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Abstract. We present parallel lattice-Boltzmann simulations of fluid
flow in a centrifugal elutriation chamber, a cell separation device for hu-
man blood cells. The critical factor in this separation technique is the
hydrodynamic flow field. Understanding the influence of design parame-
ters of a chamber on the flow field is important in optimizations of this
process. Two different issues are considered in this paper: load balancing
of the parallel lattice-Boltzmann simulations and preliminary simula-
tions of fluid flow for a range of Reynolds numbers. It is shown that by
exploiting appropriate load balancing strategies, such as the orthogonal
recursive bisection method, the lattice-Boltzmann scheme is an efficient
method for this application. Furthermore, 2D simulations confirm that
the quality of separation degenerates above certain Reynolds numbers.

1 Introduction

Centrifugal elutriation is a physical cell separation technique by means of which
differences in sedimentation velocity of human peripheral blood cells are ex-
ploited to isolate various types of cells [1-4]. The core of this technique is the

combined effect of centrifugal and hydrodynamic forces acting on blood cells-

which are moving in a rotating chamber. The geometry of the separation cham-
ber is a critical factor and therefore simulation of flow in this particular geome-
try can provide insights in optimization of this technique. We have applied the
lattice-Boltzmann method to simulate this application, because of its suitability
for a large range of complex geometries. Also, the effect of the cell load on the
flow field can, in principle, be studied in the framework of the lattice-Boltzmann
method.

The lattice-Boltzmann method [5,6] is a relatively new tool in computational
fluid dynamics. It originated from the lattice-gas model [7] and has a microscopic
character, as opposed to the conventional appreach based on a numerical solution
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of the Navier-Stokes equation [8]. The key idea behind the lattice-Boltzmann
method is to model fluid flow by distributions of particles moving on a regu-
lar lattice. At each time step the particles propagate to a neighboring lattice
point followed by local collisions in which their velocities are redistributed. This
simulation method has proven to be successful in modeling and simulation of
complex fluid dynamical problems for which the conventional macroscopic ap-
proach may be difficult to apply [9-12]. Another important advantage of the
lattice-Boltzmann method is the inherent spatial locality of the updating rules.
This property makes it ideal for parallel processing.

The geometry of the elutriation chamber is in principle a tube of varying
cross-section. Standard decomposition of the computational grid in equal sub
volumes [13-15], which is a traditional parallelization approach in many lattice-
Boltzmann simulations, will now be inefficient due to the inhomogeneity of the
geometry. Therefore, an important issue for efficient parallel simulation of this
application is load balancing.

In this article we first briefly introduce the lattice-Boltzmann method and
discuss the centrifugal elutriation process. Then we shall discuss in detail the
load balancing strategies and finally preliminary simulations will be presented.

2 The centrifugal elutriation technique

Since 1948 centrifugal elutriation has been available as a cell separation technique
[4]. This technique is used to separate similar but slightly different cells as well as
to obtain valuable information on size and mass. It has been used comparatively
little until the mid-seventies, since available systems have been complex and
lacking sensitivity. These difficulties have been overcome nowadays using simple
design principles and this separation technique is promising because it does not
effect the metabolism of the cell culture.

In centrifugal elutriation a fluid is pumped into a divergent chamber which is
rotating and re-converges into a small outlet tube. A cell suspension is injected
into the rotor and moves through the system into the separation chamber (see
Fig. 1).

To gain insight in the centrifugal elutriation principle, we derive in this sec-
tion a simple 1D model for the motion of a cell. In this model we assume that
cells are spherical, the flow is laminar, the interactions between the cells are
ignored and the Coriolis force and gravity are neglected [1].

The acceleration of a cell in the rotor chamber is determined by the imbalance
of the drag and the centrifugal force. For a certain cell the drag force depends
on the hydrodynamic velocity field, while the centrifugal force depends on the
angular velocity and the radial distance. The hydrodynamic velocity in the sepa-
ration chamber is assumed to scale inversely proportional with the cross-section
of the chamber,
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Fig. 1. A side-view of the centrifugal elutriation chamber. The centrifugal and the drag
force are acting in opposite directions.

where ¢ is the volumetric flow rate of the separating fluid, A4 the cross-sectional
flow area which depends on r, the radial distance from the center of the rotor.

Within these assumptions, the motion of a blood cell is governed by the
following equation,
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where p. is the density of the cell, py the density of the fluid, w the angular
velocity, ¢ the viscosity of the fluid, ¢ the volumetric flow rate of the separat-
ing fluid, ¢ the time and 4 the diameter of the cell. The special design of the
separation chamber coerces the cells to rest, relative to the rotor, at a point
where the outward directed centrifugal forces (first term in Eq. 2) are balanced
by the inward directed fluid dynamics (second term in Eq. 2). Such a steady
state condition, established for cells at rest, relative to the rotor, at a distance
r, is approximated by [1}:
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In summary, we see that according to this simple model the quality of the
separation technique is mainly determined by the shape of the chamber. The
implicit assumption in this model is that the hydrodynamic velocity field is
uniform on planes perpendicular to the radial axes and the magnitude of the
velocity is scaling inversely proportional with the cross-sectional area of the
chamber. In the last section we will verify this assumption by studying the flow
profiles. The effect of increasing the Reynolds number on the scaling of the
velocity profile along the chamber will be also investigated.



3 The lattice-Boltzmann method

In lattice-Boltzmann methods particles move synchronously along the bonds of
a regular lattice, and interact locally according to a given set of rules. Basically
this method consists of the following two phases.

1. Propagation; in this phase particles move along lattice bonds to the neigh-
boring lattice nodes.

2. Collision; particles on the same lattice node shuffle their velocities locally
such that mass and momentum are conserved.

During the past years a variety of lattice- Boltzmann models have been developed.
The differences lie e.g. in the connectivity of the lattice being used and the exact
formulation of the collision operator [5,6}. The simplest one among these models
is the so-called lattice-BGK (Bhatnagar-Gross-Krook) model where the collision
operator is based on a single time relaxation to the local equilibrium distribution
[16]. For two-dimensional simulations the D2Qg (D is the number of dimensions
and @ denotes the number of lattice bonds) is regularly used. Here each lattice
point is connected with its eight nearest and diagonal neighbors. A rest particle
is also included in order to improve the physical behavior and the stability of
the method. The dynamics of the lattice-BGK model is given by the equation
[16],

fi(r + it + 1) = .fi(r) t) + :];_'(fim)(r}t) - fi(l', t)) ¥ (4)

where ¢; is the i-th link, f;(r,t} is the density of particles moving in the ¢;-
direction, 7 is the BGK relaxation parameter, and f2(r,t) is the equilibrium
distribution function towards which the particle populations are relaxed. The
hydrodynamic fields such as the density (p) and the velocity (v) are obtained
from moments of the discrete velocity distribution f;(r,t) as
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The equilibrium distribution function can be chosen in many ways. A common
choice is [17]
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where t; is a weight factor depending on the length of the link vector and ¢, is

the speed of sound. In the D2Qo model, the weight factors can be chosen as §, §

and §1§ for the rest particle, nearest neighboring and diagonal neighboring links,
respectively. It can be shown that these values yield to a correct hydrodynamic
behavior for an incompressible fluid in the limit of low Mach and Knudsen num-
bers [17]. The speed of sound for this model and the kinematic viscosity of the

simulated fluid in lattice units are ¢, = 715 and v = 276' L  respectively [17].




4 Parallelization

From test-simulations done on different lattice resolutions it became clear that
large lattices (dimensions of 273 x 664) are required for our planned simulations
(data not shown). The average error is then estimated to be around 3%. We have
determined the error by comparing the hydrodynamic fields, like velocity and
pressure, which were obtained on different lattice dimensions. Parallel computing
is exploited here to facilitate efficient simulation of this problem. Basically par-
allelization of grid based algorithins like those of finite-difference, finite-element
and lattice-Boltzmann models is done by means of the data decomposition strat-
egy, where the computational grid is decomposed into sub-domains [18]. Each
processor performs computations on a certain sub-domain and exchanges infor-
mation with other nodes in order to resolve dependencies. The two factors con-
trolling the efficiency of parallelization are the ratio between the communication
time and the computation time, and the balance of workload among the proces-
sors. In Fig. 2.a and 2.b we show the decompositions which one would obtain
if the problem was naively partitioned into equal sub volumes in one-dimension
(slice decomposition) or two-dimensions (box decomposition). It is evident that
the workload is not balanced in both cases {some processors get more compu-
tations to perform compared to the others) and thus more sophisticated load
balancing is necessary for efficient parallel simulation of this problem.

The first step in load balancing is to find a partitioning of the grid such that
differences in the workload of the processors are minimized. There are several
ways to accomplish this goal, namely

1. Orthogonal Recursive Bisection; the computational grid is decomposed into
partitions in an orthogonal direction, such that the workload is balanced.
On each partition the same procedure is applied recursively. Workload due
to obstacles in the fluid is neglected (see Fig. 2.c);

2. the Recursive Spectral Bisection method [18}: in the Recursive Spectral Bi-
section method both the connectivity of the grid and the workload at each
lattice point are taken into account to find partitions with an optimal balance
of both communication and computation;

3. load balancing by means of optimization strategies [19]: in this strategy, the
computation and communication times are modeled by means of a cost func-
tion, and a partitioning which minimizes this cost function is approximated
by means of optimization methods like the Simulated Annealing or Genetic
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We have chosen the ORB method for two reasons. First of all, from a prac-
tical point of view minimization of the computation time is more important
than minimization of the communication time. It became evident from timing
experiments that in the lattice-Boltzmann method the communication overhead
is small for moderate lattice sizes. Secondly, the other two strategies are quite
expensive and should be used when the communication time becomes significant.

The major difference between the ORB partitioning and the slice and box
decompositions is the communication pattern of the processors. Each processor
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Fig. 2. Domain decomposition of a 2D model of the centrifugal elutriation chamber.

can now have a varying number of neighbors, and the interprocessor dependen-
cies are more complicated for the corner points. This irregular communication
pattern depends completely on the grid partitioning and thus on the geometry
of the problem.

The calculation time per processor is shown in Fig. 2 for a run on 9 nodes. In
this picture we have also included the cases when slice and box decomposition
would have been applied to the same problem. It is evident that indeed both stice
and box decomposition are inefficient approaches for this application. The work-
load between the processors is approximately balanced when the ORB method
is used, while in slice and box decomposition big differences in the calculation
times of the different processors are observed. The results of timing measure-
ments for different number of processors are shown in Fig. 4. The ORB method
is 10 — 60% more efficient than the slice and box decomposition for a lattice
of 139 x 332 points (for 32 processors the difference between the ORB and the
other strategies becomes small, around 10%, because then the communication
time is of the same order as the calculation time). We expect similar behavior
when both the problem size and the number of processors are increased (the
communication time scales as a surface while the calculation time scales as a
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Fig. 3. Execution time per processor for the decompositions of Fig. 2

volume). The benefit gained by load balancing will certainly be significant for
large-scale simulations {execution time of many hours) and even higher for com-
plicated fluid-dynamical problems like simulation of particle - suspensions in a
chamber.

5 Simulation results

In this section we will discuss some preliminary results of 2D simulations of fluid
flow through the chamber. In these simulations the effect of the apparent forces
due to rotation on the flow field is not taken into account. The flow boundaries
are periodic along the radial direction and bounce-back [5] is used to model the
solid walls. Periodic boundaries can only be used when the length of the inlet
and the outlet tubes is long enough to guarantee that there is no interference
between the values on the entrance and the exit of the chamber. A local body
force is applied on each lattice point in order to drive the flow between the inlet
and the outiet. The simulations have been performed on lattices of 273 x 664
and takes on the average around 30000 time-steps to reach steady state.

In Fig. 5 we show the flow profiles for different flow rates. We see that as
the flow rate is increased the flow tends to become non-laminar. In principle the
effective volume of the chamber is then reduced due to the vortices. In section 2
a one-dimensional model was discussed with the implicit assumptions that the
velocity profile is uniform at faces which are perpendicular to the radial direction
and that the magnitude of the velocity is scaling inversely proportional with the
cross-sectional area of the chamber. We see that our 2D simulations suggest (see
Fig. 5) that the flow profile is certainly not uniform at faces perpendicular to
the radial axes.
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Fig. 4. The execution for different number of processors for slice, box and ORB de-
composition

{a) Standard gq. (b) 1.5 times g¢. {c) 3 times q.

Fig. 5. Velocity profile and streamlines at different volumetric flow rates ¢. The stan-
dard volumetric flow rate ¢ is 3.029.1077 (m?®/s). This corresponds at the entrance to
a parabolic profile with a maximum velocity of 0.014 (m/s) in figure 5(a). The stream-
lines are grayscale colored with the norm of the velocity vector at that particular point.
Darker lines correspond to a higher velocity of the fluid, lighter lines correspond to a
lower velocity.
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Fig. 6. The scaling factor for the simulations of Fig. 5 and the 1D model.

In principle the 12 model could still be useful when the velocity along the
center line of the chamber would have a similar scaling behavior as Eq. 1 suggests.
The scaling factor is now defined as the ratio between the magnitude of the
velocity at a certain distance r along the center line, and the velocity at the
entrance of the chamber. In Fig. 6 we have plotted this scaling factor along the
chamber for the different Reynolds numbers which are shown in Fig. 5. We see
that our simulated flow fields are not in agreement with the 1D assumption.

Our preliminary simulations suggest that more detailed simulations which
include parameters like the chamber shape are necessary in order to understand
the separation mechanism of the elutration technique. In future therefore 3D
simulations will be performed in order to see whether the 10 model is adequate.

6 Conclusion and Future Work

In this paper we have discussed parallel lattice-Boltzmann simulations of fluid
flow in centrifugal elutriation chambers. Twao issues have been addressed, namely
appropriate load balancing for efficient parallel simulation and the validity of an
existing 1) model for the elutriation process. We found that by applying the
Orthogonal Recursive Bisection method the workload is approximately balanced
and thus good scalability results are obtained. Qur 2D simulations are not in
agreement with the 10} model. However 3D simulations are still required (since
the effect of the walls is expected to be stronger then) in order to find out whether
the 1D model is realistic. In future work we will also study the influence of dif-
ferent chamber shapes, inlet and outlet sections and flow-rates on the elutriation
process. Qur ultimate goal is to include transport of human blood cells in the
chamber in order to study the effect of the cell load on the elutriation process.
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