Distributed particle simulation of flow in
complex geometries

A.G. Hoekstra & P.M.A. Sloot
Section Computational Science, University of Amsterdam, The
Netherlands

Abstract

Lattice Gas Automata (LGA) and the Lattice Boltzmann method (LBM) are
specific Cellular Automata (CA) that can be considered as simplified discrete
particle models capable of modeling fluid flow. LGA and LBM inherit the
intrinsic parallelism of CA. We discuss our distributed particie simulation of
flow, based on a parallel LBM. Efficient parallel execution is possible, provided
that (dynamic) load balancing techniques are applied. Next, we present a number

of case studies of flow in complex geometries, i.e. flow in porous media and in
static mixer reactors.

l Introduction

Cellular Automata (CA) are discrete, decentralized, and spatially extended
Systems consisting of large numbers of simple identical components with local
Connectivity. The rational of cellular automata is not to try to describe a complex
System from a global point of view as it is described using for instance
differential equations, but modeling this system starting from the elementary
‘?ynamics of its interacting parts. The original concept of cellular automata was
ntcoduced by von Neumann and Ulam to model biological reproduction and
cry‘_“"” growth respectively. [1, 2] Since then it has been applied to model a wide
3 ;?:C'CIY of (complex) systems, in particular physical systems containing many
nm;:tc elements with local interactions. [3, 4] Although John von Neumann
i uced tt}e cellular automata theory several decades ago, only in recent years
'mccame significant as a method for modeling and simulation of complex
i ms. This occurred due to the implementation of cellular automata on

Sively parallel computers. Based on the inherent parallelism of cellular

372 Applications of High-Performance Computers in Engineering VI

automata, these new architectures made possible the design and development of
high-performance software environments. These environments exploit the
inherent parallelism of the CA model for efficient simulation of complex systems
modeled by a large number of simple elements with local interactions. By means
of these environments, cellular automata have been used recently to solve
complex problems in many fields of science, engineering, computer science, and
economy. In particular paraliel cellular automata models are successfully used in
fluid dynamics, molecular dynamics, biology, genetics, chemistry, road traffic
flow, cryptography, image processing, environmental modeling, and finance [5].

2 Particle simulation of flow

Some 12 years ago theoretical physicists showed that an highly idealized model
of a gas, consisting of particles that have a very limited set of velocities and that
are confined to a lattice behaves, on average, as an incompressible fluid [6]. This
Lattice Gas Automaton (LGA) is a particle model for fluid flow and is a true CA.
In this section we shortly introduce LGA and show how it relates to CA.
Detailed theory behind L.GA is introduced in two recent books. [7, 8]

Consider a hexagonal lattice, as in Fig. 1. Particles live on the links of the
lattice, and they can move from node to node. The dynamics of the particles is
such that they all move from one node to another. Next, if particles meet on a
node, they collide and change direction (see Fig. 1). The collisions are such that
they obey the physical constraints of conservation of mass, momentum, and

energy.

AVAVAY AVAVATAVA®
AVA'&VAVA‘A AVAYANaVAYA
\VAS2CAVAVAV
VAVAVAVAV,

Figure 1: Lattice and particle update mechanism for a LGA. A dot denotes a
particle and the arrow its moving direction. From left to right an initial
condition, streaming, and collision of particles are shown.

We can formally define a CA rule for such an LGA as follows. Suppose that
the state of a cell is determined by by, surrounding cells. Usually, only the nearest
and next-nearest neighbors are considered. For example, on a square lattice with
only nearest neighbor interactions by = 4, if next-nearest neighbors are also
included b =8, and on a hexagonal lattice with nearest neighbor interactions by,
= 6. Furthermore, suppose that the state of the cell is a vector n of b = by, bits.

Applications of High-Performance Computers in Engineering V1 373

Each element of the state vector is associated with a direction on the CA lattice.
For example, in the case of a square grid with only nearest neighbor interactions
we may associate the first element of the state vector with the north direction, the
second with east, the third with south, and the fourth with west, With these
definitions we construct the following CA rule (called the LGA rule), which
consists of two sequential steps:

1. Each bit in the state vector is moved in its associated direction {so in the
example, the bit in element 1 is moved to the neighboring cell in the north)
and placed in the.state vector of the associated neighboring cell, in the same
position (so, the bit in element 1 is moved to element 1 of the state vector in
the cell in the north direction). In this step each cell is in fact moving bits
from its state vector in all directions, and at the same time is receiving bits
from all directions, which are stored into the state vector.

Following some deterministic or stochastic procedure, the bits in the state
vector are reshuffled. For instance, the state vector (1,0,1,0) is changed to
(0,1,0,1).

Maybe very surprisingly, if we assign physical quantities 10 this CA, enforce
physical conservation laws on the bit reshuffling rule of step 2, and use methods
from theoretical physics to study the dynamics, we are in fact able to analyze the
CA in terms of its average behavior. The average state vector of a cell and the
average flow of bits between cells can be calculated. Even better, it turns out,
again within the correct physical picture that this CA behaves like a real fluid
(such as water} and therefore can be used as a model for hydrodynamics.
Furthermore, as the LGA rule is intrinsically local (only nearest and next nearest
neighbor interactions) we constructed an inherently parallel particle model for
fluid flow,)

Associate the bits in the state vector with particles; a one-bit codes for the
presence of a particle, and a zero bit codes for the absence of a particle. Assume
that all particles are equal and have a mass of 1. Step ! in the LGA-CA is now
interpreted as streaming of particles from one cell to another. If we also
introduce a length scale, i.e. a distance between the cells (usually the distance
between nearest neighbors cells is taken as 1) and a time scale, i.e. a duration of
the streaming (i.e. step 1 in the LGA-CA rule, usually a time step of 1 is
assumed), then we are able to define a velocity ¢; for each particle in directicn ¢
(i.e. the direction associated with the i-th element of the state vector n). Step 1 of
the LGA-CA is the streaming of particles with velocity ¢; from one cell to a
neighboring cell. Now we may imagine, as the particles meet in a cell that they
collide. In this collision the velocity of the particles (i.e. both absolute speed and
direction) can be changed. The reshuffling of bits in step 2 of the LGA-CA rule
can be interpreted as a collision of particles. In a real physical collision, mass,
momentum, and energy are conserved. Therefore, if we formulate the reshuffling
such that these three conservation laws are obeyed, we have constructed a true
Lattice Gas Automaton, i.e. a gas of particles that can have a small set of discrete
velocities ¢;, moving in lock-step over the links of a lattice (space is discretized)
and that all collide with other particles arriving at a lattice point at the same time.

|7

[——

374 Applications of High-Performance Computers in Engineering VI

In the collisions, particles may be sent in other directions, in such a way that the
total mass and momentum in a lattice point is conserved.

We can now define for each cell of the LGA-CA a density £ and momentum
Pu, with u the velocity of the gas:

b
p=2N;,
l:])
/= ZCiN" R

i=1

where N; = <n;>, i.e. a statistical average of the Boclean variables; N, should be
interpreted as a particle density.

= T e 7w " o~ =
N ~ N T =
[P A PR
Rl T T

T -
e T e T T o e = B
Ay R

- ey -

F v 7 - - ' - P 4 -
— - - EREE -+ - —
.. o . MR T,
._”_f.\x FARERY e
—-— - » P L.
N . ;-
Ao , N
-~ e -
et e ' ’
PR ’ v
L - N e P 1
------- \ N = -1
i N ~ [S R RN -

= = = A S e e e e = e e

—— e e e e e e e —r e

Figure 2: LGA simulation of flow around a cylinder. The arrows are the flow
velocities, the length is proportional to the absolute velocity. The
simulations were done with FHP-III, on a 32x64 lattice, the cylinder
has a diameter of 8 lattice spacings, only a 32x32 portion of the lattice
is shown; periodic boundary conditions in all directions are assumed.
The left figure shows the result of a single iteration of the LGA, the

right figure shows the velocities after averaging over 1000 LGA
iterations,

If we let the LGA evaluate and calculate the density and momentum as
defined in eqn. (1), these quantities behave just like a real fiuid. In Fig. 2 we
show an example of an LGA simulation of flow around a cylinder. In left figure
we show the results of a single iteration of the LGA, so in fact we have assumed
that N; = n;. Clearly, the resulting flow field is very noisy. In order to arrive at

Applications of High-Performance Computers in Engineering VI 373

smooth flow lines one should calculate N; = <n;>. Because the flow is static, we
calculate N; by averaging the Boolean variables m; over a large number of LGA
iterations. The resulting flow velocities are shown in the left panel of Fig. 2.

Immediately after the discovery of LGA as a model for hydrodynamics, it
was criticized on three points; noisy dynamics, lack of Galilean invariance, and
exponential complexity of the collision operator. The noisy dynamics is clearly
illustrated in Fig. 2. The lack of Galilean invariance is a somewhat technical
matter which results in small differences between the equation for conservation
of momentum for LGA and real Navier-Stokes equations, for details see e.g. [8].
Finally, adding more velocities in an LGA leads 1o increasingly more complex
collision operators, exponentially in the number of particles. Therefore, another
model, the Lattice Boltzmann Method (LBM), was introduced. This method is
reviewed in detaii in [9}.

The basic idea in LBM is that one should not model the individual particles
n;, but immediately the particle densities N, This means that particle densities
are streamed from cell to cell, and particle densities collide. This immediately
solves the problem of noisy dynamics. However, in a strict sense we no longer
have 2 CA with a Boolean state vector. However, we can view LBM as a
generalized CA. It is easy to make LBM Galilean invariant, thus solving the
second problem of L.GA. Finally, a very simple collision operator is introduced.
This so-called BGK collision operator models the collisions as a single-time
relaxation towards equilibrium. This L-BGK method is also developed for many
other lattices, e.g. in two or three-dimensional cubic lattices with nearest and
next nearest neighbor interactions. The LBM and especially the L-BGK has
found widespread use in simulations of fluid flow.

3 Parallel Lattice Gas and Lattice Boltzmann Simulations

The local nature of the LGA and LBM interactions allows a very straightforward
realization of parallelism. A geometric decomposition of the lattice with only
local message passing between the boundaries of the different domains is
sufficient to realize an efficient paratlel simulation. For instance, we have
developed a generic 2-dimensional LGA implementation that is suitable for any
multi-species (thermal} LGA [10]. Parallelism was introduced by means of a 1-
dimensional, i.e strip-wise, decomposition of the lattice. As long as the grid
dimension compared to the number of processors is large enough, this approach
results in a very efficient parallel execution.

This LGA system is mainly used for simulations in simple rectangular
domains without internal obstacles. However, in a more general case, where the
boundaries of the grid have other forms and internal structure (i.e. solid parts
where no particles will flow) the simple strip-wise decomposition results in
severe load imbalance. In this case, as was shown in [11], a more advanced
decompaosition scheme, the Orthogonal Recursive Bisection (ORB) method [12],
still leads to highly efficient parallel LBM simulations. ORB restores the load
balancing again, however at the price of a somewhat more complicated
communication pattern between processors. In Fig. 3 we show, for a

376 Applications of High-Performance Computers in Engineering VI

representative 2D benchmark, the processor load. In a simple slice
decomposition, the load on each processor differs a lot. For the ORB the load is
almost balanced. This results for this benchmark, in reductions of execution
times as large as 40%. For details we refer to [11].

Exrcutisa prefils of » parsii rus se 16 precessars Executien preflle of 2 parsllel run ow 16 procensn

= =
r [Caktrdamcy

Hime
! [

0

Time is Setmads

|

At
WA OO
Procemssr 1

Figure 3: The processor load, on 16 processors, for slice and ORB
decomposition of the elutriator chamber benchmark (see [1I]). On
the x-axis are the processor ID’s and on the y-axis the execution time
of each processor.

For flow problems with a static geometry the ORB decomposition seems to
be most appropriate. However, we are also interested in flow simulations where
the geometry dynamically changes during the simulation. Here we refer to e.g.
free flow around growing biological objects [13] or bounded flows with
dynamically changing boundaries (e.g. blood flow in the heart). In this case an
initially well-balanced parallel computation may become highly unbalanced.
This may be overcome by a redundant scattered decomposition or by dynamic
load balancing. Here we report some preliminary results of the first approach, the
latter will be published elsewhere [14].

We consider growth of an aggregate in a three dimensional box. We must
simulate flow around the object. The details of the streamlines close to the object
determine its local growth. Due to the growth of the aggregate a straightforward
decomposition (for example partitioning of the lattice in equal sized slices or
boxes) would lead to strong load imbalance. To solve this problem we have
tested two strategies to obtain a more equal distribution of the load over the
processors:

1. Box decomposition in combination with scattered decomposition.

2. Orthogonal Recursive Bisection (ORB) in combination with scattered
decomposition.

The idea is to decompose the grid in a large number of partitions, much larger

than the number of available processors, using either a box decomposition or

ORB. Next, the partitions are randomly assigned to a processor. An example of a

scattered decomposition over 4 processors of an irregular shaped object in a 2D

Applications of High-Performance Computers in Engineering VI 377

lattice is shown in Fig. 4. In this example the lattice is divided into 100G blocks,
where each block is randomly assigned to one of the four processors. Most of the
computation is done in the blocks containing exclusively fluid nodes. The
scattering of the blocks over the processors leads to a spatial averaging of the
load, where decreasing block sizes cause a better load balancing, but also an
increasing communication overhead. {15} Especially in simulations in which the
shape of the object cannot be predicted, redundant scattered decomposition is an
attractive option to improve the load balance in parallel simulations [16, 17].

Figure 4: Decomposition of an irregular shaped object in a 2D lattice. In this case
100 blocks are scattered over 4 processors.

We have compared both decomposition strategies by computing the load
balancing efficiency:

l .
Eload = lmm ’ 2

max

where I, is the load of the fastest process and I, the load of the slowest
process. The two decomposition strategies were tested by using two extreme
morphologies of the aggregates, a very compact shape and a dendritic shaped
aggregate, and by measuring the load balancing efficiency during one iteration of
the parallel LBM on 4 processors. The results are shown in Fig. 5. These resulis
indicate that the combination of redundant ORB or box decomposition in
combination with a scattered decomposition of partitions on processors may
indeed improve load balancing. However, a disadvantage is that although the
load balancing efficiencies increase with the number of redundant blocks, the
communication overhead also increases. Furthermore, this test was for a single
iteration only. We are currently working on testing these methods for real
growing objects.

oo A i e e TR e VT

378 Applications of High-Performance Computers in Engineering V1

T T T
X SN A wiah COMpI SDElpcle

ORB $CaN: g with andrric st i

YA fi; 3 e — e LTI DL L
o8 =

cep

od | e

Load badarcing ef kcrency

oz F

) N N i "
@ 0 40 &0 L] 100 120 140

Nombet o Diocks

Figure 5: The load balancing efficiency as a function of the total number of
redundant blocks scattered on 4 processors, for box and ORB
decomposition and for a compact and dendritic aggregate.

4 Cases: flow in complex geometries

We applied our disiributed particle simulation environment as described above
for a large number of simulations of fluid flow in complex geometries. Here we
show two representative examples, that of flow in random fiber networks and of
flow in a static mixer reactor.

The first example is flow in a random fiber network, as drawn in Fig. 6. The
fiber network is a realistic model of paper, and the question was to obtain the
permeability of the network as a function of the volume fraction of fibers.
Simulations were performed on 32 nodes of a Cray T3E using our parallel LBM
environment described in the previous section. We obtained permeability curves
that are in very good agreement with experimental results (see [18]).

Figure 6 : A random fiber network.

Another impressive example is flow in a Static Mixer Reactor [19]. In such a
mixer high viscosity fluids are mixed by letting them flow around a complex

- Mate e i

Applications of High-Performance Computers in Engineering VI 379

arrangement of internal tubes. A typical mixer is shown in Fig. 7. Here, LBM
simulations and conventional Finite Element simulations where compared, which
agreed very well. The simulation results also agree very well with experimental
results. This shows that LBM, which is much easier 1o parallelize and much
easier to extend with more complex modeling compared to Finite Element,
(multi-species flow, thermal effects, reactions), is very suitable in real life
problems involving complex flow.

Figure 7 : A Static Mixer Reactor. Flow lines resulting from LBM simulations
are also shown.

5 Conclusions

Within the general concept of Celiular Automata we have developed a
distributed particie simulation environment for ftuid flow. Parallef Lattice Gas
Automata and Lattice Boltzmann methods have been realized, and we showed
that by carefully taking load balancing into account it is possible to achieve very
high parallel efficiencies. By means of two realistic examples of flow in complex
geometries the power and potencies of such a distributed particle simulation
environment were demonstrated.

References

(1] Ulam, S. Some mathematical problems connected with patterns of growth
figures. Essays on Cellular Automata, eds. A.W. Burks, Illinois, pp. 1970.

[2] von Neumann, J. Theory of Self-Reproducing Automata, Urbana, 1966.

[3] Wolfram, S. Cellular Automata and Complexity, Addison-Wesley: 1994.

[4] Manneville, P., Boccara, N., Vichniac, G.Y. & Bidaux, R. (eds.) Cellular
Automata and Modeling of Complex Physical Systems, Springer
Proceedings in Physics: 1989.

[5] Sloot, PM.A. & Talia, D. (eds.) Parallel Cellular Automata: Special Issue
on Cellular Automata, Future Generation Computer Systems: 1999.

[6] Frish, U., Hasslacher, B. & Pomeau, Y. Lattice-gas automata for the
Navier-Stokes equation. Phys. Rev. Lett., 56, pp. 1505, 1986.

e

380 Applications of High-Performance Computers in Engineering V1

[7]1 Chopard, B. & Droz, M. Cellular Automata Modelling of Physical Systems,
Cambridge University Press: 1998.

[8] Rothman, D.H. & Zaleski, S. Lattice-Gas Cellular Automata, Simple
Modeis of Complex Hydrodynamics, Cambridge University Press:
Cambridge, 1997.

[31 Chen, S. & Doolen, G.D. Lattice Boltzmann Method for Fluid Flows. Ann.
Rev, Fluid Mech., 30, pp. 329, 1998.

[10] Dubbeldam, D., Hoekstra, A.G. & Sloot, P.M.A. Computational Aspects of
Multi-Species Lattice-Gas Automata. Proceedings of the International
Conference HPCN Europe 99, eds. PM.A. Sloot, Bubak, M., Hoekstra,
A.G. & Hertzberger, L.O., Springer Verlag: Berlin, pp. 339-349, 1999.

[11] Kandhai, D., Koponen, A., Hoekstra, A.G., Kataja, M., Timonen, J. &
Sloot, P.M.A. Lattice Boltzmann Hydrodynamics on Paralle! Systems.
Comp. Phys. Comm., 111, pp. 14-26, 1998,

(12] Simon, H.D. Partioning of unstructured problems for parallel processing.
Computing Systems in Engeneering, 2, pp. 135-148, 1991.)

[13] Kaandorp, J.A., Lowe, C., Frenkel, D. & Sloot, P.M.A. The effect of
nutrient diffusion and flow on coral morphology. Phys. Rev. Lett., 77, pp.
2328-2331, 1996.

[14] Schoneveld, A. & de Ronde, J., accepted for publication in Fut. Gen.
Comp. Syst., 1999.

[15] de Ronde, J., Schoneveld, A. & Sloot, P.M.A. Load balancing by redundant
decomposition and mapping. High Performance Computing and
Networking (HPCN96), eds. H. Liddell, Colbrook, A., Hertzberger, B. &
Sloot, P., pp. 555-561, 1996.

[16] Machta, J. & Greenlaw, R. The parallel complexity of growth models.
Journal of Statistical Physics, 77, pp. 755-781, 1994,

{17] Machta, J. The computational complexity of pattern formation. Journal of
Statistical Physics, 70, pp. 949-967, 1993.

[18] Koponen, A., Kandhai, D., Hellin, E., Alava, M., Hoekstra, A., Kataja, M.,
Niskanen, K., Sloot, P. & Timonen, J. Permeability of three-dimensional
random fiber webs. Phys. Rev. Letr., 80, pp. 716-719, 1998.

[19] Kandhai, D., Vidal, D., Hoekstra, A., Hoefsloot, H., Iedema, P. & Sloot, P.
Lattice-{Boltzmann} and Finite-Element Simulations of Fluid Flow in a
{SMRX]} Static Mixer. pp. 1999.

