Quality of Service on the Grid with User Level
Scheduling

Jakub T. Modcicki''®, Marian Bubak®®, Hurng-Chun Lee?®,
Adrian Muraru®, Peter Sloot®

! CERN, IT Department, CH-1211 Geneva, Switzerland
? Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Krakow, Poland
3 Academia Sinica, No. 128, Sec. 2, Academic Road, NanKang, Taipei 115, Taiwan
4 University Politehnica of Bucharest,
Faculty of Computer Science and Automatic Control,
RO-060042, Bucharest, Romania

® Faculty of Sciences, Section of Computational Science, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract
Currently the largest Grids lack an appropriate level of the Quality
of Service (QoS) in two ways: the infrastructure and middleware is
not enough reliable and a simple, batch-oriented processing model is
suboptimal for a number of applications. User-level scheduling is a
light software technique that enables new capabilities to be added and
QoS characteristics and reliability to be improved, on top of the existing
Grid middleware and infrastructure.
User-level scheduling techniques may be used to reduce the job
turnaround time and to provide a more stable and predictable job out-
put rate. Splitting the processing into many fine-grained tasks improves
the load balancing and ensures that the workers are used efficiently.
The DIANE user-level scheduler developed at CERN allows users to
create transient Master/Worker overlays above the regular Grid in-
frastructure. The customizable scheduling and synchronization mech-
anisms allow to support a large class of non-communication-intensive
applications. Applications succesfully deployed with DIANE include
High Energy Physics data analysis, Monte Carlo simulation, Bio-med
applications and others. Distributed radio frequency analysis in the
context of International Telecommunication Union (ITU) and autodoc-
based drug discovery are examples of successful, large scale activities
with an international impact.
We discuss the implications of this technique for the users, the appli-
cation developers and the resource providers.

1 Introduction

Grids enable scientific computing at unprecedented scale in terms of computing,
storage capacity, resource integration and scientific collaboration.

The world’s largest production Grid infrastructure to date, EGEE Grid, is a
multidisciplinary project, successful enabling diverse user communities such as

119

high energy physics, bio-informatics, medical physics, earth observation, telecom-
munications. The creation of the EGEE Grid has been driven by High Energy
Physics (HEP) to support the needs of the LHC (Large Hadron Collider) ex-
periments at CERN. Therefore the EGEE Grid must reach its full operational
capacity by the startup of the LHC experiments at CERN (end of 2007). In
contrast to many, small-scale experimental Grid installations which are research
playgrounds for future usage, the EGEE Grid applications must be deployed in
a robust, reliable and efficient production Grid of an unprecedented scale in the
nearest future.

A large distributed system such as EGEE Grid is inherently dynamic: re-
sources are constantly reconfigured, added and removed; the total number of
failures is correlated with the size of the system; the user activities are not
coordinated and the load may change rapidly. Independent observations and
everyday user experience confirms the large variations in the performance and
reliability of the EGEE Grid. Additionally, there is a common feeling in the user
community that currently the Grid infrastructures do not provide the required
level of service.

A User Level Scheduling technique has been successfully used in the EGEE
Grid in a number of scientific activities to improve the Quality of Service (QoS)
experienced by the users of the Grid and to provide a robust execution environ-
ment customized to the needs of applications.

Section 2 presents the monitoring data which exemplifies the insufficient qual-
ity of service in EGEE Grid and contains an analysis of the most important
Quality of Service characteristics which need improvement.

Section 3 of provides a summary of techniques investigated in the context
of Grid QoS research and explains what are the constraints in applying such
techniques in a large scale production environment such as EGEE Grid.

Section 4 presents the User Level Scheduling technique using a DIANE
project as an example. It also describes the experience in applying User Level
Scheduling in EGEE Grid and its implications for users, application developers
and resource providers. Section 5 present the outlook of the future work.

2 Motivation for Improving the QoS on the Grid

The large scale Grids to date do not provide the QoS guarantees. The best-
effort Quality of Service is a function of the reliability and performance of the
Grid which depends on the scale of the infrastructure and the architecture of
Grid services. The EGEE Grid is the largest Grid infrastructure to date and,
as of January 2007, it consists of around 200 sites and more than 32,000 worker
nodes. Similarly to the classical batch systems, the EGEE Grid is designed for
optimizing the throughput of long, non-interactive jobs. A job submission chain
typically involves the workload management system (e.g. a resource broker), a
computing element and finally a batch system. As shown in [1] the overhead of
hierarchical Grid scheduling is not suitable for certain applications which require
responsiveness and interactivity. It may also be unacceptable in high-granularity

120

Humber of al CPUs in EGEE infarmation Syemem

“AmVO &
R 8
40000 + oalr! » %
+* % * & L Q‘
P e Vindnbgs o 3, &
v G SENIA ? "tf .
P 7 L
~ “'}*:l - > .
8o 0}0“0 . :]
w " ; g £ o - " .F‘
P . B
I TN e -
o e <k a
15000 85 o . W
W gy - uw
100 L »
a el
s 2108 @nase wzne 161208 231208 Wn208 ceoioT 130107 200107

Fig. 1: The number of processors in the EGEE Information System. The data
was collected using 1cg-infosites tool.

Job splitting scenarios i.e. many thousands of short jobs completing in a short
time.

Additionally, the infrastructure exhibits large variations in stability. Fig. 1
show the number of available CPUs in the same period as visible in the Grid
Information Service. Clearly such large variations indicate the limitations of the
middleware and cannot be fully accounted for the Grid reconfiguration proce-
dures (e.g. adding and removing CPUs). We do not analyze the reasons for the
observed behavior here. From the point of view of a user however, the reliability
and performance of job scheduling is affected because the Information Service
is used as a source for job brokering decisions. This affects the job handling
performance of the Crid as a whole, makes it harder to reliably estimate the
Job completion time and may increase the brokering failure rate e.g. when the
resources compatible with job’s requirements cannot be found. Fig. 2 shows the
turnaround time of simple test jobs in three different virtual organizations in a
period of 6 weeks,

Besides the system related problems, such as worker node crashes or network
problems, the Grid users are exposed to numerous configuration/application
errors, which in practice cannot be avoided because of the scale and heterogeneity
of the Grid infrastructure. What to a user appears as a failed job, may be a
software version mismatch, wrong environment, missing application files or out-
of-date application software on the worker node. Table 3 presents examples
of failures for a physics simulation program based on Geant-4 toolkit [3]. The

simulation program is compiled on-the-fly on the wo
i_n order to cope with different flavors of Linux o

rker node prior the execution
perating system. Each of the

selected sites exposes a different problem what

clearly illustrates the scale of

121

Fig. 2: The turnaround time of test jobs in the EGEE Grid in the period of 8
weeks. Only successfully completed jobs are shown. Jobs in Atlas and LHCb VO
were submitted using gLite resource broker. Jobs in CGeantd VO were submitted
using LCG resource borker.

the problems & user must cope with. In data-intensive applications the data
management is an additional source of failures such as missing input files, bad
file transfers etc.

Failure Reason
problem with Just/ include/python2.2
Operating system version 'CentOS8 release 3.7' is not supported.

Computing Element
grid—oaO.desy‘de
tbn20.nikhef.nl
grileQ.kfkl.hu
ce102.cern.ch

lcg-ce().lthde

g++: Internal error:Segmentation fault (program celplus)
GNUma}mﬁIe:ZS:hinmnke.gmk:No such file or directory
ading shared libraries: iibstdc++-ﬁbcﬁ‘2-2.so‘3

error while lo:

Fig. 3: Examples of failures of a Geantd program at the compilation or running
phase in the Grid worker nodes in various Computing Elements.

Efficient failure recovery must take into account specific application-relat,ed
failures, taking into account how the application is deployed and configured.
Generic middleware only provides very general, coarse mechanisms to handle
errors such as the retry mechanism, but make no attempt to analyze the reason
of failure and decide on an appropriate action. Such mechanisms may only be
implemented by the application providers and adjusted by the application users.

Quantitative QoS characteristics, typically expressed in terms of latency, jit-
ter, throughput and packet-loss, originated in the network applications [4]. The
QoS characteristics of interest to a end-user are related to creating a compu-

122

tational assignment (sending jobs) and retrieving the results (either directly by
the user or indirectly by a service representing a user such as Grid portal). The
QoS aspects we consider in this paper relate to the performance, predictability
and failure rate:

¢ turnaround time: the total time to complete the assignment, from the

submission of the jobs to the retrieval of the final result;

¢ response latency: the time from the submission of the jobs to the re-

trieval of a given fraction of the final result:

® output time variation: the measure of how regularly the partial results

are made available to the user;

e partial failure rate: the number of partial results not delivered to the

user;

* total failure rate: the number of failed assignments.

These characteristics have been derived from the experience with the typical
applications in the EGEE Grid. In the best-effort service service such as EGEE
Grid we expect to be able to optimize these characteristics and and to improve
their predictability.

3 QoS Improvement Techniques on the Grid

In general the QoS guarantees are not implemented in large-scale, productions
Grids. Several techniques which could potentially be used to implement the QoS,
such as the job preemption (suspension of lower priority jobs) and job migration
(such as Condor [24] system based on process migration [25]) are not universally
deployed and may not be applicable to all applications as they may require
linking with checkpointing-aware 1/0 libraries and impose other limitations on
a checkpointable process.

Existing mechanisms, such as the shallow and deep retry count in JDL (Job
Description Language), provide a last-resort handling of failure because they are
not “application-aware” and may not be customized with sufficient flexibility.
Therefore to improve the failure rate user communities do the laborious testing
and debugging of the application environment on the Grid sites. It must be
repeated each time a new version of the application software is installed or the
changes in the underlying resources are applied.

To improve performance the administrative actions such as reconfiguration
of batch queue priorities in certain sites or dedication of resources cannot be
considered as a scalable solution. Such actions typically require lengthy negoti-
ation process and eventually create policy conflicts between various user groups,
including the non-Grid users of Grid sites. Such an approach may only be an
option for a very powerful user community but nonetheless it cannot handle
middleware limitations.

On the other hand the approaches which modify the middleware itself, such
as improved scheduling based the Service Level Agreements (SLA) [5], advanced
reservations [6] or special Grid QoS Management Services [7] promise to provide
a Quality of Service guarantees built into the system. Unfortunately in a large

123

production Grid the evolution of the middleware is measured in the cycles of sev-
eral months if not years and it is a complex administrative process. Therefore it
is not realistic to expect that the technologies which are currently under devel-
opment and in the proof-of-concept phase, will provide the stable and mature
QoS support in the middleware deployed in a large scale in the nearest future.
Additionally, the users do not plan ahead the interactive works so the concept
of advanced reservations may not apply in such user scenarios.

Therefore an approach which exploits the existing infrastructure without
system or administrative changes is investigated in the next section.

4 User Level Scheduling

In a classic Grid (and batch) approach, a decision to send a particular job to a
particular resource is done at submission time or shortly after either by a user
or an appropriate service, typically a resource broker. Additionally, there is no
distinction between the physical job (the “glot” to perform the computations
on some resource) and a logical task (the application-specific definition of the
computation). A single job executes a single task. This association is defined
before the job is run.

A late binding technique (also known as place-holders or pilot agents) defers
the decision to execute a task to the job run time. The Grid job runs a generic
agent which acquires the task from a scheduler. A single agent (so a single Grid
job) may execute one or more tasks. When the task is done the agent may
terminate and the Grid job terminates, release the worker node.

The late binding approach has been exploited in the generic contexts e.g.
Condor glide-ins [14]. Application-specific implementations also exist. For ex-
ample the data production systems of several High Energy Physics experiments
at CERN, such as Alien [9] and DIRAC [10] use scheduling services to create
permanent overlays above the existing Grid infrastructure. Such an approach
allows to control the scheduling in a flexible and application-oriented way with-
out modifying existing middleware. This has been proven very successful over
last years and enabled to make and efficient and fault-tolerant use of early, not
mature Grid infrastructures [26]. Such approach is suitable for large Virtual Or-
ganizations and coordinated activities such as data production in High Energy
Physics. However this approach has also several limitations:

e it requires the maintenance of central services to manage the task queue;

e it uses special services in the sites (so-called VO-boxes which are dedicated
machines under the VO control);

e it compromises the Grid accounting and traceability because the real users
are mapped to generic VO users, sharing the Grid credentials.

User Level Scheduling is based on late job binding of jobs but removes the
drawbacks of the permanent overlays. A scheduler is a service which is run by
the user. The agents and a scheduler form a transient overlay which is destroyed
when the processing is terminated. The system runs entirely in the user space,

124

it does not require special services and it does not compromise the accounting
and traceability in the Grid.

User-level schedulers which are embedded in the applications such as med-
ical image analysis [12], earthquake source determination 8] or bio-informatics
[13] have been succesfully used, increasing the performance and reliability of the
generic Grid infrastructure. The schedulers are typically implemented with the
TCP/IP sockets or MP1. However it is impractical to redevelop a scheduler for
every application. Therefore the more structured approaches have been investi-
gated. For example AppLeS/APST [11] provides a framework for the parameter
sweep applications and adaptive scheduling. The Condor M/W [15] provides an
framework for master/worker applications.

In the next section we present a User Level Scheduler which, has been suc-
cesfully used as add-on to the world’s largest Grid infrastructure — the EGEE
Grid.

5 DIANE User Level Scheduling and QoS

Distributed ANalysis Environment (DIANE) [16], [1],(17] is a User Level Sched-
uler developed at CERN . The Master/Worker overlay supports a broad class of
typical of not-communication-intensive applications on the Grid. The scheduler
performs several functions: adaptive scheduling (assigning the tasks to agents),
task synchronization (selecting the tasks for execution) and failure recovery (an-
alyzing the reason for task failure and deciding on the action). DIANE pro-
vides the software framework to plug-in modules which modify the behavior of
the scheduler. The framework provides the software containers for the applica-
tion components for flexible application integration: from black-box executables
(e.g. image processing [2], telecommunications [18], physics simulation regres-
sion testing[19] and data analysis [22]) to interfacing the applications at the
source-code level (e.g. bio-informatics [21] and medical physics [20]).

A typical execution trace of a DIANE application is shown in Fig. 4. Each
cross represents the start time of a worker agent and shows the overhead of the
Grid job submission. Each worker agent executes a series of tasks represented
as horizontal line segments. If a failure occurs the tasks are automatically re-
assigned to another worker. The worker agents execute on heterogenous Grid
nodes and their computing power may differ. If the task processing time is not
equal the scheduler selects the appropriate workers at runtime to balance the
load and improve the turnaround time. For example, in May and June 2006,
CERN successfully supported a series of large-scale data-processing activities
carried out by the International International Telecommunications Union (1TU)
as part of the ITU’s Regional Radiocommunication Conference. Several sites of
the EGEE infrastructure provided a computing Grid of more than 400 nodes to
work on each analysis in parallel, and the processing was conducted using the
user scheduling layer [18]. The system completed more than 200 000 very-short
frequency analysis jobs (so called frequency requirements clustered in around
40 000 processing tasks) in around one hour, proving that on-demand comput-

BIANE Waster-dorker Job Profile
T

e

Uorkar number

Fig. 4: Execution profile of a DIANE job illustrates the runtime behavior of
individual worker agents and the progress of task processing.

ing with a short deadline is possible on the Grid (see Fig. 5). The maximum
observed partial failure rate Was not more than 3 * 1074,

In 2006 DIANE was used to perform a sizeable fraction of an in silico drug
discovery application using the EGEE and other Grid infrastructures [21]. The
challenge was to analyze possible drug components against the avian flu virus
H5N1. This activity showed that a user-level scheduler can improve the distri-
bution efficiency on the Grid from below 40% to above 80% by optimizing the
allocation of the fine-grained computing tasks. Efficient automatic-error recov-
ery mechanisms proved to be efficient in extended periods of continuous work
(30 days) with zero total failure rate.

|1] contains examples of other QoS characteristics, such as the response la-
tency and oulput time varialion.

¢ Summary and Future Work

The DIANE User Level Scheduling system has been successfully applied in a
number of applications and important activities. The system provided a very
stable environment with low failure rates and considerable efficiency improve-
ment. The lightwieght mode of operation in the user space is a key factor which
enables quick porting of diverse applications to the Grid environment.

For more complete analysis of the Quality of Service we need to create a model
to describe the interaction of the User Level Scheduler with the underlying Grid
environment and to formally quantify the QoS metrics described in Section 2.

126

ALL-14_ 316 Evol

1 bo#0D.
»
ey S e
¥ ;
10800 '__..,.-a--“"'_J
it el e
A
el
i v !
a " ‘f o v— .{ -
I?l - o v '..-.--.m:m'_‘ R
: | g e
3
- e ,-‘

=& SRS RS S8

sgeps RSBl R RS 888

wa

bun 2

[pomioS vomini cobi-Kaoromtinnd cel0bcemch pridoe LMK — g-ca .00 = KPOF g meu e maanme o, aam as)

Fig. 5: The number of processed units of computation (frequency requirements)

in the function of time in the ITU application. The plot shows the contribution
of individual Grid sites.

The worker agent starting time is an important component of the overall
efficiency (see Fig. 4). Ability to predict the queuing time of the Grid jobs would
allow to give better predictions if the QoS requirements set by the user can be
satisfied. Techniques which use order-based statistics (quantiles) rather than
moment-based statistics (mean, standard deviation) such as Binomial Method
Batch Predictor [23] have been used to predict the queuing time in the batch
systems. A User Level Scheduler could take an advantage of such predictions, if
they can be effective for the hierarchical scheduling in the Grid environment.

DIANE scheduler also makes it easy to introduce new use cases such as
interactivity. Once the worker nodes are acquired a user may repeatedly give
new assignments to the system with fast feedback.

In the current usage, the worker agents terminate as soon as the task queue
in the master agent is empty. In an enhanced system, the workers could be
shared between multiple masters which belong to the same user. It would allow
to prioritise the user assignments and QoS control (within statistical bounds of
the underlying Grid infrastructure).

Finally, to be largely accepted, the User Level Scheduling must be proven
not to penalize ordinary Grid users by blocking the access to the resources. It
also needs to be shown that mutual exclusion of large user level overlays may
be efficiently avoided. An important challange is to do it in a way which does
not compromize the lightwieght nature of User Level Scheduling, i.e. not relying
on heavy, permanent services and infrastructure. It may require the negotiation
algorithms between the user level overlays to be developed.

127

Acknowledgements. This work makes use of results produced by the Enabling
Grids for E-sciencE project, 2 project co-funded by the European Commission
(under contract number INFSO-RI-OSlGSS) through the Sixth Framework Pro-
gramme. EGEE brings together 91 partners in 32 countries to provide a seamless
Grid infrastructure available to the European research community 24 hours a
day. Full information is available at http: / /www . eu-egee . oTg.

References

L8 Germn.in-R.enaud et al: “Scheduling for Responsive Grids”, Journal of Grid

Computing, 6(1) March 2007, DOL: 10.1007/510723—007-9086—4

9. @. Carrera et al: “Heavy computational tasks on the EGEE Grid: 2D /3D
ms.ximum-].ikelihood refinement” Network of Excellence 3DEM Annual Meeting,
Palma, January 2007

3. J. Allison et al.: «Geantd developments and applications“ , IEEE Transactions on
Nugclear Science 53 No. 1 (2008) 270-278

4. Bochman et al.: Some Principles for Quality of Gervice Management, Technical
Report, Universite de Montreal, 1996.

5. J. MacLaren et al: “Towards service level agreement based scheduling on the
Grid”. In Procs 14th Int. Conf. on Automated Planning and Scheduling (ICAPS
04), 2004.

6. A. Roy et al.: GARA: A Uniform Quality of Service Architecture, International
Series In Operations Research And Management Qeience, Issue 64, 2003

7. R.J. Al-Ali et al: Analysis and Provision of QoS for Distributed Grid Applica-
tions, Journal of Grid Computing, Vol.2, 2004

8. D. Weissenbach et al.: Faster earthquake source mechanism determination with
EGEE , 1st EGEE Conference, Geneva, 2006

9. AliEn-ALICE environment on the GRID, P. Saiz et al.: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, Volume 502, Issues 9.3, 21 April 2003, Pages 437-440

10. A. Tsaregorodtsev, V. Garonne, and 1. Stokes-Rees. DIRAC: A Scalable
Lightweight Architecture for High Throughput Computing. In Proes fth
IEEE/ACM Int. Workshop on Grid Computing (GRID'04), 2004.

11, F. Berman et al.: Adaptive Computing on the Grid Using AppLeS, IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 14, No4, April 2003

12. C. Germain-Renaud, R. Texier and A. Osorio. Interactive Reconstruction and
Measurement on the Grid. Methods of Information in Medecine, 44(2):227- 232,
2005.

13. mpiBLAST: Open-Source Parallel BLAST, http:/ /uww .mpiblast.org

14. J. Frey, T. Tannenbaum, M. Livny, 1. Foster and S. Tuecke: A Computation
Management Agent for Multi-Institutional Grids, Cluster Computing Journal,
Vol. 5, No 3, July, 2002, pages 237-246

15. G. Shao, R. Wolski, and F. Berman: Master/Slave Computing on the Grid; in
Proceedings of the 9th Heterogeneous Computing Workshop, Cancun, Mexico,
May 2000, pp. 3-16.

16, 0T, Moéeicki: Distributed analysis environment for HEP and interdisciplinary
applications; Nuclear Instruments and Methods in Physics Research A 502 (2003)
426-429 7

17. Distributed ANalysis Environment, http: //cern.ch/diane

128

18.

19.

21,

22,
23.

25.

A. Manara et al.: Integration of new communities in the Grid for mission
critical applications: distrib uted radio-requency compatibility analysis for the
ITU RRCO6 conferece; EGEE'06 Conference, 25-29 Septe mber 2006, Geneva,
Switzerland

P. Mendez-Lorenzo et al.: Distributed Release Validation of the Geant4 Toolkit
in the LCG/EGEE Envi ronment; submitted to IEEE Nuclear Science Symposium
2006

. 8. Guatelli et al.: Geantd Simulation in A Distributed Computing Environment;

submitted to IEEE Trans. Nucl. Sci. 2006

H.C. Lee, et al.: Grid-enabled High-throughput in silico Screening against in-
fluenza A Neuraminidase, IEEE Transaction on Nanobioscience, Vol. 5, No. 4
(2006) 288-295

Atlas Computing — Technical Design Report CERN-LHCC-2005-029.

J. Brevik, D. Nurmi, and R. Wolski: Predicting Bounds on Queuing Delay for
Batch-scheduled Parallel Machines. In Proceedings of ACM Principles and Prac-
tices of Parallel Programming (PPoPP), March 2006.

. D. Thain, T. Tannenbaum, M. Livny: Condor and the Grid, Grid Computing,

2003, pages 209-335
Milojicic et al.: Process Migration, HP Laboratories Technical Report HPL, 1999,
Part 21, ISSN 1368-6798

. 1. Stokes-Rees et al.: Developing LHCb Grid software: experiences and advances,

Concurrency and Computation: Practice and Experience, 2007, Vol. 19, No. 2,
pages 133-152 :

129

	Scan Quality of Service
	Scan Quality of Service 001
	Scan Quality of Service 002
	Scan Quality of Service 003
	Scan Quality of Service 004
	Scan Quality of Service 005
	Scan Quality of Service 006
	Scan Quality of Service 007
	Scan Quality of Service 008
	Scan Quality of Service 009
	Scan Quality of Service 010

