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1. INTRODUCTION

In the Volume Integral Equation Formulation
(VIEF) of simulations of elastic light scattering (see
e.g. Lakhtakia and Mulholland, 1993) the internal field
in a particle is first calculated. Next, the total and
differential scattering cross sections are obtained
from this internal field. Usually these cross sections
are the required quantities, and their properties and
the accuracy with which they are calculated have been
studied extensively (Hage and Greenberg, 1980), also
for the closely related Discrete Dipole Approximation
(see e.g. Draine and Flatau, 1994). In some cases
however the internal field itself is the required
quantity.

We report on computer experiments to measure
the accuracy of the internal fields as calculated by
VIEF. The accuracy was obtained by considering
spherical particles and comparing the simulated
internal fields with those obtained by Mie theory.

Spheres can exhibit strong resonances in the
internal field (see e.g. Videen et al., 1995). In this
case one specific mode in the internal field is strongly
amplified. We examine the case of such sharp
internal field resonances.

2. METHODS

A sphere is discretised into N cubes. The internal
field is obtained by VIEF on the center point of each
cube. This field is denoted as E!,.. where the index i

refers to the field in the center of cube i. The exact
Mie solution is also calculated in the centers of the
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cubes, and is denoted as Ely, . The difference field is

defined as

i = Enie — Eligr- M
In all simulations the sphere is centered at the origin
and the incident field is an x-polarized plane wave
traveling in the positive z-direction.

The model parameters are the size parameter x
and the complex refractive index m of the sphere, and
the size of cubes in the VIEF method, d = Alcow!,
where cpw/ stands for ‘cubes per wavelength'. The size
of the cubes is always specified in terms of the cow/
parameter. The accuracy of the internal fields are
measured as a function of these 3 parameters.

The data sets are analysed in a number of
different ways. The first method is by visualisation.

The electric fields E/; (with j is Mie, VIEF, or diff) are

three dimensional complex vector fields and are
therefore difficult to visualise. A first approach is to
calculate the energy density

s)=[E)) el @

where the * denotes complex conjugation. This scalar
field is a measure of the intensity of the electric field,
and can be plotted in color plots in a full 3D
projection, or in planes through the sphere. This last
method was applied by many other authors (e.g. Liu
et al., 1995). Another way to visualise the data is to
plot vector fields, which are obtained by either taking

the real or imaginary parts of E;

In this paper a number of examples of internal field
visualisations will be shown in gray scale plots. We
have prepared an accompanying document, available
on the worid wide web, where the color versions of the
figures in this paper and a number of other examples
of internal field visualisations are available (see
http://www.wins.uva.nl/~alfons/int/int-f. html).




A final technique, that proved to be very useful, is
to plot the amplitude of the electric fields as a
function of the distance to the center of the sphere.
Although all azimuthal information is no longer
present, such plots give much information wih
respect to the distribution of e.g. the errors in the
internal field,

Although visualisation is an indispensable tool in
helping to understand the data sets, we also need
quantitative error norms. The enormous amount of
data (in this work N can be as large as 10°% forces the
use of statistical error norms. Define the absolute and
relative error in the internal field on a point in the
sphere as

~ Ehps =|E'cﬁrrl and £/ =|Ei1ml/‘5')we

Next, for

both absolute and relative errors the

minimum, maximum, mean, standard deviation, and
root mean square errors (RMS) over all cube positions
are calculated. This results in a good amount of data
reduction. In most cases the RMS, combined with the
maximum error, provides a good insight in the
distribution of the errors.

3. RESULTS

We consider three typical case studies. The
properties of the spheres are listed in Tabie 1. Fig. 1
shows the energy density of the internal field in the
spheres in the x-z plane. Fig. 2 shows the energy
density of the difference field.

number size parameter  refractive index cpwi cpw| / Re(m) N
1 9 1.05 15 14.3 41472
2 9 1.33+0.01i 20 15.0 98512
3 5 25+14i 35 14.0 90536

Table 1. Overview of size parameter and refractive index of the three spheres. The cpwl parameter is the “cubes

per wavelength” as used in the VIEF simulation, and N is the number of cubes in the VIEF simulation.
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hFigure 1. The energy density for the internal field obtained by Mie caiculation. The left figure is for sphere 1, the
middle figure for sphere 2, and the right figure for sphere 3. All scales in the plots are linear.

Figure 2: As in Fig. 1, but now for the energy density f

x

or the difference field, defined in Eq. 1.

One can observe three typical internal field
distributions in Fig. 1. For a very small refractive

index the internal field is almost equal to the incident
field. For the larger refractive index of sphere 2 we
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o8 a clear difference of the internal field and the
-Incident field, and we observe a typical interference
peak at the far end of the particle. Finaliy, for sphere
with a large absorption, we can see that the internal

field is very small, except at the surface.
“:Furthermore, the fields are strongest at the front end
of the particle. These types of internal fields are in
agreement with the cases surveyed by Dobson and
Lewis (1989). As can be inferred from Figs. 1 and 2,

in all three cases the errors in the VIEF internal fields
are the largest on the surface of the sphere

Another way 1o look at the internal field is to plot
the amplitude of the internal field, and the amplitude
of the difference field, as a function of the radial
distance in the sphere. This is demonstrated in Fig. 3
for the difference field. The distribution of the errors in
internal VIEF field is now Clearly visible.
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Figure 3: The amplitude of the the difference field as a function of radial distance in the sphere. The left column
is sphere 1, the middle column sphere 2, and the right column sphere 3 (see Tabie 1 for properties of the

spheres).

The relative RMS error of the internal fields for
sphere 1 - 3 are 0.5, 2.8, and 23 % respectively. The
maximum errors are 3.4, 19, and 120 % respectively.

Next, the convergence of VIEF simulations with
respect to grid refinement is tested. For a number of
different spheres the number of cubes per wavelength
is gradually increased while keeping the size of the
sphere fixed. A typical result is shown in Fig. 4.
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Figure 4. The refative errors in VIEF simulations of
the internal field for a sphere with x = 5 and m = 1.33
+0.01 / as a function of cpwi. The upper solid line s
maximum error, the lower solid line the minimum error.
The dots are the mean errors and the bars represent
the standard deviation. The dashed line is the RMS.

The maximum error is more or less constant, and
certainly does not decrease with increasing cpwl.
These maximum errors in the internal field are always
located on the surface of the sphere. All other
statistical error norms (minimum, mean, standard
deviation, and root mean square) show a monotonous
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decrease with increasing cpwi.

We finally investigate if VIEF simulations are able
to reproduce resonances in Mie scattering. We
identified two resonances which fall in the range of (x,
m) values that can be covered by our VIEF
simulations.
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Figure 5. The extinction coefficient as a function of
the refractive index for Mie calculations (the solid line)
and VIEF simulations (the dots) for x = 4.875,

24

For a size parameter of x= 4.875 we found two
values of m, close together, for which the Mie
scattering becomes resonant, m = 2.3009279 and m =
2.3534695. They are a 7'th order TE (a7) and an 8'th
order TM (bg) resonance respectively. Fig. 5 shows
Cext in the range 2.2 < m < 2.4 for Mie calculations and
for a number of VIEF simulations. in all VIEF
simulations we take cpw/ = 36.The Mie calculations




show the predicted resonances as two peaks on a
smooth background. The VIEF simulations also show
two sharp peaks, which are shifted to slightly larger
values of m. This suggests that VIEF is able to
reproduce the Mie resonances, but not at the exact
positions.

The internal fields for the non-resonance case
(e.g. for m = 2.2) resemble those of Fig. 1 for sphere
2 However, in case of the resonances, the internal
field changes drastically. Here we only show results
for the second resonance.

Fig. 6 shows the energy density for the second
Mie resonance, i.e. m = 23534695 Notice the
enormous difference in scales for the Mie resonance
and the (non-resonant) VIEF simulation. The bs
resonance is recognised by the fact that most energy
density is located in the x = constant plane and 8
peaks in each half of the sphere.

Mie VIEF

Figure 6. The energy density for the internal field
obtained by Mie caiculation (left) and VIEF simulation
(right) for m = 2.3534685.
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Figure 7. As in Fig. 5, but now for m = 2.36.

Fig. 7 shows the energy density for the second VIEF
resonance, i.e. m = 2.36. In this case the bs
resonance is clearly recognised in the VIEF results,
although the amplitudes are smaller than those of the
corresponding Mie resonance in Fig. 6. We have not
carried out any more VIEF simulations in the
immediate vicinity of m = 2.36. It is possible that for a
slightly different refractive index the VIEF resonance
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