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PUSHING AND PULLING
An application pull has occurred in biomedicine with

the move to in silico studies, which augment in vivo and
in vitro studies by simulating more details of biomed-
ical processes. Using these simulated processes helps
medical doctors make decisions by exploring different
scenarios. Preoperative simulation and visualization of
vascular surgery3 and expert systems for drug ranking4

are two examples of such processes.
At the same time, a technology push is occurring in

computing resources and data availability.5 In the field
of high-performance computing, as computing advanced
from sequential to parallel to distributed, killer appli-
cations moved from mathematics to physics, chemistry,
biology, and now to medicine. In addition, advances in
Internet technology and grid computing6 have made
huge amounts of data available from sensors, experi-
ments, and simulations. 

Still, significant computational, integration, collabo-
ration, and interaction gaps exist between the observed
application pull and the technology push.

Bridging the gaps
Closing the computational gap in systems biology

requires constructing, integrating, and managing a
plethora of models. A bottom-up, data-driven approach

Computer science provides the language needed to study and understand complex

multiscale, multiscience systems.ViroLab, a grid-based decision-support system,

demonstrates how researchers can now study diseases from the DNA level all the way 

up to medical responses to treatment.

Peter M.A. Sloot and Alfredo Tirado-Ramos, University of Amsterdam 

Ilkay Altintas, University of California, San Diego and University of Amsterdam

Marian Bubak, AGH University of Science and Technology 

Charles Boucher, Utrecht University 

C omplex human systems include unique and dis-
tinguishable components—from biological
cells made of thousands of molecules, to
immune systems built from billions of cells, to
our society of more than 6 billion interacting

individuals. Each gene in a cell, each cell in an immune
system, and each individual in a society possesses char-
acteristic behavior and provides unique contributions
to the system.

The complete cascade—from genome, proteome,
metabolome, and physiome to health—forms multi-
scale, multiscience systems and crosses many orders of
magnitude in temporal and spatial scales,1 as Figure 1
shows. The interactions between these systems create
exquisite multitiered networks, with each component
in nonlinear contact with many interaction partners.
These networks aren’t just complicated, they’re com-
plex. Understanding, quantifying, and handling this
complexity is one of the biggest scientific challenges of
our time.2

Computer science provides the language needed to
study and understand these systems. Computer system
architectures reflect the same laws and organizing prin-
ciples used to build individualized biomedical systems,
which can account for variations in physiology, treat-
ment, and drug response.

From Molecule to Man:
Decision Support in
Individualized E-Health
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won’t work for this. Integrating
often incompatible applications
and tools for data acquisition, reg-
istration, storage, provenance,
organization, analysis, and pre-
sentation requires using Web and
grid services. 

Even if we can solve the com-
putational and integration chal-
lenges, we still need a system-level
approach to close the collabora-
tion and interaction gap. Such an
approach would involve sharing
processes, data, information, and
knowledge across geographic and
organizational boundaries within
the context of distributed, multi-
disciplinary, and multiorganiza-
tional collaborative teams, or
virtual organizations. 

Finally, we need intuitive meth-
ods to dynamically streamline these
processes depending on their avail-
ability, their reliability, and the 
specific interests of medical doc-
tors, surgeons, clinical experts, re-
searchers, and other end users.
Scientific workflows, in which a
workflow language expresses the
flow of data and action from one
step to another, provide one option
for capturing such methods.7,8

Figure 2 illustrates a general scheme
for conducting e-science research.

ViroLab (www.virolab.org), a
grid-based decision-support sys-
tem (DSS) for infectious diseases,
consists of modules, such as those
that Figure 2 shows, for individu-
alized drug ranking in human
immunodeficiency virus (HIV)
diseases. We used the complex
HIV drug-resistance problem as a
prototype for our system-level
approach for two reasons. First,
HIV drug resistance is becoming
an increasing problem worldwide,
with combination therapy with
antiretroviral drugs failing to
completely suppress the virus in a
considerable number of HIV-infected patients. Second,
HIV drug resistance is one of the few areas in medicine
where genetic information is widely available and has
been used for many years. As a consequence, large num-
bers of complex genetic sequences are available, in addi-
tion to clinical data.

COLLABORATIVE DSS
During the past decade, researchers have made sig-

nificant progress in treating patients with viral diseases.
For example, pharmaceutical companies now offer
nearly 20 antiretroviral drugs for HIV treatment.
However, to completely suppress the virus, patients must
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take a combination of at least two of the four different
classes of antiretroviral drugs.9

In a significant proportion of patients, however, the
drugs fail to completely suppress the viral disease, result-
ing in the rapid selection of drug-resistant viruses and
loss of drug effectiveness. This complicates the clinician’s
decision process, since clinical interpretation is based on
data sets relating mutations to changes in drug sensitiv-
ity and relating mutations present in the virus to clini-
cal responses to specific treatment regimens. 

Interpretation tools
In recent years, researchers have developed several

genotypic resistance-interpretation tools that help clin-
icians and virologists choose effective therapeutic alter-
natives. However, there’s significant
discordance among available sys-
tems for interpreting HIV genotypic
resistance, for example. There’s an
urgent need for a joint effort to
develop, validate, and publish stan-
dardized rules, as well as definition
criteria for genotypic-resistance
interpretation, and to provide acces-
sible interpretation tools that help
make genotypic assay results more
clinically useful.

Applying artificial intelligence and computational
techniques to biomedicine has resulted in the develop-
ment of computer-based DSSs. Recent developments in
distributed computing further allow the virtualization
of the massive data, computational, and software
resources that complex DSSs require.

ViroLab’s goal is to provide a virtual laboratory where
researchers and medical doctors have easy access to dis-
tributed simulations and can share, process, and analyze
virological, immunological, clinical, and experimental
infectious disease data. Currently, virologists browse jour-
nals, select results, compile them for discussion, and
derive rules for ranking and making decisions. ViroLab
advances the state of the art by offering clinicians a dis-
tributed virtual laboratory securely accessible from their
hospitals and institutes throughout Europe.

Under a typical usage scenario for ViroLab:

• A scientist from a clinical and epidemiological virol-
ogy laboratory in Utrecht, Netherlands, securely
accesses virus sequence, amino acid, or mutations
data from a hospital AIDS lab in Rome using grid
technology components running in Stuttgart,
Germany.

• The scientist applies quality indicators needed for
data-provenance tracking using provenance-server
components running in Krakow, Poland.

• Researchers use this data as input to (molecular
dynamics) simulations and immune system simula-

tions running on grid nodes that reside at University
College London and the University of Amsterdam.

• The virtualized DSS automatically derives metarules.
• Intelligent system components from Amsterdam use

first-order logic to clean rules, identify conflicts and
redundancy, and check logical consistency.

• The scientist validates new rules that the system auto-
matically uploads into the virtualized DSS.

• The system presents a new ranking.

Advanced environment
ViroLab facilitates medical knowledge discovery and

decision support for drug resistance, providing medical
doctors with a rule-based, distributed DSS to rank drugs

targeted at patients. Its infrastructure
provides virologists with an advanced
environment to study trends on an
individual, population, and epidemi-
ological level. That is, by virtualizing
the hardware, compute infrastruc-
ture, and databases, the virtual labo-
ratory will offer a user-friendly
environment, with tailored workflow
templates to harness and automate
such diverse tasks as data archiving,
integration, mining, and analysis;

modeling and simulation; and integrating biomedical
information from viruses (proteins and mutations),
patients (viral load), and the literature (drug-resistance
experiments). 

A DSS and data analysis tools are at the center of the
ViroLab distributed virtual laboratory. One such inter-
pretation tool, Retrogram, estimates the sensitivity for
available drugs by interpreting a patient’s genotype using
mutational algorithms that experts developed based on
scientific literature, taking into account the published
data relating genotype to phenotype. The ranking is also
based on data from clinical studies of the relationship
between the presence of particular mutations and the
clinical or virological outcome.

For the system to support grid-based distributed data
access and computation, virtualization of its compo-
nents is important. ViroLab includes advanced tools for
biostatistical analysis, visualization, modeling, and sim-
ulation that enable prediction of the temporal virologi-
cal and immunological response of viruses with complex
mutation patterns for drug therapy, as Figure 3 shows.

ViroLab architecture
In ViroLab, each experiment is a set of interconnected

activities. The ViroLab system’s design guarantees the
interaction between a user and running applications,
similar to methods used in real experiments, so the user
can change a selected set of input data or parameters at
runtime.

ViroLab offers clinicians

a distributed virtual 

laboratory securely 

accessible from their 

hospitals and institutes

throughout Europe.



In addition to the DSS, patient data-
bases, data analysis tools, and simula-
tion software, ViroLab’s runtime
system consists of:

• a distributed, fault-tolerant reg-
istry for storing, updating, and
publishing semantic information
about available resources and exe-
cuted applications; 

• a tool to compose new experiments
or modify experiments already per-
formed;

• an execution engine to enact work-
flows according to data and action
flow; and

• a scheduler for dynamic selection
of resources for efficiently running
a given experiment.

ViroLab workflows enable dynamic
workflow execution, lazy scheduling,
and runtime recomposition. They also
support two levels of abstraction
needed to operate separately on
abstract workflows (workflow tem-
plates) and on concrete workflow
instances (executables). Development of a virtual 
laboratory faces some major challenges, however,
including:

• the highly distributed and heterogeneous nature of
virological, immunological, clinical, and experi-
mental data;

• the high dimensionality and complexity of the genetic
and patient data; and

• the inaccessibility and (lack of) interoperability of
advanced modeling, simulation, and analyses tools.

Recent advances in grid computing tackle these prob-
lems by virtualizing the resources (data, instruments,
compute nodes, tools, and users) and making them
transparently available. In grid computing, the virtual
organization is the basic unit. Such an organization is a
set of grid entities—individuals, institutions, applica-
tions, services, or resources—that are related to each
other by some level of trust. Figure 4 summarizes these
ideas.

ViroLab users can verify and identify the data’s ori-
gin and rerun experiments when required. ViroLab
extends this feature by categorizing the level of infor-
mation, including the data and workflow process.

The collected data-provenance information is archived
in ViroLab’s portal and accessible through search and
discovery methods. Examples of provenance informa-
tion are:

• keeping track of the level of information to be saved,
• the format of information and where to save it,
• dynamic data and parameter changes during runtime

and in time,
• saving workflow instances, and
• the information on how and by whom the run was

made.

Technical requirements for building such a system
include:

• efficient data management;
• integration and analysis;
• error detection;
• recovery from failures;
• logging information for each workflow;
• allowing status checks on running workflows;
• on-the-fly updates;
• detached execution of data- and compute-intensive

tasks;
• visualization and image processing on the data flow-

ing through the analysis steps;
• semantics; and
• metadata-based data access, authentication, and

authorization. 

Introducing different heterogeneous distributed net-
work computing systems, data sources, and instruments
creates additional technical challenges.
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ViroLab interactivity
In the ViroLab context, the availability of grid services

and tools for interactive compute- and data-intensive
applications presents an important research problem.
Here we build on the European Union IST CrossGrid
Project,10 which developed a unified approach for run-
ning interactive distributed applications on the grid by
providing solutions to the following issues: 

• automatic porting of applications to grid environ-
ments; 

• user interaction services for interactive startup of
applications, online output control, parameter study,
and runtime steering; 

• advanced user interfaces that enable easy plug-in of
applications and tools, like interactive performance
analysis combined with online monitoring; 

• scheduling of distributed interactive applications; 
• benchmarking and performance prediction; and
• optimization of data access to different storage 

systems.

We recently tested these functionalities in a system
that supports grid-based vascular reconstruction
through bypass surgery by automating the process flow
of MRI scan data, 3D visualization, and bypass cre-
ation and evaluation.3 The developed computational
components were executed efficiently as a custom-built
application using the CrossGrid infrastructure, thus

helping scientists carry out their scientific processing
flows and run their analyses on both local and distrib-
uted resources. Virtual organization members with
access to the resources the tasks were distributed to can
reuse, share, and modify a process flow once it has been
developed.

Workflows as system science language
An increasing number of computational tools for dis-

tributed computing in science have become available in
recent years. However, they’re mostly at an infrastruc-
tural level, making it difficult for the domain scientist
to use them. Scientific workflow environments11,12

improve this situation by allowing scientists to use dif-
ferent tools and technologies in a user-friendly, visual
programming environment. These environments pro-
vide domain-independent, customizable GUIs for com-
bining different e-science technologies along with
efficient methods for using them, thus increasing effi-
ciency and promoting scientific discovery.

A custom-built approach isn’t sufficient for increas-
ingly complex applications. Service-based distributed
applications are ideal for automating and generalizing
scientific workflows. Researchers can use them to com-
bine data integration, analysis, and visualization steps
into larger, automated “knowledge discovery pipelines”
and “grid workflows.”

One goal in building ViroLab’s interactive scientific
workflow environment was to add flexibility and
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Figure 4. ViroLab system architecture. Distributed resources (computing elements, data, and storage) that the biomedical applica-

tions use are coordinated with the grid middleware and a grid runtime system.



extensibility, providing service-oriented interfaces
through a workbench-style collaborative portal so that
those with the right privileges can use the set of appli-
cations and data sets. An important issue is for users to
be able to register and publish derived data and
processes and to keep track of the provenance of infor-
mation flowing through the generated pipelines, as well
as accessing existing (patient and scientific literature)
data and acquiring new data from scientific instru-
ments. These domain-independent features can then be
customized by adding domain-spe-
cific components and semantic
annotation of the components and
data being used.

Semantic assistance
To automate the construction of

workflow applications, the system
needs to generate ontological
descriptions of services, system com-
ponents, and their infrastructure.
The OntoGrid project (www.
ontogrid.net) and the Knowledge-Based Workflow
System for Grid Applications (www.kwfgrid.net) both
demonstrate these abilities. Semantic data usually is
stored as a registry that contains Web Ontology
Language (OWL) descriptions of service class func-
tionality, instance properties, and performance records.
The user provides a set of initial requirements about the
workflow use, then the system builds an abstract work-
flow using the knowledge about services’ functionality
that service providers have supplied to the registry.

Subsequently, the system must apply semantic infor-
mation on service properties, which results from ana-
lyzing the monitoring data of services and resources, 
to steer running workflows that still have multiple 
possibilities of concrete Web service operations. The
system can select the preferable service class by com-
paring semantic descriptions of the available services
classes and matching the classes’ features to the actual
requirements.

PRELIMINARY RESULTS
ViroLab uses statistical and immunological models to

study the dynamics of the HIV populations and molec-
ular dynamics models to study drug affinities, in addi-
tion to rule-based and parameter-based decision
support. To enhance the analysis of highly dimensional,
complex data, we added cellular automata and molec-
ular dynamics modeling of HIV infection and AIDS
onset to ViroLab. 

HIV simulation
ViroLab uses a mesoscopic model to study the HIV

infection’s evolution and the onset of AIDS. The model
takes into account the global features of the immune

response to any pathogen, HIV’s fast mutation rate, and
a fair amount of spatial localization, which can occur
in the lymph nodes. Ordinary (or partial) differential
equation models can’t sufficiently describe the two
extreme timescales involved in HIV infection (days and
decades) or the implicit spatial heterogeneity.

To study the dynamics of drug therapy for HIV infec-
tion, we developed a nonuniform cellular automata
model that simulates four phases: acute, chronic, drug
treatment response, and AIDS onset. Researchers also

can use this model to study three dif-
ferent drug therapies: monotherapy,
combined drug therapy, and highly
active antiretroviral therapy. Our
model for predicting the immune
system’s temporal behavior to drug
therapy qualitatively corresponds to
clinical data.13

Biostatistics
The biostatistical analysis of the

HIV-1 genotype data sets aims to
identify patterns of mutations (or naturally occurring
polymorphisms) associated with resistance to antivi-
ral drugs and to predict the degree of in vitro or in vivo
sensitivity to available drugs from an HIV-1 genetic
sequence. Analyzing this highly dimensional data pre-
sents a statistical challenge.14

Directly applying well-known mathematical ap-
proaches to analyze the HIV-1 genotype results in many
problems stemming from the fact that in HIV DNA
analysis, relevant mutations—a set of mutations asso-
ciated specifically with the drug resistance—are the main
scope of interest. These mutations might exist in differ-
ent positions over the amino-acid chains. Moreover, the
sheer complexity of the disease and data require devel-
opment of a reliable statistical technique for its analysis
and modeling.4

DSS and presentation
The output of our initial ViroLab version consists of

a prediction of the virus’s drug sensitivity generated by
comparing the viral genotype to a relational database
containing a large number of phenotype-genotype pairs.
The decision software interprets a patient’s genotype by
using rules developed by experts on the basis of the lit-
erature, taking into account the relationship of the geno-
type and phenotype. In addition, the output is based on
available data from clinical studies and on the relation-
ship between the presence of genotype and the clinical
outcome. 

Researchers can use a Proxy and Java 2 Micro Edition
method to access ViroLab from mobile devices, thus
lowering system access barriers. A mininavigator script
communicates patient data with the remote server,
where the ranking takes place.
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W ith the increasing availability of genetic infor-
mation and extensive patient records,
researchers can now study diseases from the

DNA level all the way up to medical responses. Resolving
the long-standing challenges of individual-based, tar-
geted treatments is coming within reach. It’s necessary
to provide integrating technology to the medical doctors
and researchers bridging the gaps in multiscale models,
data fusion, and cross-disciplinary collaboration. 

Although the ViroLab research is still in its infancy,
results indicate that our personalized drug ranking pro-
totype is viable and extensible. The system remains
under development, with new functionalities being
added from usability studies in a network of European
hospitals. ■
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