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Abstract. The total computing capacity of workstations can be har-
nessed more efficiently by using a dynamic task allocation system. The
Esprit project Dynamite provides such an automated load balancing sys-
tem, through the migration of tasks of a parallel program using PVM.
The Dynamite package is completely transparent, ¢.e. neither system
(kernel) nor application program modifications are needed. Dynamite
supports migration of tasks using dynamically linked libraries, open files
and both direct and indirect PVM communication. In this paper we
briefly introduce the Dynamite system and subsequently report on a
collection of performance measurements.

1 Introduction

With the continuing increases in commodity processor and network performance,
distributed computing on standard PCs and workstations has become attractive
and feasible. Consequently, the availability of efficient and reliable cluster-man-
agement software supporting task migration becomes increasingly important.

Various PV M [5] variants supporting task migration have been reported, such
as tmPVM [12], DAMPVM [3], MPVM (also known as MIST) [2], ChaRM [4]
and CoCheck [11]. For MPI [14], task migration has been studied in Hector [§].

Building on earlier DPVM work by L. Dikken et al. [7], we have developed
Dynamite!. Dynamite [1] attempts to maintain optimal task allocation for par-
allel jobs in dynamically changing environments by migrating individual tasks
between nodes. Task migration also makes it possible to free individual nodes,
if necessary, without breaking the computations.

Dynamite supports applications written for PVM 3.3.x, running under So-
laris/UltraSPARC 2.5.1, 2.6, 7 and 8. Moreover, it supports Linux/i386 2.0 and
2.2 (libch and glibe 2.0 binaries; glibc 2.1 is not supported at this point).

! Dynamite is a collaborative project between ESI, the Paderborn Center for Parallel
Computing, Genias Benelux and the Universiteit van Amsterdam, partly funded
by the European Union as Esprit project 23499. Of the many people that have
contributed, we can mention only a few: J. Gehring, A. Streit, J. Clinckemaillie,
A H.L. Emmen.



The principal advantages of Dynamite are its API-level transparency, its
powerful, dynamic loader based checkpoint/migration mechanism and its sup-
port for the migration of both direct and indirect PVM connections. We have
found Dynamite to be very stable. Its modular design greatly facilitates the port
to MPI [14], which is currently underway.

2 Dynamite overview
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Fig. 1: Dynamite run-time system. An application has to be decomposed into several
subtasks already. An initial placement is determined by the scheduler. When the ap-
plication is run, the monitor checks the capacity per node. If it is decided that the
load is unbalanced (above a certain threshold), one or more task migrations may be
performed to obtain a more optimal load distribution.
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The Dynamite architecture (see Figure 1) is built up from three separate
parts:

1. The load-monitoring subsystem. The load-monitor should leave the compu-
tation (almost) undisturbed.

2. The scheduler, which tries to make an optimal allocation.

3. The task migration software, which allows a process to checkpoint itself and
to be restarted on a different host. Basically, the checkpoint software makes
the state of a process persistent at a certain stage.

Parallel PVM applications consist of a number of processes (tasks) running
on interconnected nodes constituting a PVM wvirtual machine. A PVM daemon
runs on every node and communicates with other daemons using the UDP/IP
protocol. PVM tasks communicate with each other and with PVM daemons
using a message-passing protocol. PVM message passing is reliable: no messages
can be lost, corrupted or duplicated and must arrive in the order sent.

In Dynamite, a monitor process is started on every node of the PVM virtual
machine. This monitor communicates with the local PVM daemon and collects
information on the resource usage and availability, both for the node as a whole
and individually for every PVM task. The information is forwarded to a central
scheduler, which makes migration decisions based on the data gathered. PVM
daemons assist in executing these decisions.



For migration, first, the running process must be checkpointed, i.e. its state
must be consistently captured on the source node. Next, the process is restored
on the destination node; its execution resumes from the point at which the source
process was checkpointed. Typically, the original process on the source node is
terminated.

Processes that are part of the parallel PV M application present additional dif-
ficulties. Every PVM task has a socket connection with the local PVM daemon.
This connection is used for the indirect routing. PVM tasks can also establish
point-to-point direct TCP/IP communication channels with each other, to im-
prove the performance. Extra care must be taken when migrating PVM tasks
to ensure that they do not permanently lose the connection with the rest of the
parallel application, and that the PV M message protocol is not violated.

In Dynamite robust mechanisms for address translation, connection flush-
ing and connection (re-) establishment have been incorporated that have been
demonstrated to survive thousands of consecutive migrations.

For a detailed description of the implementation, the reader is referred to [6].

3 Performance measurements

In order to evaluate Dynamite’s performance, a number of tests have been con-
ducted. Some of these are concerned with the performance of the components
of the system, such as the modified PVM library. Others attempt to quantify
the performance of the Dynamite system as a whole, in a controlled dynamic
environment.
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Fig. 2: Migration performance of DPVM for (a) Linux and (b) Solaris.

3.1 Performance of System Components
In a system like Dynamite, there are two easily measurable performance factors:

— the time it takes to migrate a task of a given size,



DPVM indirect — DPVM indirect —

100 PVM indirect e 100 PVM indirect
_ DPVM direct = _ DPVM direct =
g PVM direct e g PVM direct e
= - =
) - ) )
E E
S 10} S 10}
S S
8 8
c =4
g g ]
e 1 g 1lf
S . S
o H o

01 . . . . , 01 . . . . ,

1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Message size [bytes] Message size [bytes]
a b

Fig. 3: Communication performance in DPVM and PVM for (a) Linux and (b) Solaris.

— the difference in communication performance compared to standard PVM.

Experiments have been performed to measure these two factors, both under
Linux and Solaris. In case of Linux, reserved nodes of a PC-cluster have been
used, equipped with PentiumPro 200 MHz CPU and 128 MB RAM, running
kernel version 2.2.12. In case of Solaris, idle UltraSPARC 5/10 workstations
have been used, equipped with 128 MB RAM and running kernel version 5.6. In
both cases, 100 Mbps Ethernet was used. In both cases the NFS servers used for
checkpoint files were shared with other users, which could affect the performance
to some extent.

Figure 2 presents the performance of migration in DPVM for various process
sizes. A simple ping-pong type program communicating once a few seconds via
direct connection was migrated, process size was set with a single large malloc
call. Execution time of each of the four migration stages (see [6]) was measured.
In general, it was found that the major part of the migration time is spent on
checkpointing and restoring, the remaining stages amount to approximately 0.01
— 0.03s, and hence are not shown. The speed of checkpointing and restoring is
limited by the speed of the shared file system. On our systems this limit lies at
4-5 MB/sec for NFS running over the 100Mbps network. It can be observed,
however, that the restoring phase under Linux takes an approximately constant
amount of time, while it grows with process size under Solaris, resulting in twice
larger migration times for large processes. This is a side effect of differences in the
implementation of malloc between the two systems. For large allocations, Linux
creates new memory segment (separate from the heap) using mmap, whereas
Solaris always allocates from the heap with sbrk. When restoring, the heap and
stack are restored with read, which forces an immediate data transfer. However,
for the other segments our implementation takes advantage of mmap, which uses
more advanced page on demand technique. Since the allocated memory region
is not needed to reconnect the task to the PVM daemon, the time it takes to
restart the task is constant under Linux. Clearly, delays may be incurred later,
when the mmapped memory is accessed and loaded.



In Figure 3, comparison of communication performance between DPVM and
PVM is presented. Both indirect and direct communication performance has
been measured. A ping-pong type program was used, exchanging messages be-
tween 1 byte and 100KB in size. With DPVM, a slowdown is visible in all cases.
It stems from two factors:

— signal (un)blocking on entry and exit from PVM functions (function call
overhead),
— an extra header in message fragments (communication overhead).

The first factor adds a fixed amount of time for every PVM communication
function call, whereas the second one increases the communication time by a
constant percentage. For small messages the first factor dominates, since there
is little communication. An overhead from 25% for direct communication under
Linux to 4% for indirect communication under Solaris can be observed. While
particularly the first difference in speed is significant, it must be pointed out
that it represents a worst case scenario. The overhead percentage is larger for
direct communication, since the communication is faster while the overhead from
signal blocking/unblocking stays the same.

As the messages get larger, the overhead of signal handling becomes less
significant, and the slowdown goes down to 2-4% for 100KB messages.

Tests have been made to compare the communication speed in DP VM before
and after the migration, but no noticeable difference was observed (£1%).

3.2 Stability of the system

Care has been taken to prove the robustness of the environment. Thousands
of migrations have been performed both under Solaris and Linux, for processes
ranging in size from light-weight, 2 MB processes to heavy, 50 MB and larger.
Delays between individual migrations ranged between a fraction of a second
and several minutes, in order to test for race conditions. Similarly, different
communication patterns have been tested, including tasks using very small and
very large messages, using direct and indirect communication, communicating
point-to-point and using multicasts. These proved to be very revealing tests.

In one test performed under Solaris, Dynamite was able to make over 2500
successful migrations of large processes (over 20 MB of memory image size) of a
commercial PVM application using direct connections.

3.3 Performance of the Integrated System

Benchmarks In order to assess the usefulness of the integrated system, reserved
nodes of a cluster have been used to run a series of parallel benchmarks under
several different conditions. The benchmarks in question originate from the NAS
Parallel Benchmarks suite [13]. The individual benchmarks have been adjusted
to use four computation tasks each, running for aproximately 30 minutes in an
optimal situation. Where necessary, code has been added to provide intermediate
information on the execution progress of each task.



Fight nodes of a Linux cluster were reserved, each equipped with PentiumPro
200 CPU and 64 MB RAM, running Linux kernel version 2.0.36. 100 Mbps
FastEthernet was used as the communication medium. The number of nodes
exceeds the number of tasks, so this is a sparse decomposition, and consequently
during the execution of the benchmarks some nodes are idle. The Dynamite
scheduler works best in such a situation, since it can migrate tasks away from
overloaded nodes to idle nodes.

No Load

load Dynamite | No Dynamite
cg (smallest eigenvalue approximator) 1795 2226 (+24%) (3352 (+87%)
ep (embarrassingly parallel) 1620 1773 (+9%) [1919 (+18%)
7t (discrete Fourier transform) 1859 2237 (+20%)]2693 (+45%)
is  (integer sort) 1511 1758 (+16%) [ 1688 (+12%)
mg (discrete Poisson problem) 1756 1863 (+6%) |2466 (+40%)

Table 1: Execution times of NAS parallel benchmarks, in seconds.

Table 1 presents the execution times of the NAS parallel benchmarks. The
numbers in the No load column were obtained by running the individual bench-
marks in the ideal situation, when all the nodes were totally idle otherwise. Of
course, the results obtained this way are the best. In case of the other two Load
columns, an external load has been applied. The external load was generated by
running a single computationally intensive process for 5 minutes on each node
used by the benchmark. One node at a time was overloaded in this way, and the
external load program worked in a cycle, going back to the first node when it
was done with the last one. Two kinds of measurements have been carried out:
one with Dynamite running, and one without. In both cases, the benchmarks
ran slower than without external load. However, in case of all but one of the
benchmarks, the results obtained with Dynamite significantly outperform the
other case, reducing the percentage of slowdown by a factor of 2 to 6.

Figure 4 presents the execution progress of the NAS parallel benchmarks
(due to space restrictions, only 3 of them could be included). In each case, the
data for one of the tasks of the parallel application is shown. The left graph
presents the time spent on executing each individual step (ideally, this should
be a constant); the right graph presents the total time spent so far.

In Figure 4 (a), results for cg benchmark are shown. This benchmark slows
down 87% when subjected to external load. Such a significant slowdown is an
indication of two things. First, large part of execution time must be spent on
computation, otherwise the external load would not affect the local task so sig-
nificantly. Second, the communication pattern of the benchmark (global com-
munication) forces other processes to wait for the one lagging behind, with all
the unpleasant consequences to the performance.
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Fig. 4: Execution progress of NAS parallel benchmarks: the time to execute one step
(left) and the total time (right).

The results of ep benchmark, as presented in Figure 4 (b), are different. The
computation tasks of the ep benchmark do not communicate with each other
at all, and consequently all of the execution time is spent on computation. In
such a case, external load significantly hampers the performance of the affected
task, but, due to lack of communication, has no influence on other tasks (the
line on the left picture is flat in the area where other tasks of the application are
affected by the external load).



Figure 4 (c) shows the execution of the is benchmark, the only one that
performs worse with Dynamite running. Is is in some ways similar to ep — they
are both only slightly affected by the external load, but the reasons for that
are different. Just opposite to ep, in is most of the execution time is spent on
communication: tasks communicate frequently and in large volumes. Therefore,
the application progress is limited by the internode communication subsystem,
not by the CPU, so an external load has little influence on the local task, and an
even smaller one on the remote tasks. The migration decisions of the Dynamite
scheduler are not unreasonable, but their gain fails to exceed the migration cost,
which is rather high in this case because of large process size (40 MB).

The large process size (30 MB) also affects the result of the ft benchmark,
where Dynamite reduces the slowdown from 45% to 20%. The reduction would
have been significantly larger, had the processes to be migrated been smaller.

Standard production code In this test, the scientific application Grail [9,
10], a FEM simulation program, has been used as the test application. The
measurements were made on selected nodes of a cluster (see Section 3.1).

Parallel Decomposition

environment sparse | redund.
1| PVM 1854 2360
2| DPVM 1880 2468
3| DPVM + sched. 1914 2520
4| DPVM + load 3286 2947
5| DPVM + sched. + load | 2564 3085

Table 2: Execution time of the Grail application, in seconds.

Table 2 presents the results of these tests, obtained using the internal timing
routines of Grail. Each test has been performed a number of times and an average
of the wall clock execution times of the master process (in seconds) has been
taken. The tests can be grouped into two (decomposition) categories:

— sparse — the parallel application consisted of 3 tasks (1 master and 2 slaves)
running on 4 nodes,

— redundant — the parallel application consisted of 9 tasks (1 master and 8
slaves) running on 3 nodes.

To obtain the best performance, it would be typical to use the number of nodes
equal to the number of processes of the parallel application. Neither of the above
decompositions does that. In case of the sparse decomposition, one node is left
idle (PVM chooses to put the group server there, but this one uses only a minimal
fraction of CPU time). Such a decomposition would be wasteful for the standard
PVM. In the redundant case, each node runs 3 tasks of the application (one of



the nodes also runs the group server). Although the number of nodes used when
running the two decompositions is different, comparing the timings makes sense,
since 3 nodes are used at any one time in each case.

In the first set of tests presented in Table 2, standard PVM 3.3.11 has been
used as the parallel environment. Not surprisingly, the sparse decomposition
wins over the redundant one, since it has lower communication overhead.

In the second row, PVM has been replaced by DPVM. A slight deterioration
in performance (1.5-4.5%) can be observed. This is mostly the result of the
fact that migration is not allowed while executing some parts of the DPVM
code. These critical sections must be protected, and the overhead stems from
the locking used. Moreover, all messages exchanged by the application processes
have an additional, short (8 byte) DPVM fragment header.

In the test presented in the third row, the complete Dynamite environment
has been started: in addition to using DPVM, the monitoring and scheduling
subsystem is running. Because in this case the initial mapping of the application
processes onto the nodes is optimal, and no external load is applied, no migra-
tions are actually performed. Therefore, all of the observed slowdown (approx.
2%) can be interpreted as the monitoring overhead.

In the fourth set of tests an artificial, external load has been applied by
running a single, CPU-intensive process for 600 seconds on each node in turn,
in a cycle. Since the monitoring and scheduling subsystem was not running, no
migrations could take place. A considerable slowdown can be observed, although
it is far larger for the sparse decomposition (75%) than for the redundant one
(19%), actually making the latter faster. This is a result of the UNIX process
scheduling policies: for sparse decomposition, the external load can lengthen the
application runtime by a factor of 2, while for the redundant decomposition by
no more than 33%, since there are already 3 CPU-intensive processes running on
each node, so the kernel is unlikely to grant more than 25% of CPU time for the
external load process. This shows that sparse decomposition, although faster in
a situation close to ideal, performs rather badly when the conditions deteriorate,
while the redundant decomposition is far less sensitive in this regard.

The final, fifth set of tests is the combination of the two previous tests: the
complete Dynamite environment is running, and the external load is applied.
Dynamite clearly shows its value in case of the sparse decomposition, where, by
migrating the application tasks away from the overloaded nodes, it manages to
reduce the slowdown from 75% to 34%. The remaining slowdown is caused by:

— the time for the monitor to notice that the load on the node has increased
and to make the migration decision,

— the cost of the migration itself is non-zero,

— the master task, which is started directly from the shell, is not migrated;
when the external load procedure was modified to skip the node with the
master task, the slowdown decreased by a further 10%.

Turning to the redundant decomposition, it can be observed that the Dynamite
scheduler actually made the matters worse, increasing the slowdown from 19%
to 25%. This result, although unwelcome, can easily be explained. The situation



was already rather bad even without the external load: not only were all the
nodes overloaded, they were also overloaded by the same factor (3). Therefore,
the migrator had virtually no space for improvement, and its attempts to migrate
the tasks actually worsened the situation. It can be argued that the migrator
should have refrained from making any migrations in this case, though.
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Fig. 5: Execution progress of Grail for sparse decomposition. Note that the performance
of plain PVM was measured without any load. With a simulated background load it
would have been only slightly better than the “DPVM + load” performance.

Figure 5 presents the execution progress of Grail for sparse decomposition.
For standard PV M with no load applied this is a straight, steep line. The other
two lines denote DPVM with load applied, with and without the monitoring
subsystem running. Initially, they both progress much slower than PVM: because
the load is initially applied to the node with the master task, no migrations take
place. After approximately 600 seconds the load moves on to another node.
Subsequently, in the case with the monitoring subsystem running, the migrator
moves the application task out of the overloaded node, and the progress improves
significantly, coming close to the one of the standard PVM. In the case with
no monitoring subsystem running, there is no observable change at this point.
However, it does improve between 1800 and 2400 seconds from the start: that is
when the idle node is overloaded. After 2400 seconds, the node with the master
task is overloaded again, so the performance deteriorates in both DPVM cases.

4 Conclusions and future prospects

Concluding, our implementation of load balancing by task migration has been
shown to be stable. The use of the Dynamite system results in a slight perfor-
mance penalty in a well-balanced system, but significant performance gains can
be obtained from task migration in an unbalanced system. Improvements can
still be made in the scheduling.



Dynamite aims to provide a complete integrated solution for dynamic load
balancing. A port to MPI is being implemented, in cooperation with the people
from Hector [8]. Dynamite/DPVM can be obtained for academic, non-commercial
use through the authors?.
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