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A detailed study is presented on the combinatorial optimization problem of allocating parallel tasks to a parallel
computer. Depending on two application/machine-specific parameters, both a sequential and a parallel optimal
allocation phase are shown to exist. A sudden “phase” transition is observed if one of these parameters is varied.
Simulated annealing is used to find the optimal allocations, which is justified by the self-similar structure of the
task allocation energy landscape. It is shown that the difficulty of finding optimal allocations behaves anoma-
lously near the transition, analogous to critical slowing down of simulated equilibration at second-order phase
transitions. © 1997 John Wiley & Sons, Inc.
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INTRODUCTION

A n essential problem in the field of parallel computing
is the so-called task allocation problem (TAP). Given
a set of parallel communicating tasks (a parallel appli-

cation) and a parallel distributed memory machine, find the
optimal allocation of tasks onto the parallel system. The qual-
ity of an allocation is measured by the turnaround time of the
application, which depends on communication and calcula-
tion components.

These two components cannot be regarded independently,
but rather are strongly related. Equal distribution of the set of
parallel tasks over the available parallel processors, without
taking into account the inter-task communication leads to
optimal work load balancing. On the other hand, if all tasks
are placed on a single processor, the amount of communica-
tion is optimal.

We use the term “frustration” for the fact that optimiza-
tion of one term conflicts with optimization of the other, in
analogy to physical systems that exhibit frustration (e.g., spin
glasses). Increasing dominance of either term reduces the
amount of frustration in the system.

Many fundamental problems from natural sciences can be
formulated in terms complex systems. A complex system can
be described as a population of unique elements with well-
defined attributes and interactions. In most cases, such sys-
tems are characterized by quenched disorder and frustrated,
nonlinear interactions, between the set of elements consti-
tuting the system[1]. It is well known that these system ingre-
dients result in unpredictable emergent behavior [2]. In gen-
eral, the bulk properties of these systems are analytically
intractable. Examples of such properties are asymptotic be-
havior and the exact location and value of the energetically
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optimal states. The latter characteristic often causes the cor-
responding optimization problems to be NP-hard [3]. A re-
cent example where parallelism is discussed in a complex sys-
tems context is the work by Macready et al. [4].

In this article, we define model representations for both
the parallel application and the parallel computer. Addition-
ally, an energy function, which quantifies the cost of a task
allocation, is constructed. We explore the characteristics of the
TAP in terms of phase space and optima structure. Consider a
parallel computer consisting of identical processors and a fi-
nite speed communication network. Increasing the CPU per-
formance continuously from 0 flop/s to ∞ flop/s induces a
transition from optimal parallel to sequential allocation. It
is shown that a paramount characteristic of the TAP is the pres-
ence of a sudden transition from sequential to parallel opti-
mal allocation, for specific model constraints. In analogy with
other combinatorial optimization problems that exhibit frus-
tration and phase transitions, we expect that a phenomenon,
known as “critical slowing down,” can be observed in the tran-
sition region of the TAP, that is, the difficulty of finding opti-
mal solutions peaks near the transition region (see, e.g., [5]).
The specific correlation structure of the corresponding energy
landscape is used as a justification to select simulated anneal-
ing as the optimization heuristic [6].

MODELS

I n order to facilitate a study on abstract parallel applica-
tions, a random graph representation as a model of n com-
municating parallel tasks is introduced. Each task (vertex)

is assigned a workload and every pair of tasks in the task graph
is connected with a probability γ. A message size is assigned
to each link (edge) between two communicating tasks. The
size of the message only contributes to the communication
time if the two connected tasks are allocated to different pro-
cessors. Workloads and message sizes are kept constant. The
target parallel computer is assumed to be fully connected and
homogeneous; that is, all P processors have identical constant
performance. Moreover, the P(P–1)/2 communication chan-
nels are bi-directional and have equal bandwidths. An ex-
ample corresponding to these models is a parallel molecular
dynamics simulation with Coulomb interactions (long-range
interactions, leading to global communication patterns) on
the IBM SP2 (fully connected and homogeneous topology) [7].
The time evolution of the particles is always preceded by a
data exchange phase. The total execution time is determined
by the time spent in the communication phase and the calcu-
lation phase.

We use the following Hamiltonian to quantify the quality
or cost of a task allocation, which is inspired by a similar ex-
pression introduced by Fox et al. [8]:
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k, resulting from the connection between these tasks. W
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total calculation weight on processor l, following from the in-
dividual workloads of all allocated tasks. An optimization pro-
cess that is steered by Eq. (1) implicitly minimizes both the vari-
ance in the workload distribution and the total communication
“surface”. In nature, we can observe analogous processes, for
example, the minimization of the surface/volume ratio in a
droplet of water due to surface tension. In our case, the com-
munication term can be compared to the surface of the drop-
let, while the workload variance is similar to its volume.

The β parameter can be varied in the range [0,1], in order
to tune the competition between the calculation and the
communication terms. Variations of 

  

β
β1−  can be inter-

preted either as alterations in an application’s calculation-
communication ratio or a computer’s processor speed-band-
width ratio [9]. The connection probability γ in a random graph
can be considered as a dual parameter for β. Also, γ can be
increased in the range [0,1], which is equivalent to augment-
ing the average communication load.

Additionally, Eq. (1) has the locality property, which means
that local changes in a task allocation can be propagated into
the Hamiltonian without recalculation. This is specifically
useful if an optimization algorithm is applied that is based on
incremental changes (e.g., simulated annealing [10]), and as
such can exploit the direct consequence of these increments,
reducing the computational cost associated with the optimi-
zation process.

TAP STRUCTURE
A random walk through some landscape can be used to char-
acterize its structure [11]. For landscapes that are self-similar,
it is known that the corresponding random walk auto-corre-
lation function is a decaying exponential, with correlation
length λ. Such landscapes are classified as AR(1) landscapes
and have been identified in various fields, for instance,
(bio)physics [11] and combinatorial optimization [12,13].

First, we will shortly discuss the relaxation function of ran-
dom walks through the task allocation configuration space.
This function indicates at what rate a random walk through
the space deviates from the starting point, analogous to, e.g.,
relaxation of diffusion processes in physical systems. The pre-
vious function can be related to the auto-correlation function,
which quantifies the ruggedness [11] of the TAP energy land-
scape. Using these functions, it can be shown that the land-
scape is AR(1) with a correlation length that is linearly pro-
portional to the number of tasks n.

Configuration Space
The configuration space C of the TAP consists of all possible
task allocations of the n tasks to the P processor machine. A
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configuration can be encoded as a sequence of length n, which
is composed of letters taken from the alphabet {1, 2, ...., P}.
The index of a sequence letter corresponds to a task identi-
fier. The Hamming distance d

H
(A,B)(number of differing let-

ter positions) between two sequences A and B is used as the
distance metric on C. The corresponding Hamming graph Γ
can be constructed by connecting every sequence pair (A,B)
with d

H
(A,B) = 1.

The relaxation functions q
k
(s) (k=1,2) of a random walk

through an arbitrary configuration space are given by (see
[12]):

    
q s

s
k

k

k

( )
( )
( )

= −
∞

1
∆
∆ (2)

with ∆
1
(s) the average distance and ∆

2
(s) the average squared

distance of a random walk of length s.
In previous work, we have derived the following relaxation

functions for Γ [3]:
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Energy Landscape
The following auto-correlation function associated with a ran-
dom walk through an energy landscape H:Γ→ΙR can be used
to characterize its structure [11]:
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where d is the number of random walk steps between con-
figurations x and y, and σ2 is the variance of H over all possible
allocations.

Apart from totally uncorrelated landscapes, r(d) = δ(d, 0),
the simplest class consists of the nearly fractal or self-similar
landscapes. For such landscapes, it is known that the corre-
sponding random walk auto-correlation (r(d)) function is a
decaying exponential, with correlation length λ:

    r d r e d nd d( ) ( ) ,/= = <<−1 λ (6)

Such landscapes are classified as AR(1) (or elementary) land-
scapes and have been identified in various fields, for example,
in (bio)physics and combinatorial optimization [11-13].

According to Eq. (6) the auto-correlation function of an
AR(1) landscape can be determined from the 1-step auto-cor-
relation. Let t and t’ be two configurations with d(t, t’) = 1, with
the Hamiltonian having values H and H’:
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Three important parameters that can be analytically deter-
mined are the average value of the Hamiltonian 〈Η〉, the vari-
ance σ2, and 〈(H-H’)2〉, for the target application and machine
model presented earlier. For technical details, refer to [3]. We
obtain:
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Using Eqs (9), (11), and (12), it follows that

    
λ = n

2
(13)

λ is linearly proportional to the number of tasks n, which cor-
responds to the relaxation time τ2. Summarizing, it has been
established that the TAP energy landscape is AR(1), with cor-
relation length n/2. Since the TAP landscape has a self-simi-
lar structure, we use simulated annealing to find (sub) optima,
which is known to be an efficient search method for such land-
scapes [6]. The SA process effectively increases the resolution
at which the space is searched by lowering the temperature.
At the same time, the size of the region of space that is ex-
plored decreases. Due to the fractal structure of the TAP search
space, SA is able to effectively use its ability to “zoom” into
regions of increasingly deeper local minima (see [6]).

TAP PHASE TRANSITION

TAP Extremes

A lthough the task allocation problem is NP-hard [14], the
two extremes, β = 0 and β = 1, are easy to solve. For β = 0
(infinitely fast CPUs), the only relevant term in the

Hamiltonian is an attracting communication term, which will
cause all connected tasks to be allocated to one processor. For
this extreme (with a corresponding lowest energy state of value
zero), the number of optima is equal to P. In the case of β = 0,
the P optima are at maximum distance in terms of the de-
fined distance metric. The P-ary inversion operation (analo-
gous to spin-flipping in spin glass models) and arbitrary per-
mutations, applied to a given optimal configuration, leave the
value of the Hamiltonian invariant. Note that, in this case, the
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TAP landscape is highly symmetrical. The entire landscape
consists of P identical sub-landscapes. Each sub-landscape
has only one optimum, which is automatically the global op-
timum.

For β = 1 (infinitely fast network), only a repulsive workload
term is present, which will force the variance in the workload
distribution to be minimized. This results in an equal parti-
tioning of the total workload over all available processors. It
can easily be shown that the total number of optima in this
case equals:
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where it has been assumed that n/P is integer. The correspond-
ing optimal value of the Hamiltonian is equal to n2/P. In case
of β = 1, the optima are relatively close to one another. Again,
two types of operations can be distinguished that leave the
value of the Hamiltonian invariant, which are rotation of the
sequence and permutation of two arbitrary tasks.

Locating the Transition
A transition from sequential to parallel allocation can be ob-
served when β is increased from 0 to 1 (or equivalently, if γ is
decreased from 1 to 0). In order to quantify this (phase) tran-
sition, we define an order parameter, which expresses the de-
gree of parallelism present in an optimal allocation. Since all
tasks and connection weights are unity, the order parameter
P, quantifying the parallelism in a given optimal allocation,
can be defined as follows:
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where W is the time spent in calculation and n2(P–1)/P 2 is the
maximal possible variance in W. Eq. (15) takes the value 1 in
the case of optimal parallelism (β = 1 or γ = 0) and the value 0
(β = 0 or γ = 1) in the case of a sequential allocation.

Using Eq. (10), we can calculate whether the average value
Eq. (1) either increases or decreases by using more proces-
sors. Using a mean field argument, the transition from sequen-
tial to parallel allocation will approximately occur for those
values of β and γ for which Eq. (1) will change from a mono-
tonically decreasing function to a monotonically increasing
function of P. In other words, setting

    

∂
∂
〈 〉 =H
P

0 (16)

with the additional constraint that either γ or β is fixed, we
obtain the following transition values:

    
β γ

γc =
+1 (17)

    
γ β

βc =
−1 (18)

The values of β
c
 and γ

c
 are interpreted as the critical values of

β and γ in analogy with the critical temperature T
c
 in thermal

phase transitions or the percolation threshold p
c
.

Critical Slowing Down
Many search methods show anomalous behavior for certain
critical parameters of combinatorial search problems [5, 15-
17]. For example, in the case of graph coloring, it has been
observed that the “difficulty” of determining if a graph can be
be colored increases abruptly when the average connectivity
in the graph is gradually increased to some critical value [5].
In Ising model simulations, the difficulty of equilibrating in-
creases when the critical temperature is approached (critical
slowing down).

In analogy, we expect that in the TAP comparable phenom-
ena can be found in a critical region of the β and γ domain.
For both β extremes, the optima are known in advance. The
difficulty to find these optima is therefore trivial. If the calcu-
lation and the communication term in the Hamiltonian (Eq.
(1)) are of comparable magnitude, the system is said to be in a
critical area. Moving away from this critical region, one term
becomes small noise for the other.

W e will use the following empirical method to esti-
mate the computational cost of finding optima.
The number of local optima are measured, in

which independent steepest descent (SD) runs get stuck. A
specific search space is considered to be “simple” if it con-
tains a relatively small number of local optima; otherwise
it is classified as “difficult.” The distinction between local
optima is based on the value of the Hamiltonian of the cor-
responding task allocations. That is, two local optima i and
j are called distinct if:

H(i) ≠ H(j) (19)

Due to the fact that the TAP energy landscape is AR(1), we do
not expect large plateaus in which SD can get stuck in its
search for a true local minimum (a minimum with the lowest
value of the Hamiltonian in its local neighborhood). There-
fore, it is to be expected that plateau states will not have a
major contribution to the cost of the search.

Of course, one may wonder how this cost heuristic relates
to a standard search measure, such as the number of conver-
gence steps taken in SA. In section 5, we will present empiri-
cal evidence that both measures are strongly correlated.

Finite Size Scaling
In many physical systems, the sharpness and the location of
transition points depend on the system size. This depen-
dence can be analyzed by a method from statistical physics
called “finite size scaling.” The existence of scaling param-
eters for transitions at different system sizes is a direct evi-
dence for critical behavior at the transition. The system is
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indistinguishable at all sizes, except

for a change of scale. The scale change

can be found by analyzing the shift of

the TAP transition (with fixed γ):

                     β β α ν
c cn n( ) ( ) /− ∞ −1 (20)

where β
c
(n) is the location of the tran-

sition for a TAP instance of size n and v

is called a “critical exponent.” The pa-

rameter v can be used to rescale β as

follows:

               β β β β* ( ( ))/ ( )/= − ∞ ∞n v
c c

1 (21)

Critical behavior has also been shown

to occur at transitions of other combi-

natorial optimization problems[4,18].

EXPERIMENTAL RESULTS
In this section experimental results re-

garding correlation length, phase tran-

sition, and search cost for the TAP are

presented.

In Figure 1, measured and predicted

correlation functions are displayed,

with parameters n = 100, P = 8, and γ =

0. In the second experiment, a TAP in-

stance with a nonzero connection

probability (γ = 0.5), n = 64, and P = 4 is

used. The theoretical correlation func-

tions with correlation lengths 50 and

32, respectively (n/2), are plotted as

dashed lines. Clearly, the predicted

correlation functions match the ex-

perimental data.

N ext, several experiments are

conducted to demonstrate the

existence of a phase transition.

Furthermore, the location of the tran-

sition, as predicted by Eqs. (17) and

(18), is checked.

In Figure 2, β is varied in the range

[0,1] and γ is fixed at two different val-

ues (0.2 and 0.5). In Figure 3, the dual

experiment is performed, where γ is

varied in the range [0,1] and β is fixed

at the value 0.25. The results presented

are comparable with those found for

arbitrary parameter values (data not

FIGURE 1

Analytical (dashed lines) and experimental values for the auto-correlation function r(s) with n = 100, P = 8 and
γ = 0.0 (diamonds) and n = 64, P = 4 and γ  = 0.5 (pluses). The experimental auto-correlation functions are
generated from a random walk of 640000 steps.

FIGURE 2

Two-phase transitions with fixed γ and increasing β, with γ = 0.2, n = 256 and P = 32, and with γ = 0.5, n = 128
and P = 8 respectively. The vertical lines indicate the location of the transition as predicted by Eq. (17). The β
domain is scanned with steps of ∆β = 0.01. For each value of β, P is estimated by averaging over 25 simulated
annealing runs.
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shown). The mean field transition

points (Eqs. (17) and (18)) are plotted

as vertical lines. As shown in Figures 2

and 3, the approximate location of the

phase transition that is induced by

variation of β or γ can be predicted by

a mean field argument (Eq. (16)).

F igure 4 displays the search cost

and the order parameter P, for task

graphs with n = 32, P = 4, γ fixed to

0.5, and β varied in the range [0,1]. In

Figure 5, the same experiment is car-

ried out, now with γ varied in the range

[0,1], n = 64, P = 8, and β fixed to 0.2.

The divergence of the search cost near

the transition point can be observed in

both plots. The method described in

the previous section is used to quan-

tify the search cost. In Figure 4, the

standard deviation over the order pa-

rameter (i.e., the order parameter

susceptibility) is depicted. It can be

observed that the order parameter

susceptibility increases at the phase

transition, which can be compared

with increasing magnetic susceptibil-

ity of Ising spin systems near the criti-

cal temperature.

To illustrate the correlation be-

tween the cost heuristic, intro-

duced in the previous section, and

the average number of SA convergence

steps, an experiment has been carried

out with the following parameter setting:

n = 64, P = 4, and γ  = 0.5, while β is varied

between 0 and 1. We applied the follow-

ing convergence criterion for SA: If the

optimal allocation does not improve

with more than 5 percent during 50 con-

secutive temperature lowerings, SA has

reached convergence. Figure 6 shows

that both measures peak near the pre-

dicted transition point β
c
. The results in-

dicate that it takes more temperature

steps to find an optimal allocation in the

critical β region. In other words, the

“freezing temperature” of SA appears to

behave anomalously near the TAP phase

transition.

FIGURE 3

A phase transition with β = 0.25, n = 64, P = 8.  The vertical solid line indicates the location of the transition as
predicted by Eq. (18). The γ domain is scanned with steps of ∆γ = 0.025. For each value of γ, P is estimated by
averaging over 10 simulated annealing runs.

FIGURE 4

A phase transition and the search cost (with standard deviations) with γ = 0.5, n = 32, and P = 4 with β  varied
with steps of ∆β = 0.025 (The cost is determined for β ∈ {0.1, . . . , 0.5}.) The vertical line indicates the location
of the transition as predicted by Eq. (17). The values for P are estimated by averaging over 10 simulated
annealing runs. Each point in the search cost is estimated over 10 random graph instances, where for each
instance 10n steepest descent runs are conducted. The cost value is scaled to fit in the range [0.1].
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FIGURE 5

FIGURE 6

The average number of SA steps to reach convergence and the search cost, with n = 64, P = 4, γ = 0.5, and β ∈
[0,1]. The number of SA steps is averaged over 25 runs. The vertical line indicates the location of the transition
as predicted by Eq. (17). Each point in the search cost is estimated over 10 random graph instances, where for
each instance 10n steepest descent runs are conducted. Both measures are scaled to fit in the range [0.1].

The results of a finite size scaling

experiment are summarized in

Figure 7 for task graphs with P=8

and γ =0.2. For increasing task graphs

sizes (n e{80, 160, 240, 320, 400, 480,

560, 640}), the order parameter P has

been estimated for ten different values

of β near the predicted phase transi-

tion. Each point in the figure is aver-

aged over 25 SA runs. It can be ob-

served that all functions intersect in

one point. Assuming that all task graph

order parameter functions intersect at

a common point, this must be the ex-

act value of β
c
. The critical value of β

found experimentally, closely corre-

sponds to the value as predicted by Eq.

(17). For experiments with different pa-

rameters, also common intersection

points, close to the predicted critical

value, have been found (data not

shown). In order to test the finite size

scaling hypothesis, we have plotted the

data from Figure 7 against the rescaled

β parameter, β*. We define β
c
(n) to be

the value of β at which P = 0.5 and β
c
(∞)

is given by Eq. (17). In Figure 8, we ob-

serve that all rescaled plots fall on a n-

independent curve.

The parallel and sequential phases

and the separation as predicted by Eqs.

(17) and (18) are depicted in a phase

diagram (see Figure 9).

CONCLUSIONS

T he results presented in this ar-

ticle clearly show that the task

allocation problem exhibits a

variety of interesting properties. For

specific parameter sets, the task allo-

cation problem only exists in a small

parameter range. Outside this range

the problem is trivial. The problem

becomes complex in the region where

the calculation and communication

terms are of comparable magnitude.

The location of this complex region is

marked by the presence of a transition

from sequential to parallel allocation.

Different allocation regimes are sum-

marized in Figure 10. The sequential al-

A phase transition (with standard deviations) and the search cost with β = 0.2, n = 64, and P = 8 with γ varied
with steps of ∆γ = 0.025 (The cost is determined cost for γ ∈ {0.1, . . . , 0.5}.) The vertical line indicates the
location of the transition as predicted by Eq. (18). The values for P are estimated by averaging over 10
simulated annealing runs. Each point in the search cost is estimated over 10 random graph instances, where
for each instance 10n steepest descent runs are conducted. The cost value is scaled to fit in the range [0.1].
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FIGURE 7

FIGURE 8

Finite size scaling. The curves of Fig. 7 are plotted against the rescaled β* = n1/v(β–βc(∞))/βc(∞), where v ≈
1.83 ± 0.04.

For task graphs sizes n  ∈ {80, 160, 240, 320, 400, 480, 560, 640}, P = 8, and γ = 0.2, P is calculated  around
the mean field prediction of βc, for β varied in the range [0.1, 0.19] and a step size of ∆β = 0.01. The vertical
line indicates the location of the transition as predicted by Eq. (17).

location region only contains

optima where all tasks are allo-

cated to one processor. The

semi-parallel allocation region

corresponds to the situation,

where not-all-available proces-

sors are necessarily used due to

the high competition between

the calculation and communi-

cation terms. Also, the locality

in the task graph has its con-

sequences for the allocation

sequence. Tasks that are con-

nected to one another “desire”

to be grouped onto the same

processor. The last region, par-

allel allocation, corresponds to

the mode where the inter task

connectivity has become insig-

nificant. This may either be due

to a high-speed communication

network or a weakly connected

task graph. For increasing task

graph sizes, the transition re-

gion narrows. This implies the

existence of exactly two regions

of task allocation order in the

limit n → ∞. Hence, for large task

graphs that display long-range

interactions, the TAP is trivial for

allocation on fully connected

parallel computers.

W e intend to investi-

gate the effects of

introducing short-

range locality in both the task

graph as well as the processor

topology. We intend to study

whether other system-spe-

cific properties, such as order

parameter susceptibility,

scale into universal curves.

Furthermore, we will adapt

our formalization of the TAP

such that it can be applied to

load balancing of dynamic

and heterogeneous parallel

applications on dynamic and

heterogeneous parallel com-

puters.
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FIGURE 9

The phase diagram of the TAP. The circle corresponds to the situation (β,γ) = (1/
2,1). In this case γ =     (indeterminate). The separating line between the two
phases corresponds to β(γ) =       .

FIGURE 10

The differrent allocation regimes in the task allocation problem for varying β.
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