistic if one wants to work in a production mode.
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Figure 2: The required number of floating point operation per iteration in the DDA, as a function of the
number of dipoles N used to discretise the particle. Lines for the direct DDA, and the Fast DDA (i.e. accelerated
using FFT) are shown. The range of N, needed to model Human White Blood cells is indicated, and, by
demanding that the maximum time for an iteration is smaller than 10 minutes, the range of workstations and a
32 node PowerXplorer are also indicated.

One may conclude that DDA models with up to 104 dipoles can now easily be handled on
powerful PC’s or workstations. Larger models of O(10°) dipoles can still be handled on
workstations, provided that enough RAM (say 64 or 96 Mbyte) is available. Even larger
models not only require more memory than usually available on the desk-top, the execution
times of such large models will also become to high for current workstations. Therefore, such
simulations should be performed on powerful supercomputers. We are currently preparing for
DDA simulations of models with 107 dipoles on a parallel IBM SP2 computer.

Up till now we have only investigated to what extend DDA simulations are feasible, from a
computational point of view. A more important question is the quality of the DDA model itself,
i.e. the accuracy of the DDA model. Usually the accuracy is measured by performing DDA
simulations of particles allowing analytic solutions of the light scattering problem, and
comparing the DDA results with exact theory. In most cases the particles are spheres or
concentric spheres, however recently a two-sphere system was simulated with DDA and
compared to exact theory [28].

The conclusion of many of these comparisons (see e.g. [6,9,16,21-23,25] is that for
slightly absorbing particles, with refractive indices up to 1.5 +1 0.1, the accuracy of the total
cross sections can be (much) better than 1 % provided that Imlkd < 0.5. The is also true for the
rms error in the differential cross sections. However, for specific scattering angles, the errors in
DDA can easily increase above 5 %. Usually this happens for scattering angles where the
differential cross section itself is quite small, and therefore small absolute errors result in
relative large relative errors. The results presented in [6], and alsc our own experiments
[22,25], show that it is always possible to decrease the errors in the differential cross sections
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by decreasing the size of the dipoles (to e.g. d/A = 1/20). In some cases other elements of the
scattering matrix have been calculated [6,11,12]. All elements have an accuracy comparable to
that of the S element, except the S34 element which usually has larger errors.

If the refractive index of the particle is large, and if it becomes more absorbing, the number
of iterations needed in the CG methods sharply increases [see e.g. 21]. Furthermore, the errors
in the differential cross sections increase. However, again we observe that it is always possible
to decrease the errors by decreasing the dipole size.

In general we can conclude that in the ranges of particle sizes and refractive indices (Iml<~2)
surveyed up till now the DDA altows for accurate simulations of light scattering.

Many light scattering simulations require an orientational averaging of the (differential) cross
sections over a particle’s position. If one solves the system of equations with a direct method
(LU decomposition, which has the disadvantage that the number of dipoles cannot be to large),
the randomising of the orientation of the particle can be accomplished by explicitly solving the
matrix equation just once for one orientation and applying rotation matrices to calculate the
solution for other orientations {29]. If iterative methods are used it is necessary to actually
calculate the cross sections for a large number of orientations. As was shown by Singham [19],
orientational averaging requires simulations in 1000 to 2000 random positions of the particle.
This problem places a severe burden on the DDA method, as compared to other methods, such
as the T-matrix approach, which allows for a much more efficient way of orientational
averaging [30-32].

5. EXAMPLES OF LARGE SCALE DDA SIMULATIONS

As an example of the use of DDA we show our first steps towards simulations of light
scattering by Human White Blood Cells (HWBC). More examples of the use of DDA can be
found in Refs. [13,21,26,33-40]

An important type of a small HWBC is the Lymphocyte, which normally is nearly spherical,
and has a large spherical nucleus [41]. However, subtle morphological differences between
Lymphocyte sub classes have been reported, and pathological stages of Lymphocytes usually
show clear morphological signatures (such as a displacement or roughening of the nucleus; for
a discussion of these issues, see Ref. 25, chapter 1.3.3). It is our purpose to detect such
biologically important morphological differences through Elastic Light Scattering. The goal of
our simulations is to search for suitable light scattering experiments which are most sensitive to
specific morphological differences between (subsets) of HWBC or between healthy and malign
HWBC. In this section we will demonstrate that with our current parallel fast DDA we will be
able to pursue such large scale simulations.

The diameter D of HWBC is 4 € D < 16 um [see e.g. 41, 42 table I, or 43, chapter 1]. The
relative refractive index m of HWBC is in the range 1.01 <m < 1.08 [44].

In Fig. 3 we show results of a simulation of scattering from a homogeneous sphere with a
diameter of 7.2 um, resulting in a size parameter « of 36, and a relative refractive index of
1.05. Next, Fig. 4 shows a simulation of scattering from a small Lymphocyte, which is
modelled as a concentric sphere with an outer diameter of 6.0 um and an inner diameter of 4.2
pm. The refractive index of the nucleus, i.e. the inner sphere, is 1.05 and that of the cytoplasm
is 1.02. In both cases the particles are modelled in the fast DDA with 1.1 106 dipoles. The
number of iterations was 49 and 37 for the homogeneous and concentric spheres respectively.
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Figure 3: A fast DDA simulation, on the 32 node Parsytec PowerXplorer, of the scattered intensity from a

homogeneous sphere with a diameter of 7.2 um and a relative refractive index of 1.03; the number of dipoles in

the simulation was 1.1 10%, and the wavelength of the incident light was 632.8 nm. The dots are the results of
the DDA simulation, the solid line is a Mie calculation.

The results are compared with analytical Mie theory. The correspondence between the
analytical theory and the DDA simulations is good. In the future we plan to start simulations of
scattering from Lymphocytes with a non-spherical or rough nucleus, with a displaced nucleus,
or with non spherical cell shapes. Such simulations can no longer be performed with analytical
theories, and for them we will employ our parallel fast DDA methed.
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Figure 4: A fast DDA simulation, on the 32 node Parsytec PowerXplorer, of the scattered intensity from a
small Lymphocyte modelled as a concentric sphere with an outer diameter of 6.0 pm, an inner diameter of 4.2
jm, an inner relative refractive mdex of 1.05 and an outer relative refractive index of 1.02; the number of
dipoles in the simulation was 1.1 10°, and the wavelength of the incident light was 632.8 nm. The dots are the
results of the DDA snmulatnon the solid line is a concentric sphere Mie calculation

6. OPEN QUESTIONS AND NEW DIRECTIONS

As we already noticed in section 4 the number of iterations needed to solve the DDA
equations rises sharply if the refractive index of the particle is increased, i.e. an enormous
slowing down of the convergence rate of the Conjugate Gradient method is observed {21, 25].
Furthermore, if the grid spacing d is kept constant, the accuracy of DDA seems to decrease,
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which can be solved by making the grid spacing smaller [6]. The bottom line is that DDA
calculations of large models with large refractive index are much more difficult from a
computational point of view. It is still an open question if the current numerical procedures are
robust enough to solve the equations with large m. We feel that for the situations of large m a
good preconditioner for the Conjugate Gradient method needs to be developed. We have tried a
simple first order polynomial preconditioner, but this was not successful [25].

Furthermore, just as we are able to settle a range of particle sizes which we should be able to
model (see section 4), we should define a range of refractive indices which we should be able
to cover with DDA. Draine and Flatau e.g. have shown that for bml >> 1 the DDA is no longer a
good model, because the DDA seems to result in to large polarisation in the surface layers,
resulting in an overestimation of absorption cross sections for large m. [6,9] They suggest that
in this case other techniques (such as the method of Rouleau and Martin [45]) are much more
suited than DDA. A systematic study of DDA versus other methods for large m would be
needed to find the range of refractive indices which we should be able to cover with DDA, and
to answer the question if this is at all possible, both from a physical - (accuracy of DDA model)
and from a computational (execution time of the simulation) point of view.

In principle the DDA method allows to simulate scattering by an arbitrary incident field,
provided that the incident field is a solution of the Maxwell equations. We have studied the
feasibility of the DDA method to simulate scattering by focused laser beams. We simulated
scattering of strongly focused laser beams from a sphere with the DDA method, and compared
the results with analytical calculations using the generalised Lorenz-Mie theory (GLMT). The
first results show that DDA is perfectly capable of simulating scattering by focused beams, but
that the accuracy of the simulation is somewhat less as compared to plane wave illumination
[25, 27].

Other new directions are attempts to reduce the computational complexity of algorithms to
solve the DDA equations using hierarchical methods. First, the work of Chew et al. could be
very relevant for the DDA [46]. Chew et al. try, among others, to reduce the complexity of the
direct O(n3) methods to solve the equations resulting from Integral Equation methods for
scattering. These new algorithms could be combined with the straightforward orientational
averaging which is possible when using direct methods to solve the DDA equations.

Hierarchical tree methods could be applied to reduce the complexity of the matrix vector
products in the conjugate gradient method [20,22]. In most DDA applications the FFT does a
great job. However, if the particles become very fluffy, the FFT has to do many unneeded
calculations thus reducing the efficiency of the FFT’s. Furthermore, if one wants to relax the
demand to put the dipoles on a regular grid the FFT’s can no longer be used. It is in these two
situations that hierarchical methods could be applied to reduce the execution time of the matrix
vector products. First results show that hierarchical tree methods are indeed suited to reduce the
complexity of vector wave problems [20,47].

7. CONCLUDING REMARKS

The Discrete Dipole Approximation is a well established method to simulate light scattering
from arbitrary shaped particles. Models containing an O(104) dipoles with Iml < 2 can be easily
simulated on powerful PC’s or workstations. Larger models and higher refractive indices pose
computational problems, forcing to run the models on more powerful computers. In all cases
studied so far however the resulting (differential) cross sections are quite accurate. We have
e.g. shown accurate DDA simulations of a model containing 1.1x100 dipoles.
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More research is required to establish the quality of both the DDA model itself and the
numerical algorithms for large refractive indices. Furthermore, efficient techniques for
orientational averaging have to be developed.
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