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One of the key issues in designing new simulation models for parallel execution, or in the
migration of existing models to parallel platforms, is the mapping of the application architecture to the
parallel system architecture. In this mapping process we can easily loose track of the inherent locality
present in the different architectures. In this paper we present an overview of these issues and
examine, by means of new results from case-studies, consequences of the design and implementation
choices for the various mapping processes. We will show that the potential for High Performance
Simulation comes from a ‘holistic” approach, taking into account all aspects from the application up to
the underlying hardware.

1. BACKGROUND & INTRODUCTION

The need for High Performance Computing (HPC) is still growing. Although originating from the
physical sciences, engineering and the study of complex systems, an increasing variety of new
applications are emerging, such as HPC in financial modelling, transaction processing, image
analyses, etc. It is this strong application pull that has motivated national and international research
programs to stimulate research, education, and hardware development especially in the field of
parallel computing and parallel systems design. Financial support comes mainly from resources
allocated by the national and international governments, for instance in the USA the HPCC bill aims
at a 1.10% dollar budget for HPCC related research per year. In Europe the EC funds the 4th
framework program by 300.106 ECU over 5 years in addition to many national and
intergovernmental funding,

If we take a closer look at the type of applications that are addressed by these initiatives, we find
that the majority deals with large scale simulation problems, ranging from weather prediction to
vehicle dynamics. It is clear that only massive parallel processing (MPP) can provide the extreme
processing power required by these grand engineering and simulation applications. We should not
restrict ourselves to MPP but rather consider also the possibilities arising from heterogeneous parallel
computing. Here we can think of large clusters of high-end workstations of different architecture or
combinations of MPP systems with Vector Super computers. A nice example of this last category
comes from the results presented by Paul Messina (Caltech) at the HPCN95 Europe conference
where he reported on a chemical reactor simulation that took 18 hrs on a Cray C90 (vector super) or
16 hrs on the (parallel) Delta Touchstone. However, when the problem was divided over the Cray for
the eigenvalue calculation, and the Delta for the dense matrix calculation the mixed simulation only
took 4 hrs! This notion of the relevance of simulation in heterogeneous parallel processing is also
prominent in the new USA HPC initiative (following the 1982 Lax Report and the 1989 Al Core
HPCC initiative) the so-called: Acceleration Strategy for Computational Initiatives (ASCI), a 10 year
(140 M$/year) collaboration between the Department of Energy and the Industry. In this initiative
simulation studies such as multi-physics, 3D-geometry’s, nuclear plant simulation, complex systems
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and modelling are mentioned explicitly, together with software and hardware programmes for
distributed and massive parallel computing.

If we look at it from the bright side, we find that within a very short time span the HPC initiatives
have had an enormous impact on the computer society in general and the simulation society
specifically, resulting in many new scientific journals, new HPC research centres (some of which are
organised in the European HPCnet E.G. [1]), new educational programmes and new hardware
initiatives (in Europe for instance: Parsys’ Supernode, Parsytec’s PowerStone, Meiko's CS2) that
might eventually lead to TeraFlop performance or even PetaFlop performance [2].

There is however a dark side if we take a more realistic view at what can be obtained and what is
actually being done. Although a strong emphasis in HPC programmes has been on stimulating
industry to participate (for instance through the European 4th framework programme and the
Europort projects) hardly any industry really uses this technology in their core products. This is a
sign on the wall that HPC is still not accepted by industry and indicates the immature character of the
technology.

Some reasons for this relatively slow take up of technology might be:

» Ittakes al lot of effort to outperform a vectorized code running on a vector-super.

* Most applications that are successfully parallelised run in an embarrassingly parallel mode and can
easily be outperformed by a large pool of independently (sequentially) working workstations.

* There are hardly any formal models beyond the classical PRAM and CSP models for parallel
computing. The models that do exist won't support the distributed memory MIMD type of machines
(PRAM) or hamper the description of the algorithm (CSP).

* There is still little to no understanding of the differences in- and consequences of- parallel versus
sequential computing. Much work is to be done on the numerical aspects of parallel algorithms and
the implicit differences in parallel and sequential solvers (for instance it is still an open question
whether parallel Simulated Annealing algorithms probe the same phase space as sequential SA’s [3]).
Even worse are these cases where, thanks to the capacity of the parallel systems, too large a problem
is studied without quantitative understanding of the numerical consequences [4].

« Computer Science has failed in developing a quantitative understanding of simulation in a
distributed environment. New potential models that take up the notion of complex system theory are
still in its infancy [5,6,7].

* Even if we assume for a moment that we do have large TeraFlop (or even PetaFlop) machines,
than we still lack good computational models that fully exploit the parallelism present in applications
and that take care of well load balanced paralle] execution.

Perhaps it is time for the scientific -simulation- society to reconsider the various design and
implementation stages for applications that require advanced parallel systems.

Therefore throughout this paper we ask ourselves the following questions: What do we want?
What do we get? What can be obtained? What should we have wanted? A way to attack these issues
is by going through the computer experiment step by step. In this paper we have a less ambitious
approach and take a helicopter view and zoom in on some of the crucial decision moments in the
modelling and simulation cycle, by identifying ‘hot spots’ in the modelling phase and the model
execution phase, each with its own possibilities and pitfalls.

The modelling phase:

The first step to simulation is the development of an abstract model of the real-world system under
study [7b]. Strange enough there are hardly any formal methods of modelling which supports
completeness, correctness and efficiency. The lack of such methods might harm the success of this
research field significantly. There are specific journals and internet sites dedicated to the compilation
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of (the consequences of using) insufficient, incorrect and inefficient models. Examples are flight
simulation experiments where the underlying simulator worked perfectly, but where deficiencies in
the CAD/CAM model resulted in catastrophic misinterpretation, or dangerous designs of backseat
airbags resulting from erroneous simulation studies etc.

Solvers form the kernel of the modelling phase. Here we refer to (mathematical) methods that
translate the real-world systems into a computational specific model. A rough distinction can be made
between solvers for discrete (event) systems and solvers for continuous systems. Solvers for discrete
event systems are event-set algorithms, which ensure that the events occur in the proper order and at
the proper time. Conventional solvers for continuous systems are finite difference, finite
element/volume, and a large class of linear algebra solvers, where the model system is tracked in
time. Of special interest here are new results obtained with algorithms mimicking nature’s processing
power. We have tossed the term ‘Natural Solvers’ for these type of algorithms, examples are: Genetic
Algorithms, Artificial Neural Networks, Simulated Annealing, etc. Their specific relevance stems
from the natural way in which they translate the real-world system into an abstract algorithm,
moreover they are highly adaptive and often easily scalable.

If we model for parallel execution we must understand where in our abstract model locality in
space or time (or space time for that matter) is present and how to exploit this locality in the
computational model. Again no quantitative methods exist although interpretation of parallel
computing as the mapping of one complex system (the application) onto another complex system (the
parallel machine) may prove to be a fruitful alternative to formalise parallel computing [7, 8], this is
however beyond the scope of this paper, some recent ideas will be discussed elsewhere [9].

The model execution phase:

This phase essentially contains all the elements necessary for the model execution on some
-parallel- platform. Here we concentrate on the mapping of the different solvers to the machine
architecture. Since the type of problems we are interested in are computationally very demanding,
much research effort is going on in the efficient use of modern architectures (parallel computer
systems) for simulation.

The computation specific model consists of representing the derived conceptual model into a
language that can be implemented. One of the things that often goes wrong in these stages is that we
tend to confuse code with a abstract model or—even worse—with the real-world system itself. We
have ‘fallen in love with our model’ [10], this is a situation we should be prepared for and try to
avoid at all costs. One way to maintain a critical attitude is to carefully design and test sub stages in
the modelling and simulation cycle and to add primitives to the simulation that constantly monitor for
‘unrealistic’ results.

In parallel execution we specifically need to address the mapping of the abstract model onto the
underlying hardware. Here we should distinguish between distributed and parallel computing since
each paradigm has its own consequences for the conservation of locality present in the model.

Finally after identification of the space time locality in our problem and the correct (i.e., with
conservation of locality) mapping onto a parallel platform we need to investigate consequences of
architecture peculiarities on model execution. Figure 1 depicts how the various phases in modelling
and simulation cycle fit together.
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Figure 1: Overview of conceptual steps in modelling and simulation cycle

From the domain specific problem (for instance turbulent flow around a dynamically changing
object) we need to abstract a conceptual model (e.g., a theory of liquids) and annotate all the possible
instances of locality (e.g. flow behaviour in the vicinity of the object is largely independent of the
behaviour at the flow source). Next we cast this conceptual model into a computer specific model,
basically this comprises the solver that allows for an algorithmic description of the conceptual model
(e.g. define Navier Stokes equations and choose relaxation methods to solve the discretised PDE's).
Finally we need to implement the solver for a parallel platform. Here we must consider the
interconnectivity and locality of both the computer specific model and the hardware (e.g. can we map
the loosely coupled program into a SPMD model to be executed on a distributed memory MIMD
architecture?).

It is obvious that we need to make many choices in these mapping processes, a thorough
discussion of all these aspects is certainly beyond the scope of this paper. Here we only address some
aspects, new insights and new tools that we feel are relevant to this field of HPC and that might guide
the reader in designing and implementing his parallel simulation.

In section 2 we will discuss the application architecture and promote an alternative computational
model specifically suited for parallel simulation. In section 3 we will identify the differences in
distributed versus parallel execution on distributed memory systems, and suggest a possible solution
to the implicit load imbalance problem. Finally, in section 4, we briefly mention consequences of
slightly different machine architectures and ways to predict the behaviour of code execution in
different environments.
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2. APPLICATION ARCHITECTURE

With the type of complex simulations we want to address in High Performance Simulation we
need to rethink the (mathematical) structure of the applications. Ed Masi from Intel once formulated it
in this way: ‘“With horse driven carts people never worried about aero-dynamics...”. Basically there
are two fundamental issues we should take into account, since we are not dealing with horse driven
carts anymore:

1]  Can we simulate real physics on a computer or are we mimicking?
2]  What is the underlying structure of the application and can it be mapped efficiently to a
parallel/concurrent architecture.

Aspects related to the first question were beautifully discussed in a paper by Richard Feynman
[11]. We can rephrase these questions to: Does nature itself behave as a Universal Computer and can
we build systems to execute this universal computer. The relation between physics and universal
computing has been addressed extensively by Fredkin [12] and Wolfram [8] but is still an open
question. In a forthcoming paper we will discuss in detail some new idea’s in this research area [9].
Here we are mainly concerned with the second part of the question namely: *What kind of models can
be mapped efficiently to parallel systems’. In this section we will explore an example where we
mimic nature to build a ‘natural solver’ for parallel complex growth models in dynamically changing
environments.

2.1 Natural Solvers

A very promising class of solving techniques can be identified by ‘natural solvers’, these
techniques have in common that they are inspired by processes from nature and preserve domain
properties in the mapping from solver to the computational model. Important examples of natural
solvers are Genetic Algorithms (inspired by the process of natural selection), Simulated Annealing
(inspired by the process of cooling heated material which converges to a state of minimal energy), the
Lattice Boltzmann method (a many particle system with a macroscopic behaviour that corresponds to
the hydrodynamic equations), and artificial Neural Networks (inspired by the transmission of signals
in the brain). In an ‘non-natural solver’, as for example finite differencing, a number of
approximations and abstractions are involved in the simulation of the real physical phenomena, as for
example diffusion and flow. In the simulation model this process of approximation and abstraction
obscures the explicit information on the physical phenomena and as a consequence violates the
‘domain conservation’. Even worse, the possible implicit parallelism of the problem becomes
completely indistinct in the abstraction process. Traditionally, methods as finite differencing are
widely used to simulate physical phenomena. In parallel computing especially the class of natural
solvers is a very promising @pproach, since the physical characteristics of the original physical
phenomenon remain visible in the solving method and the implicit and explicit parallelism of the
problem remain conserved.

2.2 Case study: Diffusion Limited Aggregation

Many growth phenomena, for example the growth process of a bacteria colony, viscous fingering,
electric discharge patterns and growth forms of electro deposits, can be simulated with one model: the
Diffusion Limited Aggregation model [13]. At the heart of all these growth patterns there is one
Partial Differential Equation,

Vie=0 (1)

the Laplace equation, which describes the distribution of the concentration ¢ , pressure, electric
potential etc. in the environment of the growth pattern. First we will discuss the numerical solver for
such a system, then the natural solver and finally parallelisation aspects for the natural solver.



34

The numerical solver: Finite differencing

This equation can be solved numerically and a DLA cluster can be constructed using the nutrient
distribution over the lattice. The cluster is initialised with a seed and the following boundary
conditions are applied: ¢ = 0 on the cluster itself and ¢ = 1 at the nutrient source, which in itself may
be circular, linear etc. The cluster is constructed using the following rules:

1: solve the Laplace equation (Eq.1), using the boundary conditions.
2: new sites are added to the cluster are added to the cluster with probability p (Eq.2 ).
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Figure 2: First steps in the construction of the DLA-cluster. Sites which are part of the cluster are
visualised as black circles, sites which are possible candidates to be added to the cluster in next
iteration steps are indicated with open circles.

The probability p that a perimeter site (the sites indicated with an open circle in Figure 2 with index
k will be added to the DLA-cluster (black circles in Figure 2) is determined by
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The sum in the denominator represents the sum of all local concentrations of the possible growth
candidates (the open circles in Fig. 2). The Laplace equation can be solved, using the boundary
conditions mentioned above, by finite differencing and the successive over-relaxation method:
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In this method the new local nutrient concentration in the lattice ¢}', at a site with lattice co-

ordinates i,j , is determined in an iterative procedure which converges as soon as the difference

between the new and old local nutrient concentration (t.,":’ =0 !.) is below a certain tolerance level.
The @ in Eq. 3. is the over-relaxation parameter, which in general lies within the range 1S @ < 2.
After many construction steps this procedure results in a DLA-cluster as shown in Figure 3.



Fig. 3: DLA-cluster generated on a 1000 x 1000 lattice using a linear source of nutrient, located at the
top row of the lattice.

The natural solver: The random moving particle model

An alternative method to construct the DLA-cluster is a probabilistic cellular automaton which
resides on a square two-dimensional or three dimensional lattice. The growth pattern can be
constructed using the following Monte Carlo approach: The first step in the construction is to occupy
a lattice site with a seed. After that, particles are released from a source which might be circular
shaped (using the seed as a centre) at a large distance from the seed. The particle starts a random
walk, the walk stops when the particle leaves the circle or reaches a perimeter site of the seed and
sticks. Then more random walkers are released from the source and are allowed to walk until the
distance with respect to the cluster with occupied sites becomes too large or it reaches a perimeter site,
neighbouring to one of the previous particles, and it sticks.

When this procedure is repeated many times a similar irregular growth pattern as shown in Fig. 3
is generated. It can be demonstrated that in this Monte Carlo method the underlying Laplace equation
is correctly solved [13].

The parallel implementation of Diffusion Limited Growth

Modelling and simulation of Diffusion Limited Growth, especially in the 3D case, is
computationally very expensive. The development of parallel growth models, especially in the case of
DLA is not straightforward (see also references [14, 15]).

The computationally most expensive step, step 1 solving the Laplace equation, of the numerical
solver can be done in parallel. In a parallel implementation of Eq. 3 using SOR, the update order of
the lattice has to be taken into account. When ¢/";' is updated in the parallel implementation and is
located at the border of the processor (see Fig. 4), its neighbours should be in the correct state (n or
n+l).

A parallel implementation, with a correct update order, can be made using the checkerboard
strategy [5]. In this method the sub-lattice on one processor is subdivided into four blocks. In the
parallel SOR update first all red regions are updated, followed by the black regions. Step 2 in the
numerical solver, adding sites with probability p is an implicit sequential step.
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Figure 4: Mapping of the lattice onto a grid of 4 x 4 processors, the shaded sites are situated in a
region where information from neighbouring processors is required for the update (after [5]).

The attractive property of the random moving particle model is that it illustrates that the locality
present in the model can be exploited in all steps of the algorithm. Both solving the Laplace equation
and growth of the cluster by the addition of sites can be done in parallel. A major question is if such a
parallel version of random moving particle model mimics the same physics as its sequential version.
In a forthcoming paper [16] we will discuss this question in detail.

There is no doubt that ‘natural solvers’ will become more and more recognised in the High
Performance Simulation society. For instance, a recent paper by Dzwinel [16b] discusses the use of
Molecular Dynamics to pattern recognition on parallel systems. They concluded that ‘the inherently
sequential problem, i.e., the global minimum search for the multidimensional criterion, changes for
particle dynamics which is—in turn—inherently parallel’.

3. DISTRIBUTED VERSUS PARALLEL EXECUTION

Given a chosen solver and a parallelization strategy we must concentrate on the underlying
hardware on which the actual model execution takes place. First we note that in academia and
industry interest is renewed in using clusters of high performance workstations for HPC tasks rather
than tightly coupled parallel monoliths. There are several reasons for this.

Monoliths are expensive and dedicated, whereas clusters are relatively cheap and general purpose.
In addition the 64-bit RISK technology boosts the performance per workstations-node to figures
comparable to dedicated monolith nodes (e.g., PowerPC and the Alpha chip). Moreover, new
software technologies provide better programming environments (e.g., heterogeneous PVM/MPI),
resource management tools (e.g., CODINE, CONDOR). The major reason however seems to be the
increasing network bandwidth supporting fast and reliable communication between nodes in a cluster
environment, installations with 100, 150 and some even with 622 Mbit/s ATM-SONET Local Area
Networks were reported recently by Tolmie at the HPCN95 Europe conference in Milan [17]. In the
upcoming Supercomputing "95 conference an experimental networking project will be announced (the
so-called ‘I-way’) aiming at a 622 Mbit/s network of 40 major institutes in the USA [18].

One of the major questions remaining is what the consequences are for the parallel applications that
are highly tuned to tightly coupled parallel systems. This is not merely a question of portability, but
also one of more fundamental differences in execution behaviour, especially when issues as load
balancing are considered. The major differences stem from the fact that cluster computing implies a
dynamic (and often heterogeneous) computer resource as opposed to the static (homogeneous)
resources available in monolith computing.

In this section we identify this problem of load balancing in a parallel cluster environment, present
some new results and suggest a possible way out [19, 20].
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3.1 Introduction

Loosely coupled parallel systems require new programming paradigms and environments that
provide the user with tools to explore the full potential of the available distributed resources.
Although such cluster computing systems give the user access to large amounts of processing power,
their applicability and efficiency is mainly determined by environmental changes like variation in the
demand for processing power and the varying number of available processors. To optimise the
resource utilisation under these environmental changes it is necessary to migrate running tasks
between processors, i.e. to perform dynamic load balancing.

Consider a Finite Element problem where we want to simulate the forging of steel plates. After a
straightforward domain decomposition (for instance using bisection methods [21, 22]), we can map
the different domains onto separate processors. If the hardware system is homogeneous and
monolithic (implying single user), than the simulation will run balanced until completion. The data
structure, data decomposition and the assumed topology remain unchanged: We have mapped a static
resource problem to a static resource system. If however we use a cluster of multitasking/multi-user
workstations we run into problems since the processing capacities per node may change randomly:
We have mapped a static resource problem to a dynamic resource system, resulting in a potentially
complete unbalanced execution. Things can even get worse when we consider the mapping of a
dynamic resource problem onto a dynamic resource machine. For instance consider a simulation of a
car crash, where during simulation the load changes due to changes in the geometry of the object
being modelled [23].

A solution to these problems could be an intelligent system that supports the migration of tasks
from a parallel job from overloaded nodes to under loaded nodes at run-time, thus supporting
dynamic run-time load balancing without interference from the programmer.

3.2 Case study: Dynamic PVM

Here we describe a scheduling mechanism for the Parallel Virtual Machine (PVM) [24] that
supports automatic load balancing for parallel tasks running on loosely coupled parallel systems. The
enhanced system is called DynamicPVM. The choice for PVM as the basic parallel programming
environment is motivated by the fact that PVM is the most widely used environment to date and is
considered the de facto standard. The process migration primitives used in DynamicPVM were
initially based on the checkpoint-restart mechanisms found in a well established global scheduling
system [25].

PVM: Runtime support system for parallel programs.

PVM provides primitives for remote task creation and Inter Process Communication (IPC). It
supports both point-to-point and global communication primitives. Tasks are assigned to available
processors using a cyclic allocation scheme. Jobs are placed statically, i.e. once a job is started, it
runs on the assigned processors until completion. Each processor in the PVM pool is represented by
a daemon that takes care of task creation and all IPC to and from tasks running on the processor. To
enable the use of heterogeneous processor pools, messages are encoded using an external data
representation. With the current PVM version direct IPC between two PVM processes, without
interference of the PYM daemons is supported, thereby enhancing communication performance.

CONDOR Runtime support for job scheduling

The CONDOR system stems from the observation that many of the constantly increasing number
of workstations in academic and industrial institutions are lightly loaded on the average. Most
workstations are intended for personal usage, which has a typical activity pattern where machines are
only used for a small part of the day. As a consequence many computing cycles are unused during the
day. Typical Figures of large pools of workstations have a mean idle time of 80% [25]. To address
this problem, CONDOR implements a global scheduling based on dynamic load balancing by job
migration. CONDOR monitors the nodes in its pool by keeping track of their load. New jobs are
spawned on lightly loaded nodes and jobs from heavily loaded machines can be migrated to less
loaded ones. When interactive usage is detected of a workstation, all jobs can be evacuated from that
workstation in order to retain the sympathy of the workstation's owner. To implement this job
migration CONDOR creates checkpoints on a regular basis, which can be restarted on another
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machine. Using CONDOR, it is not possible to migrate jobs consisting of co-operating parallel tasks
since it does not provide any support for IPC primitives, Combining PVM with an extended version
of CONDOR's checkpoint-restart facility makes it possible to apply global scheduling to parallel
tasks.

DynamicPVM: Runtime support system for job scheduling parallel tasks

In DynamicPVM we have added checkpoint-restart mechanisms to the PVM environment. Most of
PVM's features are compatible with the checkpoint-restart mechanism we use and can be incorporated
in DynamicPVM without problems. The Inter Process Communication is an exception to this rule.
We present a protocol that ensures that no messages get lost whenever a task is migrated. This
protocol involves a special role for the PVM daemon that initiated the computation, the Master
daemon. We also included an extension to the PVM IPC routing mechanism in order to redirect
messages to tasks that are migrated. DynamicPVM's task migration facility consists of four principal
components:

+ A global scheduler that initiates job migration.

 Task check pointing, including a method to indicate checkpoint save moments.
+ Actual task migration.

« Task restart and updating of routing tables to reflect the task's new location.

These components are briefly described below [see also 19 and 20].

Task check pointing

In order to migrate a process, a dump of the process' data and state, together with some additional
information to recreate the process, has to be made. We have implemented two different strategies for
dumping this information: direct and indirect. Using direct check pointing, the host where the
checkpoint is migrated from opens a TCP connection to the destination host and writes the process’
data and status to the destination host. With indirect check pointing, a dump of the process' state and
data is made to a shared (NFS-mounted) file system. In this way, the process can be restarted by a
machine at a later stage. Since direct check pointing involves only one transfer of the migrating
process, compared to two transfers (write/read) when using NFS it is approximately twice as fast.
Check pointing co-operating tasks introduces new conditions as compared to check pointing stand-
alone tasks. For instance, checkpoints should be avoided when a task is communicating with another
task. To safely checkpoint DynamicPVM tasks, we introduced the notion of a critical section and
embed all IPC operations in such sections. Check pointing is prohibited whenever the task is in a
critical section; check pointing can only take place when the task is not participating in a
communication operation.

Task migration

The main demand on the DynamicPVM task migration facility is transparency, i.e. to allow the
movement of tasks without affecting the operation of other tasks in the system. With respect to a
PVM task selected for migration, this implies transparent suspension and resumption of execution.
With respect to the total of co-operating PVM tasks in a job, communication can be delayed due to the
migration of one of the tasks. The first step of the migration protocol is to create a new, empty,
process context at the destination processor by sending a message to the daemon representing that
node. Next, the Master-Daemon updates it's routing tables to reflect the new location of the process.

The task to be migrated is suspended and messages arriving for that task are refused by the task's
original daemon. Such messages are queued by the sending daemon, to be processed after the new
location has been broadcasted. In the next phase, the Master-Daemon broadcasts the new location to
all nodes, so that any subsequent messages are directed to the task's new location. The last phase is
the actual migration of the process. As stated in the previous section, there are two strategies
implemented and the user can choose the appropriate mechanism.
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Task Restart

The newly created process on the destination processor is requested to restart the checkpoint. If
direct check pointing is used, it opens a TCP socket and waits for the check pointing task to begin
transmission of the checkpoint. Using indirect check pointing, the task opens the checkpoint file and
reads the checkpoint from disk. After the checkpoint is read, the original state of the process is
restored (data/stack/signal mask/registers) and the process is restarted with a long jump. Any
messages that arrived during the checkpoint-restart phase are then delivered to the restarted process.

What did we learn from this case study?

We have implemented DynamicPVM on a cluster of IBM RS/6000, AIX32 machines and cluster
Sun workstations [19, 20], operating under SunOS4 and Solaris. Experiments indicate that
DynamicPVM has very efficient migration protocols (migration linear to the size of the program and
no additional latencies).

Clearly, distributed computing contaminates the laboriously obtained load balance in the parallel
simulation. However by identifying locality in terms of separate tasks, of equal computational
complexity, and by using a system like DynamicPVM we can still obtain load balance in a
dynamically changing resource environment and preserve locality in our application.

4. HARDWARE CONSEQUENCES

4.1 Introduction

The development of parallel solvers implies a lot of decision making. As discussed in the previous
paragraphs a manifold of choices can be made on the parallelization method, data distribution,
communication topology, the runtime support system etc. The best choices will depend on the
specific application but may very well also depend on the target computer system. For the HPC-
simulation developer it is not always clear which parameters will dictate the performance of his
simulation. For sequential programs for instance, one might recognise that some type of instructions
are executed more often than others. Hence, the performance of the program would change when
these type of instructions are faster executed on a processor. For parallel applications this becomes
more complex, since the machine parameters involved are interdependent. A complex system in
which adding faster communication lines or using faster processors is not necessarily much better for
the application execution time.

Therefore in order to obtain insight in the consequences of implementing the application on
different architecture’s, we need new methods and tools to guide us through the various decisions
and to assist in the prediction of performance behaviour. In the next section we briefly outline such a
system that has recently been developed by our group within a European project [26a-c].

4.2 Case study: Virtual machine simulation

In the field of parallel computation, there are hardly any analytical methods to guide decisions
faced by developers for both hardware and software design. Instead, simulation must be used to
study the performance of the hardware. For parallel applications additional performance metrics need
to be extracted from test runs on a parallel platform (such as: throughput, latency, interconnectivity,
node asymmetry, €Ic.).

There are many approaches in parallel hardware simulation most are based on some form of
discrete event simulation where processor cache and memory behaviour are studied through
stochastic traces [27], determined by for instance process activity graphs [28]. A major drawback of
these simulators is that they are extremely complicated, often dedicated to one type of architecture and
require substantial simulation time for - in the eye of the engineer - modest results. Especially when
parallel computing is involved the number of experimental parameters 1o be studied becomes very
large. Moreover the engineer would like to perform ‘what-if” experiments in order to trace down
communicational or computational bottlenecks on different architecture’s. Therefore a light weighted
highly adaptable simulation system is required.



An approach would be to abstract relevant information of the application and derive a time
complexity formula that incorporates all the significant information on computation, communication
and data dependency. We can do the same for the underlying hardware by building a machine
database that provides a generic machine description which is able to roughly describe the parameters
which influence the performance of a computer. This in order to be able to change parameters and
create what-if machines so that the performance of an application on different machines can be
investigated. Of course, abstracting the machine into machine parameters which are averaged time
estimates for operations has its toll. The accuracy will be reduced and carefully selected benchmarks
are needed to gain reliable averages for the machine parameters.

Finally the execution time of an application is determined automatically by the machine parameters
and the abstracted time complexity formula. If a time complexity formula is used in which the
performance parameters of the machine are kept abstract, an interactive performance analysis becomes
feasible. As an example in Figure 5 we have shown a simulation of a Molecular Dynamics code.

The code is analysed by the simulation toolset and simulated on a hypothetical workstation. For
instance by a simple modification of the parameters cache behaviour could be studied. In this case the
experiment clearly predicts irregular behaviour on in a parallel cluster system with CPUs with only
small differences in caches.

Figure 5: The left picture shows the graphical user interface allowing instantiation of the machine
parameters. The upper-window on the right shows the prediction before, and the lower-window
after, changing the instruction cache size by only 5 instructions.

This approach of simulating an abstraction of an application on an abstraction of a parallel machine
is implemented in the Esprit-TII project CAMAS [26a-c], where old dusty deck F77 programs or new
F77 with PYM/MPI can be fed into a translator which produces the time complexity and determines
the dependencies between all the different parameters in the formula. This time complexity formula
can than be simulated on a chosen architecture, producing estimates of the running time of a program
for variations in the factors. It was, among others, used in the evaluation of a very large (> 10° of
lines of F77 dusty deck code) car crash worthiness simulation [23].
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4. SUMMARY AND CONCLUSIONS

In this paper we have discussed current issues in High Performance Simulation (HPS). We argued
that parallelism adds a complete new dimension to the expected behaviour of model execution
demanding new paradigms and new software techniques. We have taken a top down helicopter view
from application modelling via runtime support systems to the machine level, and identified pitfalls
and possible solutions. Clearly we could only touch upon some of the myriad of aspects involved.
For instance we have discarded aspects related to Languages (the upcoming High Performance
FORTRAN standard), Compiler architecture interactions and aspects of (distributed) Operating
Systems.

It seems clear that the best approach to HPS is an holistic view fully incorporating all different
levels in the mapping of application architecture to machine architecture.

We believe that HPS has just started and will become a very important research and technology area.
Due to the complexity of the systems being simulated in HPS, new tools and methods need to be
developed (and used!) that abstract locality information from the application and support in the
mapping to HPC systems. The concept of natural solvers in conjunction with hybrid parallel
implementation supported by dynamic resource management systems seem 10 be a very promising
way to go. Some pilot results in this area pursued at the University of Amsterdam were discussed in
this paper.

Once we can fully exploit the parallel technology we might even expect in the near future real-time
simulations guiding real-time complex experiments, a research technique sometimes referred to as
‘living simulations’.
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