
Rollbacks in Time Warp – Analysis and Modelling

K. A. Iskra, G. D. van Albada, P. M. A. Sloot

Section Computational Science, Faculty of Science, Universiteit van Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{kamil, dick, sloot}@science.uva.nl

Keywords: parallel discrete event simulation, Time Warp, rollbacks, state saving, analytical modelling

Abstract

This paper presents a study of the interactions be-
tween the random number generator used and the
run-time behaviour of the parallel Time Warp simula-
tion kernel APSIS. A different rollback length distribu-
tion, with a far larger chance of long rollbacks taking
place, is observed when the state of the random num-
ber generator is not preserved across the rollbacks.
An explanation for this phenomenon is provided. An
analytical model of the rollback behaviour in Time
Warp is developed, for rollback length expressed in ei-
ther the simulation time or the number of events to be
rolled back. The hope is that, once the model is com-
plete, it will be possible to determine under what cir-
cumstances it is profitable (not) to preserve the state
of the random number generator.

1 Introduction

Parallel Discrete Event Simulation (PDES [1, 2])
is a technique used to speed up discrete event simula-
tions by running them on parallel or distributed hard-
ware platforms. A simulation is divided intological
processeswhich are then mapped onto the parallel
hardware. The logical processes schedule events by
sending messages to each other. Thecausality con-
straint requires that the processes to execute events
in time-stamp order.Time Warp[3] is a prominent
PDES algorithm. It lets logical processes run opti-
mistically, ignoring the causality constraint to achieve
better parallelism. When a logical process receives an
event that should have been executed in the simulation
past, a causality error occurs. To resolve the error, the
process needs to roll back in the simulation time, un-
doing any over-optimistically performed operations,
which includes cancelling messages sent to other log-
ical processes. To be able to perform a rollback, a log-
ical process needs access to its own past state, which
is saved during the forward progress of the simula-

tion. The state consists of a user-level state (simu-
lation variables) and a simulation kernel-level state
(message queues and other internal variables, among
them the state of the random number generator).

In [4], we have described our experiments with
running an Ising spin model under our own Time
Warp kernel APSIS [5]. To reiterate, we have ob-
served a very particular rollback length distribution
resembling self-organised criticality for some simu-
lation parameters, in particular the Ising spin model
temperature. Since then, we have determined that
more factors contribute to that sort of rollback length
distribution; in particular the properties of the random
number generator appear to be important.

This paper attempts to answer the questions of why
adjusting the random number generator significantly
affects the rollback distribution, and also whether this
knowledge can be used to our advantage when per-
forming simulations.

Analytical modelling has already been studied
elsewhere. In [6], a model of Time Warp is stud-
ied using a Markov chain approach. Their method is
however very hard to extend beyond two processes.
Another Markov chain model, this one incorporat-
ing multiple processes, has been described in [7]. It
takes an interesting approach by analysing the inter-
action of one process with Global Virtual Time in-
stead of the more common analysis of interaction be-
tween processes. Important limitations that make it
unsuitable in a case like ours are that it assumes a
fixed population of messages and that an event can
be scheduled at all other processes with equal proba-
bility. More recently, [8] contains a description of a
probabilistic model of Time Warp which seems to be
the most complete to be found in the literature, as it
includes multiple processes, various overheads (often
ignored in other models) and even rollback cascades.
However, the underlying probabilistic model does not
match that of the simulation that we want to study.
Nevertheless, it does seem to prove that a probabilis-
tic approach is quite promising for the more complex
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Figure 1: Rollback length distributions from Ising spin experiments, power function-like curve for low tempera-
tures (left) and exponentially decaying for high temperatures (right).X axis is the rollback length,Y the probability.

models. To our knowledge, none of the existing mod-
els pays much attention to the properties of the ran-
dom number generator used, which is the issue that
we intend to focus on.

In [9], an idea of implementing temporal uncer-
tainty in the Time Warp kernel is being studied, and
promising results are obtained. External events are
not scheduled for a fixed simulation time, but for a
small time range, in a hope that some of the rollbacks
can be prevented this way while the accuracy of the
results stays unaffected. Their idea is analogous to
ours, in that they are relaxing the Time Warp proto-
col hoping to improve on the speedup, only they relax
the event execution time, and we the preserving and
restoring the state of the random number generator.

The remainder of this paper is organised as fol-
lows. Section 2 briefly describes our experiments
and provides an explanation for the results obtained.
Section 3 provides a (so far incomplete) analytical
model for the rollback behaviour observed. Section
4 presents a summary and outlines future directions.

2 Experiments with Ising Spin

As already mentioned, in [4] we have described
our experiments with the Ising spin model. We have
observed that for low temperatures of the model, the
rollback length distribution adheres to the power law,
as can be seen in Fig. 1.

Further experiments demonstrated that the power-
law behaviour for low temperatures disappears if we
save and restore the state of the random number gen-
erator across rollbacks. Before, the Ising spin simu-
lation has been using a generator from the C library
directly, so when re-running after a rollback, the gen-
erator would produce new random numbers instead of
repeating the rolled back sequence, simply because
the state of this generator wasn’t being preserved.
This wasn’t considered to be a problem due to an
inherently stochastic nature of the Ising spin model.
However, when state-saving random number genera-
tor was introduced into the kernel, it turned out that

using it significantly affects the run-time behaviour
of the kernel: also for the low temperatures we get
the exponentially decaying rollback length distribu-
tion as in Fig. 1 (right). We managed to re-create
the distribution resembling the power function from
Fig. 1 (left) only after increasing theVirtual Time Win-
dow. The Virtual Time Window is a parameter of the
Time Warp kernel that limits excessive optimism by
imposing a maximum distance that a logical process
can move ahead from theGlobal Virtual Time(which
itself is periodically calculated across all the logical
processes).

2.1 Explanation of the Results

We are now going to present our interpretation of
the phenomenon described above. Figure 2 shows
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Figure 2: Two possible rollback scenarios: middle
first (left) and bottom first (right).

two alternative initial scenarios to be considered. We
have the wall-clock time on theX axis, and theLo-
cal Virtual Time(LVT), i.e. the progress of the sim-
ulation, on theY axis. We are analysing 3 processes
p1–p3 of a running simulation. The LVT of each of
them is different, but they generally progress at the
same pace. The solid lines denote already executed
operations, whereas the dashed parts present specula-



tion of how the simulation could progress. Sooner or
later, the processes will communicate with each other.
We are analysing cases in which processes with lower
LVT schedule external events at the processes with
higher LVT. Because in the Ising spin model simu-
lation used, the schedule time of external events al-
ways equals the sender’s LVT, scheduling in these
cases is guaranteed to result in a rollback. We are
going to analyse these rollbacks in greater detail. Fig-
ure 3 expands on the left case of Fig. 2 by presenting
the behaviour of the APSIS kernel with a plain and
a state-saving random number generator. Let’s focus

..
p1

p2

p3

..
p1

p2

p3

.

Figure 3: Rollback behaviour for the middle first sce-
nario with a plain (left) and a state-saving (right) ran-
dom number generator.

on the case with the plain random number generator
(left) first. The middle processp2 schedules an ex-
ternal event at the top processp3 (the narrow arrow
pointing straight up). In order to process the event,
which is in its simulation timepast, processp3 must
roll back to that point in time (steep line going down
and to the right – rolling back does take some time,
although much less than moving forward). Once it
has rolled back,p3 can take the externally scheduled
event into account and restart the forward execution.
Soon afterwards the bottom processp1 schedules an
external event at the middle processp2, which causes
the latter to roll back. While rolling back, processp2
notices that it has over-optimistically scheduled an ex-
ternal event atp3, and it sends ananti-messageto p3.
The anti-message causes another rollback atp3 be-
fore it can be taken into account. Once this is over, all
3 processes can move forward in unison again. Us-
ing a state-saving random number generator (right)
can add an extra twist at the end. Because the ran-
dom number generator rolls back with the simulation,
when processp2 restarts the forward execution it gets
the same stream of random numbers and consequently
schedules an external event onp3 again, which could
cause one more small rollback onp3. So, in total, we
observe two middle-sized rollbacks, one smaller one
and, in the case of state-saving random number gen-
erator, one very small one. Let’s now focus on Fig. 4,
which expands on the right case of Fig. 2. In this case,
the differences between the left and right side of the
figure are more significant. Let’s again focus on the
case with a plain random number generator (left) first.
Processp1 schedules an external event at processp2,
which causes the latter to roll back. We know that if
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Figure 4: Rollback behaviour for the bottom first sce-
nario with a plain (left) and a state-saving (right) ran-
dom number generator.

processp2 hadn’t rolled back, it would have sched-
uled an external event at processp3 soon afterwards.
And, indeed, that’s what happens soon after the roll-
back is over:p2 schedules an external event atp3,
which triggers a very large rollback. Moving on to
the case with a state-saving random number genera-
tor (right), the scheduling of an external event byp2
onp3does not happen so soon. Firstp2must go again
through the rolled back sequence of random numbers,
and only then is the event atp3 scheduled. In both
cases discussed above, we have a middle-sized roll-
back followed by a very large rollback. So, statis-
tically, there shouldn’t be any difference. However,
until now, we failed to take into account one impor-
tant factor, namely virtual time window. On Fig. 4
(right), processp3 must be able to significantly ad-
vance forward in order for a large rollback to occur.
Figure 5 shows the same situation as before, but with
a virtual time window. As we can see, for a particular

.
.

LVT

wallclock time

p1

p2

p3

LVT

..

wallclock time

p1

p2

p3

Figure 5: Rollback behaviour for the bottom first sce-
nario with virtual time window and with a plain (left)
and a state-saving (right) random number generator.

range of values, it is possible that the virtual time win-



dow does not influence the case with the plain random
number generator, but might just limit the excessive
optimism in the case of the state-saving random num-
ber generator. This in turn results in a significantly
reduced maximum rollback length. Our assumption
is that this phenomenon is responsible for the disap-
pearance of the power-law rollback distribution with
state-saving random number generator. Increasing the
virtual time window size should result in the increase
of maximum rollback length and hence in the reap-
pearance of power function-like rollback length dis-
tribution. As already mentioned, this has been con-
firmed by experiments.

3 Rollback Modelling

Now that the interaction between the rollback be-
haviour and the random number generator has been
explained, an analytical model that would allow to
compare the pros and cons of state-saving random
number generator is in order. Preserving the state of
the generator can be rather expensive for simulations
with small state, or those that do incremental state
saving, like our Ising spin model simulation. Inher-
ently stochastic simulations such as Ising spin should
not need a state-saving random number generator to
produce valid results, so using a non-state saving one
could be profitable performance-wise.

The simulation time in the Ising spin model is in-
creased by random intervals from a negative exponen-
tial distribution with the average ofλ = 1. The proba-
bility density function for the exponential distribution
is as follows:

f (t) = λe−λt (1)

In our case, (1) can be interpreted as a probability den-
sity that a process has increased its simulation time in
a single step byt. From that, we can calculate:

fn(t) =
tn−1

(n−1)!
e−t (2)

Equation (2) is the probability distribution of time ad-
vancet after n random intervals from a negative ex-
ponential distribution with the average ofλ = 1 (it is
the Erlang distribution). We can now attempt to cal-
culate the probability distribution of the distance in
simulation time between two processes aftern steps:

hn(d) =
∫ ∞

0
fn(t) fn(t +d)dt (3)

What (3) gives us is a function that specifies the prob-
ability that, aftern steps, the two processes have di-
verged from each other by time differenced. There-
fore, if the lagging process scheduled an event for its
current simulation time on the other process, the roll-
back would have the length ofd (in time units) with
the probability given by (3). Equation (3) is only de-
fined for positive values ofd, but that’s not a problem

since the distribution is known to be symmetrical any-
way. Further calculations lead to:

hn(d) =
e−|d|

[(n−1)!]2

∫ ∞

0
[t(t + |d|)]n−1e−2tdt

=
e−|d|

(n−1)!

n−1

∑
i=0

(n−1+ i)! |d|n−1−i

(n−1− i)! i! 2n+i (4)

Therefore, an exact, analytical solution does exist. It
is not always practical however, particularly for large
(in the range of thousands) values ofn, for which
the factorials are not representable in typical floating-
point computer arithmetic. Another approach would
therefore be preferable. We need to begin by defining
hn(d) differently:

hn+1(d′) =
∫ +∞

−∞
hn(d)h∆(d′−d)dd

h∆ ≡ h1

hn≡ h1⊗ . . .⊗h1︸ ︷︷ ︸
n

hn is thus ann-convolution ofh1, so it can easily be
expressed in the Fourier domain. From (4) we also
know the analytical form ofh1(d):

h1(d) =
1
2

e−|d| ⇐⇒ H1(s) =
1

1+(2πs)2

Hn(s) = H1(s)n =
1

[1+(2πs)2]n

hn(d) =
∫ +∞

−∞

1
[1+(2πs)2]n

e2πidsds (5)

Equation (5), can easily be solved numerically using
Fast Fourier Transform. Figure 6 presents some re-
sults. Next to the numerical results from FFT, the
results from a rollback simulator are presented for
the number of positive events ranging between 2 and
5000.

If we make an extra assumption that the rollbacks
take no time to perform, then after the rollback the
two processes become fully synchronised, so (5) can
be applied again, taking the time of the rollback as
the new start time. This makes it possible to derive
the total rollback length distribution across the whole
ranges of simulation time and rollback length:

l(d) =
∞

∑
n=1

[
hn(d)(1−Prb)n−1Prb

]
(6)

Prb is the probability of a rollback taking place, which
is assumed to be constant for every step; the probabil-
ities in different steps are assumed to be independent.
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Figure 6: Numerical and simulation results for rollback length expressed in simulation time after different numbers
of forward events.X axis denotes rollback length,Y axis the probability of such a rollback taking place.

3.1 Rollback length expressed in events

In the equations presented up till now, the rollback
length was expressed in the units of simulation time.
It is however more useful to express it in the number
of events that need to be rolled back.

Let’s consider two processes,A and B, each of
which has executedn positive simulation events. Ex-
ecuting each positive event increases simulation time
by a value drawn from a random number generator
with a negative exponential distribution. What is the

A B
1

n
1

2

n

A B
1

n

2
1
2

n
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Figure 7: The situations needed to get particular roll-
back length: maximum rollback lengthn (left) and
minimum length 1 (right).

probability that, should a rollback occur at that point,
it will have lengthn, i.e. the maximum possible? This
can only occur if one of the processes, sayA, made

less progress in alln events added together than pro-
cessB in just the first event. In this case, when pro-
cessA schedules an external event on processB after
n events, processB will need to undo alln events to
handle the externally scheduled event. Figure 7 (left)
presents this situation.

And what is the probability that the rollback will
have length 1, i.e. the minimum possible? This can
only occur if the sum of alln time advances in one
processes, sayA again, is larger than the sum ofn−1
time advances inB, but is smaller than the sum of all
n advances inB. This is presented in Fig. 7 (right).

These probabilities can be described analytically
as follows:

hn(k) = 2·P
(n−k

∑
i=1

bi +c>
n

∑
i=1

ai >
n−k

∑
i=1

bi

)
(7)

Equation (7) specifies the probability that if a rollback
occurs after two processes maden positive steps for-
ward, then the rollback will have a length ofk events,
k = 1, . . . ,n. Basically, it is a probability that the sum
of all n advances of processA, denoted asai , is larger
thann− k advances of processB, denoted asbi , but
is smaller thann−k+ 1 advances, where the last ad-
vance is denoted asc. This probability must be multi-
plied by 2 in order to take into account the symmetri-
cal situation of processB lagging behind processA.

For negative exponential distributions ofai andbi ,
the sums in (7) follow the Erlang distribution, and the



equation can be rewritten as:

hn(k) = 2·
∫ ∞

c=0
e−c

∫ ∞

β=0

βn−k−1

(n−k−1)!
e−β ·

·
∫ β+c

α=β

αn−1

(n−1)!
e−αdαdβdc (8)

hn(n) = 2·
∫ ∞

c=0
e−c

∫ c

α=0

αn−1

(n−1)!
e−αdαdc

The top version of (8) is fork = 1, . . . ,n−1, the bot-
tom fork = n. Both versions are solvable analytically,
the results are presented below:

hn(k) =

n
∑

i=1
2i

(
(2n−k−1−i)!

(n−i)! −
n−i−1

∑
j=0

(n−k−1+ j)!
j!

)
(n−k−1)! 22n−k

hn(n) =
1

2n−1

Table 1 presents several sample results for small val-
ues of the parameters. Not surprisingly, we get a

k = 1 k = 2 k = 3 k = 4 k = 5
n = 1 1

n = 2 1
2

1
2

n = 3 3
8

3
8

1
4

n = 4 5
16

5
16

1
4

1
8

n = 5 35
128

35
128

15
64

5
32

1
16

Table 1:hn(k) for small values ofn andk. Please note
howhn(n) changes and also thathn(1) = hn(2).

probability of 1 for a rollback length of 1 after 1 step
forward. That’s because time advances are floating
point values drawn from a random number genera-
tor, so the probability of both processes drawing the
same value (which would result in no rollback) is the-
oretically 0 (or somewhat more in practice due to fi-
nite precision of floating point numbers in comput-
ers). The probabilities of maximum rollbacks (hn(n))
decrease geometrically by a factor of 2. The proba-
bilities of shorter rollbacks do not follow such a sim-
ple pattern. Interestingly enough however, the prob-
abilities of rollbacks of length 1 and 2 turn out to be
the same for all values ofn> 1, which is hardly in-
tuitive. The above probabilities have been validated
against those obtained from the rollback simulator for
1000 000 simulated rollbacks, and a very good match
has been observed.

While (8) denotes a probability and hence has val-
ues in the range of[0,1], calculating these values for
n and k in the range of thousands involves factori-
als which are not representable even in 80-bitlong
double arithmetic. Maximum rollback lengths ob-
served were around 2000 (see Fig. 1), while the arith-
metic used currently limits us to around 1500. Not

only the range, but also the precision of the arithmetic
is a problem, since we need to compute sums of ele-
ments differing by many orders of magnitude, which
in the end mostly cancel each other out. We signalled
this problem earlier (see the discussion of (4) above),
and then we could overcome it by switching to Fourier
domain. This doesn’t appear to be an option here.
Possible solutions include switching to an even higher
precision software floating-point library or not using
the final analytical solution, but trying to solve the
simpler intermediate equations with the help of nu-
merical integration.

Even with thehn(k) currently limited to 1500, we
can attempt to calculate the rollback length distribu-
tion, for the length expressed in the number of events
to roll back:

l(k) =
∞

∑
n=1

[
hn(k)(1−Prb)n−1Prb

]
This is analogous to (6).

4 Conclusions and Future Directions

We have presented an analytical model of the roll-
back behaviour in Time Warp, for rollback length ex-
pressed either in simulation time or in the number of
events to roll back. The methods of calculating the
rollback length distribution based on the model, using
numerical approximation, have also been presented.

Nevertheless, important elements are still missing.
The model as presented is only valid for non-state sav-
ing random number generators, where after the roll-
back the system returns to a fully synchronised state
and where we have no knowledge of the events to
be scheduled in future (as we would have with state-
saving random number generator). The “full synchro-
nisation” requires only two logical processes in the
system, since the other logical processes, which did
not take part in the rollback, would not synchronise.

These are important restrictions and we are cur-
rently attempting to address them.
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