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1.1 Introduction

pdeling dynamic systems, one of the first questions to be answered is whether the involved processes
e viewed to be discrete in state, time, space, or continuous. The model choice should be robust with
¢t to the chosen space-time-state framework. Table 21.1 gives a selective overview of the various

ling approaches.
this chapter, we focus on complete discrete model systems: cellular automata (CAs). CAs are decen-

spatially extended systems consisting of large numbers of simple and identical components with
connectivity. Such systems have the potential to perform complex computations with a high degree
ficiency and robustness as well as to model the behavior of complex systems from nature. CAs have
n studied extensively in the natural sciences, mathematics, and computer science. They have been
ered as mathematical objects about which formal properties can be proved and have been used as
| computing devices, both for high-speed simulation of scientific models and for computational

TABLE21.1 Mathematical and numerical modeling approaches to spatio-temporal processes.

Model/Variable State Space Time
PDEs C G C
Integro-difference equations c C D
Coupled ODEs C D o
Interacting particle systems D D C
Coupled map lattices, systems of difference equations, LBE models C D D

D D D

Cellular automata and lattice gas automata

PDE, partial differential equation; ODE, ordinary differential equation; LBE, lattice Boltzmann
equation, For more details see Berec (2002) and Deutsch and Dormann (2004).
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tasks such as image processing. CAs have also been used as abstract models for studying “emergent’
cooperative or collective behavior in complex systems (e.g., Sloot, 2001b). In addition, CAs have been
successfully applied to the simulation of a large variety of dynamical systems such as biological processes
including pattern formation, earthquakes, urban growth, galaxy formation, and most notably in studying
fluid dynamics. Their implicit spatial locality allows for very efficient high-performance implementations
and incorporation into advanced programming environments. For a selection of the numerous papersin
all of these areas, see, e.g., Bandini (2002), Burks (1970), Deutsch and Dormann (2004), Farmer et al
(1984), Forrest (1990), Frisch et al. (1986), Ganguly et al. (2003), Gutowitz (1990), Jesshope et al. (1994),
Kaandorp et al. (1996), Mitchell (1998), Naumov (2004), Sloot (1999), Sloot and Hoekstra (2001), Sloot
et al. (1997, 2001c, 2002, 2004), and Wolfram (1986a, 1986b, 2002).

In this chapter, we will give some background on CA modeling and simulation of dynamical systens
with an emphasis on simulating fluid dynamics.

21.2 A Bit of History

In 1948, on the occasion of the Hixon Symposium at Caltech, John von Neumann gave a lecture entitled
“The General and Logical Theory of Automata” (von Neumann, 1951, 1966), where he introduced his
thoughts on universal, self-reproducing machines, trying to develop an abstract model of self-reproduction
in biology, a topic that had emerged from investigations in cybernetics (Wolfram, 2002, 876 ff). von
Neumann himself said to have been inspired by Stanislaw Ulam (1952, 1962) and Turing's theory of
universal automata, which dates back another 10 years (Turing, 1936). Some scientists regard the paper by
Wiener and Rosenblueth (1946) as the start of the field (Wolf-Gladrow, 2000), or mathematical work that
was done in the early 1930s in Russia.

So we see that the roots of CA may be traced back to biological modeling, computer science, and
(numerical) mathematics. From the early days of von Neumann and Ulam up to the recent book of
Wolfram, CAs have attracted researchers from a wide variety of disciplines. It has been subjected to
rigorous mathematical and physical analysis for the last 50 years, and its application has been proposed
and explored in almost all branches of science. A large number of research papers are published every year
Specialized conferences, such as Sloot et al. (2004), Automata (2005), and NKS (2005), and special issuesof
various journals on CA have been initiated in the last decades. Several universities started offering courses
on CA. The reason behind the popularity of CA can be traced to their si mplicity and to the enormous
potential they hold in modeling complex systems, in spite of their simplicity. Or in the words of R May:
“We would all be better off if more people realized that simple dynamical systems do not necessarily leadto
simple dynamical behavior” (May, 1976). This has led to some very remarkable claims and predictions by
renowned researchers about the potential of CAs. In this respect, we came across the following statements
that are worth mentioning;

The entire universe is being computed on a computer, possibly a cellular automaton.
Konrad Zuse, as he referred to this as “Rechnender Raum” (Zuse, 1967, 1982}

I am convinced that CA, in one form or another will eventually be found lurking at the very heart of how

the universe really works
Andrew Ilachinski (2001)

The view of the Universe as a cellular automaton provides the (same) perspective, (i.e.,) that reality

ultimately is a pattern of information.
Ray Kurzweil (2002)

I have come to view [my discovery] as one of the more important single discoveries in the whole history
of theoretical science
Stephan Wolfram: Talking about his CA work in his NKS book (Wolfram, 2002)
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The remainder of this chapter is organized as follows, we start with a formal description of CA and
Some of their spatio-temporal properties and we will briefly discuss their capacity to model dynamical
gstems. Next we will focus on the use of CAs to model fluid flow, starting from Lattice Gas CAs up to
eeent developments in the related Lattice Boltzmann Method for fluid flow.

213 Cellular Automata to Model Dynamical Systems

I general, a CA is specified by the following four characteristics:

« A discrete lattice £: This is the discrete lattice of cells (nodes and sites) upon which the CA dynamics
unfolds. £ © RP consists of a set of cells that homogeneously cover a D-dimensional Euclidian
space. £ can have any dimension “D” (normally 1, 2, or 3), with well-defined boundary conditions.

« A finite state space: Each cell can assume only one of a finite number of different values:
giec(t) €T =(0,1,2,+- -, k — 1}, where o; is the value of the ith cell at time t, and X is usually
taken to be the set of integers modulo k, Zj (formally any finite commutative ring will do). For a
finite lattice of A cells, the total number of global states is also finite and given by KN,

+ Boundary conditions: Boundary conditions play an important role in CA dynamics. Although CA
are defined on infinite large lattices, computer simulations impose finite sets. Common boundary
conditions are periodic (i.e., the lattice is repeated periodically in each direction, in effect wrapping
the boundaries onto each other in each direction), reflecting (i.e., boundary values are reflected back
into the lattice), and fixed (i.e., the boundary values have a prescribed fixed value).

» Dynamical update and transition Rule ¢:
¢: Ex Ex---x T— %, where n is the number of cells that defines the “neighborhood” of a

given cell i.nWith S to be the sublattice neighborhood about cell i, the transition rule is given by
ai(t+1) =(a;j(t) € Si).

 The spatial arrangement of the cells is specified by the nearest neighbor connection links, obtained by

foining pairs of cells. State transitions are local in both space and time. Individual cells evolve iteratively

aecording to a fixed (often deterministic) function of the current state of that cell and its neighboring cells.

One iteration step of the dynamical evolution is achieved after synchronous (i.e., simultaneous in time)

application of the rule ¢ to each cell in the lattice L.

4 One-Dimensional CAs

The general form of a one-dimensional (1D) CA rule ¢ with an arbitrary range ‘r'isgiven by oi(t + 1) =
Woi_,(t),...,0i(1), . .., 0i4-(1)); with ¢: B+ — T, where 05 €{0,1,.. .,k — 1}, and ¢ is explicitly
defined by assigning values to each of the k2 +! possible (2r + 1)-tuples of possible configurations for a
en sublattice neighborhood S;. From this we see that we have a total of K" possible rules in a 1D CA.
for a binary state 1D CA, with nearest neighbor interaction, there are 256 (2%) possible rules.

The boundary conditions imposed in a 1D CA can be

+ Periodic: When the left boundary cell is kept identical to the most right (normal) cell, and the right
boundary cell is kept identical to the most left (normal) cell.

" . Reflecting: When the left boundary cell is kept identical to the most left (normal) cell, and the right
boundary cell is kept identical to the most right (normal) cell.

« Fixed: When the boundary cells are set to a fixed value.

The system dynamics of the CA is determined by the local transition rule ¢, which can be spatial homo-
geneous (independent of cell position), or inhomogeneous (for instance in the case of fixed boundary
nditions shown in Figure (21.1). Furthermore, the update can be time dependent or time independent,
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FIGURE21,1 , ID CA with range r=2,

FIGURE 21.2 Updates for rule 30. The upper three blocks denote the cell that must be update, together with its Jef

and right neighbors, and the lower block shows the outcome of applying rule 30. Black denotes for a state | and white
for a state 0,

(a)

(b)

FIGURE21.3 (4) Space-time diagram of Wolfram’s elementary (k = 2,r=1) CA rule 30 starting from 3 single seed,
The sequence of updates “time” rups from top to bottom, (b) same rule for 300 updates on the 1p CA.

Rlg] =27. D111 + 25 Drio0+2°. Pr00 + 2% . P00+ 23. Po.1.1 + 22 “Po,1,0 + 2 P01 +20‘¢o,0.0

The number ¢ s an eight-bits number that encodes al] possible 256 rules for this 1D CA and @ij) are
the bits of the binary notation of . The rule should be read as follows, The outcome of the ryle js

binary fepresentation of ¢ at the Position of the number encoded by the input states. So, for example,
R[30] =00011] 10, since the decimal valye of 00011110 = 30. The update rules in terms of black {=1)
and white (=0) blocks are graphically depicted in Figure 21.2,

The first five updates (spatial homogeneous, time independent, synchronous, and deterministic) of this
RI[30], starting from a single seed is shown in Figure 21.3,
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FIGURE21.4 (a) Class | (e.g., Rules 0, 8, 128, 136, 160, 168): evolution leads to a homogeneous state, in which all
cells eventually attain the same value (continues analog: attractive fixed limit point), shown is rule 168. (b) Class 2
(e.g. Rules 4, 37, 56, 73): evolution leads to inhomogeneous state; either simple stable states or periodic and separated
structures (continues analog; limit cycle), shown is rule 4. (c) Class 3 (e.g., Rules 18, 45, 105, 126): evolution leads to
chaotic nonperiodic patterns (continues analog: strange attractor), shown is rule 105. (d) Class 4 (e.g., rules 30, 110):
gvolution leads to complex, localized propagating structures (no continuous analog), shown is rule 110.

FIGURE21.5 (a) von Neumann, Moore, and Hexagonal neighborhoods. (b) Fixed and periodic boundary conditions.

In his seminal paper on CA classification, Wolfram (1986a) identified four classes of CAs, linking them
to analogs in continuous system dynamics (see Figure 21.4).

The behavior in two-dimensional (2D) CAs is much more complex and less well understood. In this
case, we need again to define the update neighborhood and the boundary conditions; this is shown in
Figure 21.5.

215 Lattice Gas Cellular Automata Models of Fluid Dynamics

Perhaps the most successful practical application of CAs as computing devices has been in the field of fluid
dynamics. Coined lattice gas cellular automata (LGCA), this class of CA mimics a fully discretized fictitious
fluid. Both the positions and velocities of the fluid’s “molecules” are discrete, and tightly coupled to the
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LGCA’s discrete lattice £. Moreover, the dynamics of the molecules is highly simplified and completely
synchronous. All molecules perform free streaming from one lattice node to a neighboring one in a time
period 8t. Next, particles arriving at a node collide with each other, thus exchanging momentum in some
deterministic or stochastic way. The collisions on the nodes all happen at the same time and the duration
of a collision is assumed to take zero time. By enforcing conservation of mass, momentum, and energy
in a collision, we have created a model gas with a fully discrete and simplified, yet physically correct
micro dynamics. With this LGCA dynamics, we may then investigate macroscopic variables, i.e., averaged
quantities such as fluid density or momentum, which vary over time and length scales much larger than
those of the micro dynamics, and hope that they behave as a real fluid. In fact, we know that if A is sufficient
isotropic (to be defined later) an LGCA, when operated in the right limits, reproduces the incompressible
Navier—Stokes equations and therefore is a model for fluid dynamics.

The most complete account of LGCA (including a highly useful “guide to further reading”) is the book
by Rivet and Boon (2001). Other influential monographs on LGCA are Rothman and Zaleski (1997),
Wolf-Gladrow (2000), and Chopard and Droz (1998). Finally, Boghosian (1999) provides a nice overview
of lattice gases and cellular automata.

21.5.1 The Road to Lattice Gas Cellular Automata

As suggested by Rivet and Boon (2001), LGCA can be traced back to discrete kinetic models, in whicha
gas is modeled as a collection of particles with continuous position and time variables, but with a (small)
discrete set of velocities. Such discrete kinetic models were studied intensively starting in the sixties of the
previous century. LGCA would then be one step further down the road to minimalist models, in which
also space and time are discrete. Indeed, in 1972 the point of departure for Hardy and Pomeau, who 1 year
later introduced the first real LGCA, was the discrete velocity Maxwell model (Hardy and Pomeau, 1972).
In contrast, Boghosian (1999) suggests a connection between early minimalist discrete models in statistical
physics (such as the Ising spin, Creutz, and Kawasaki models) in the sense that LGCAs are comparable
minimalist models, but on top of that they are also truly dynamic and have conserved quantities (mass,
momentum, and energy) whose dynamics (approach to equilibrium) are of interest. Boghosian also points
out that a first step toward LGCA probably was the Kadanoff-Swift model (Kadanoff and Swift, 1968).
Strictly speaking this was not a CA, but it had a number of ingredients that are close to LGCA, such a
fictitious particles living on a 2D Cartesian lattice with discrete velocities oriented along the diagonals of
the lattice. The dynamics would then be performed sequentially on randomly selected particles. Froma
statistical physics point of view, this model already had many features of real fluids that made it quite
interesting to study. Interestingly, the basic papers on LGCA have never referenced the Kadanoff-Swift
paper.

The first real LGCA was introduced by Hardy, Pomeau and de Pazzis in 1973 (Hardy et al., 1973), and
its hydrodynamics were studied in detail in Hardy et al. (1976). The HPP model, as we now call it, is a real
CA. It has an underlying 2D Cartesian lattice. On each node, particles with unit mass are defined that can
have one one of the four discrete velocities ¢;, i € (1,2, 3,4) (see also Figure 21.6(a)):

nuns(Yeam (D) m()

At each node only one particle can have a velocity ¢;. This exclusion principle allows us to denote the state
of a node as a binary 4-vector n. A value “TRUE” (or 1) of element i of the state vector (denoted as 1;)
encodes for the presence of a particle with velocity ¢;, and a value “FALSE” (or 0) denotes the absence
of a particle with velocity ¢;. S0, the vector (1,0,0,1) would represent a state as shown in Figure 21.6(b).
The number of different states per node in HPP is 16. Owing to the exclusion principle, the maximum
number of particles on a node is 4. The dynamics is very straightforward. First, incoming particles at
a node collide, and next particles perform a free streaming, in which they move from their node to the
neighboring node in the direction of their velocity. We assume that the time for this streaming 8t =1,50

————
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FIGURE 21.6 The HPP model: (a) shows the four velocities of the model, (b) an example of a node with state
{1,0,0,1), and (c) the only possible collisions in HPP, (1,0,1,0) < (0,1,0,1).

that with the velocities as defined in Eq. (21.1), particles move exactly from one node to a neighboring
node during the streaming phase. Assigning a position vector r to the state vector of the node at r, and a
time stamp ¢, the streaming step can be mathematically expressed as

ni(r+cj,t + 1) = ni(r, 1) (21.2)

In words, the content of the element n; of the state vector at position r at time { is copied in the next time
step to the neighbor at position r + ¢;. If nj(r, t) = 1, this means that a particle streams fromrtor+cg;.
If mi(r,t) = 0, it just means that at ¢ + 1 n;(r +¢;, t + 1) is correctly set to 0.!

The collision is also very straightforward. In a collision, the velocities of the particles are redistributed.
During a collision we must conserve mass, momentum, and energy. Since for all particles the magnitude
of velocity and their mass is 1, their kinetic energy is always 1/2. Therefore, mass conservation immediately
implies energy conservation.” Mass conservation means preservation of the number of particles in the
collision, The momentum of a particle is just ¢;. So, during a collision we must preserve the total momen-
tum on a node, i.e., 1€ + n2¢3 + n3cs + nycy. By systematically going through all possible 16 states, it
turns out that only one type of collision is possible (see Figure 21.6[c]). These are the “head-on” collisions,
where two particles arriving from north-south (or east-west) are scattered over 90° and after the collision
propagate to east-west (or north-south), or in terms of the state vector, (1,0,1,0) < (0,1,0,1).

The collision can also be described more formally. We define a collision operator A;(n), which can take
the values {—1,0,1}. If before the collision a particle with ¢; is present, and after the collision this particle
is scattered into another direction, we must have A;(n) = —1 (i.e., the particle is removed from velocity *
channel 1). In the reverse case, when as the result of a collision, an empty channel i is filled with a particle,
wehave A;(n) = 1. Finally, if the collision does nothing to channel i, A;(n) = 0. To find an expression for
Ai(n), we must therefore have a trick to select certain states that undergo a collision (the two head-on
qases) and then assign the correct value to A;(n). Here we take advantage of the binary notation that
we introduced using the symbols “0” and “1.” In the collision operator, we assume these symbols are in
fact the integer numbers 0 or 1 and we compute with them. So, to select say the state (1,0,1,0) we could
formulate a logical expression as n; AND (NOT nz) AND n3 AND (NOT ny), which returns TRUE if the
state (1,0,1,0) is present at a node and FALSE in all other cases. We could also write nj (1 —n)n3(1 — n4)
and fill in the number 1 and 0 depending on the state. This expression will evaluate to 1 for the state
(1,0,1,0) and to 0 in all other cases. In the case of a precollision state (1,0,1,0), we know that the result
of the collision must be (0,1,0,1), so for, e.g., channel 1 we must have A;(n) =—1. This we can achieve
by writing A (n) = —ny (1 — nz)n3(1 — ny). However, this is not the complete expression as we must also
accommodate the reverse situation, i.e., that the precollision state is (0,1,0,1), in which case a particle will
appear in channel 1, and A(n) = 1. We achieve this by adding another term, i.e., (1 —ny)n2(1 —n3)ny
resulting in the full expression Aj(n) = —n(1 —na)n3(1 —ny) + (1 —ny)na(1 — n3)ny, and likewise for

IPhysicists would say that in this case a “hole” is streaming from r to r +¢;.
For this reason, the HPP model (and other “homokinetic” models) have no thermal effects.
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the other channels 2—4. By introducing the shorthand notation ;= 1 — n;, we can finally write the HPP
collision operator in the following compact form:

Ai(n) = —niflig Nig2fiss + i1 Mg 23 (213)

where the index i is taken modulo 4 (so if i=2,i+3= 1). With an expression for the collision operator,
we can now write the full equation for the dynamics of the HPP model:

nilr + ¢t +1) = ni(r, t) + Ai(n(r, 1)) (21.4)

In fact, Eq. (21.4) expresses the micro dynamics for all LGCAs. However, for each specific model, the total
number and definitions of the ¢; may be different, and the details of the collision operator are different.
We can now formulate the following CA rule for LGCA.

for each node in the Lattice do
1. Perform a collision step, i.e., redistribute the state

vector n such that n; := ni + A; (m)
2. Perform a streaming step, - o e
for all 1
copy nj to nj at position = my position + €j.
update the time t := t + 1

Having defined the structure, collision operator, and the dynamics as expressed in the CA rule, we are
now in the position to execute the HPP LGCA. Next, we must define observables. The total number of
particles and total momentum on a node are obtained by summing n; and njc; over all , respectively.
However, these instantaneous observables are very noisy, they fluctuate strongly as a function of time
and position. Although these fluctuations contain a wealth of interesting physical information (Rivet and
Boon, 2001), we want to observe smooth hydrodynamic fields such as the density or momentum of the
fluid. To achieve this we must first take ensemble averages of n;, yielding f; = <n;>. The f; values are real
numbers between 0 and 1 and should be interpreted as the probability to find a particle with velocity &.
In an LGCA simulation, we can compute the ensemble average by, e.g., taking spatial or temporal averages
of the n;(r.t). We can now define the fluid density p and fluid velocity u as follows: -

b
plr,t) =Y filr,1)
=1

. (21.5)

p(r, u(r, 1) = cifi(r, 1)
i=1

where b is the total number of velocity vectors (for HPP b=4). With these definitions, and the full
machinery of statistical mechanics and kinetic theory, one can work out the equations that govern p and
u. Although the resulting equations for HPP have a strong resemblance to the Navier-Stokes equations
that govern macroscopic fluid flow, there is a major flaw. It turns out that the resulting macroscopic
equations are not isotropic, meaning that the flow properties depend on the orientation with respect to the
underlying lattice. This problem can be traced back to isotropy properties of the underlying HPP lattice
and its four discrete velocities.” This anisotropy is of course unacceptable for a model of fluid dynamics,
and therefore HPP did not catch the attention of people interested in doing fluid dynamics.

In 1986 the big breakthrough came for LGCA. Frish et al. (1986) introduced the first LGCA that produces
isotropic macroscopic equations for the density and velocity, reproducing the Navier—Stokes equations
for an incompressible fluid. The main innovation in this FHP model was to change the underlying lattice

3echnically, the HPP model has a crystallographic isotropy of order 3, which is too low to obtain isotropic
macroscopic equations (for details on this issue, see Rivet and Boon [2001]).
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(a) (b) (c)

FIGURE21.7 The FHP model: (a) shows the six velocities of the model, (b) the head on collision, and (¢) the triplet
collision,

102 2D triangular lattice, and define six discrete velocities along the six directions of the lattice (see
Figure (21.7[a]). This lattice has sufficient isotropy? to reproduce isotropic Navier—Stokes equations for
an incompressible fluid. In this version of the FHP model (coined FHP-I),” the magnitude of the six
discrete velocities are the same and equal to 1. Therefore, mass conservation and energy conservation are
tquivalent and FPH-1 is also an a-thermal model. The micro dynamics are governed by Eq. (21.4), but we
need to adapt the collision operator. In FHP-I, we only consider two types of collisions (see Figure 21.7[b]
and Figure 21.7[c]). The first type is the head-on collision (as in HPP). However, in this case two possible
posteollision states are possible (rotated +60° or —60° with respect to the incoming direction). FHP-I
randomly selects one of those two postcollision states with a probability of 0.5. Because of this, FHP-I is
o longer a deterministic CA, but has become probabilistic. The second type of collision is the triplet state,
where three particles arrive with mutual angles of 120°. The postcollision state is the same triplet rotated
over 60°. Using the same procedure as for HPP, we can express the collision operator for FHP-1 as follows

"HP—1 i f e = SRR
A;}H} (n)=~— Mili g 1 Mg i 304 4Ty 5
+ ENiNip  AigoTiiy3nisqTiiys
+ (1 — E)iftip 1 i o M 3T g Niss (21.6)

= il M2 i 3 Mg Mg
W HiMip 1 Fig2Mip 3744 My

where & is a Bernouilli random variable (Le., it randomly takes the values 0 or 1) with mean 0.5. On each
time step and at each lattice node & is evaluated. On the right-hand side, the first three terms represent the
head-on collisions and the last two terms the triplet collision. The variable i is now taken modulo 6.

We can now proceed to execute the FPH-I LGCA and compute observables using Eq. (21.5), where
b=6.In Figure 21.8, an example is shown, demonstrating the need to perform ensemble averaging before
computing the observables. In Figure 21.8(a) we show the results of a single iteration of FHP-I, in fact
we have assumed that f; = n; (i.e., no ensemble averaging is performed). Clearly, the resulting flow field is
very noisy. To observe smooth flow lines one should really compute f; = <n;>. Because the flow is static,
We compute the ensemble average f; by averaging the Boolean variables n; over a large number of FHP
iterations. The resulting flow velocities are shown in Figure 21.8(b).

"t has crystallographic isotropy of order 5, so sufficient for the required fourth-order isotropy needed for isotropic
large-scale dynamics.

°A number of extensions to FHP exist, including the so-called rest particles (i.e., particles on a node with zero
velocity, ¢ = {0,0}), and with extended collision operators, taking into account all possible collisions (including the
rest particle). These extensions will not be further treated here, but see Rivet and Boon (2001).
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FIGURE21.8 (a) FHP simulation of flow around a cylinder, the result of a single iteration of the LGCA is shown (i
no averaging). The arrows are the flow velocities, the length is proportional to the absolute velocity. The simulations
were done on a 32 x 64 lattice, the cylinder has a diameter of 8 lattice spacing, only a 32 x 32 portion of the lattice s
shown; periodic boundary conditions in all directions apply. (b) As in (a), the velocities are shown after averaging over
1000 LGCA iterations.

The year 1986 marked the beginning of an enormous research activity on LGCAs. Chapter 11 (guidefor
further reading) from Rivet and Boon (2001) provides numerous references to this literature. Here wewill
only touch upon a few interesting developments of practical interest. First, we mention the extension 10
three-dimensional (3D) models, clearly a necessity for a serious model of hydrodynamics. It turns out that
a 3D LGCA is far from trivial. In fact, the LGCA community rapidly realized that all 3D regular (Bravais)
lattices do not have sufficient isotropy (“the magic didn’t work,” as Rivet and Boon put it). However, by
taking a detour into four-dimensional (4D) space and projecting back to three dimensions, d’Humiérs,
Lallemand, and Frisch were able to build a 3D LGCA with all required isotropy properties (d’Humires
etal., 1986). This model is based on a 4D face-centered hyper cube ( FCHC), and has as many as 24 velocity
channels per node. The sheer amount of possible states in this model (224 =16,777,261) and the number
of possible collisions (18,736 or 10,805, depending on assumption put on the model) make it completely
impossible to write down an explicit equation for the collision operator, and one must resort to a more
general approach. Moreover, an efficient implementation of such a complicated collision operator requires
new algorithmic strategies (see, e.g., Hénon, 1987), clever lookup table strategies (see, e.g., Rivet and Boon,
2001), or a combination of both.

An example of a thermal LGCA (i.e., a model where energy conservation is nontrivial) is the 2D
model proposed by (Grosfils et al. 1992). This GBL model, like FHP, is defined on the 2D triangular
lattice, but now has 19 velocities. It has one rest particle, six particles connected to nearest neighbors
(lleill = 1), six connected to next-nearest neighbors (||cil| = V/3), and six connected to next-next-nearest
neighbors (||ci|| =2). The GBL model has 2'? = 524,288 possible states, of which 517,750 can undergo
collisions that change the state while preserving mass, momentum, and energy. Again, the complexity of
the collision operator requires efficient implementations (see, e.g., Dubbeldam et al., 1999). GBL is a tru¢
thermo-hydrodynamic model for 2D fluid dynamics.

LGCAs are easily extended to multiple species models by coloring the particles. Besides the normal
collision rules, one also demands a color conservation. After collisions, colors are then randomly redis-
tributed, while preserving total color. In this way nonreacting mixed fluids can be modeled. Moreover, by
adding reactions one can create reaction—diffusion LGCAs (see, e.g., Boon et al., 1996) or by adding an
interaction term between differently colored particles, one can model multiphase immiscible fluids (se,
e.g., Rothman and Zaleski, 1997).
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2152 LGCA and Fluid Dynamics

The Navier-Stokes equations for an incompressible fluid read
V-u=0 (21.7)

—VP +vV2u (21.8)

||
+
=
<
=
I

where P is the pressure and v the viscosity of the fluid. Eq. (21.7) expresses mass conservation, and
Eq. (21.8) momentum conservation. LGCAs with sufficient isotropy (e.g., FHP, GBL, and FCHC) can
reproduce these Navier-Stokes equations under the assumption that the velocities u are small. This can
be demonstrated by explicit simulations and by theory. In this section, we just outline such theory, for all
details we refer to Frisch et al. 1987), Rivet and Boon (2001), Rothman and Zaleski (1 997), Chopard and
Droz (1998), and Wolf-Gladrow (2000).

The starting point is the LGCA micro dynamics (see Eq. [21.4]). The mass and momentum conservation
of the collision operator can be expressed as

b

thn[r,m =0 (21.9)
i=1

b

Y cihin(r, 1) =0 (21.10)

=]

One can ask if the evolution equation (21.4) is also valid for the averaged particle densities f;. It turns
out that this is true, but only under the Boltzmann molecular chaos assumption, which states that par-
ticles that collide are not correlated before and after collisions, or, that for any number of particles k,
(M ...me) = (m1)(n3) « - - (mi). In this case, one can show that (A;(n)) = A;(f), where f is the vector
containing all f;. By averaging Eq. (21.4) and applying the molecular chaos assumption we find

filx+ci,t +1) - filx, t) = Ai(f(x, 1)) (21.11),
Afirst-order Taylor expansion of fi(x+ ¢;, t + 1), substituted into Eq. (21.11), results in
Dfi (X, 1) + duCia fi(x, 1) = A;(N(x, 1)) (21.12)

Note that the shorthand 8, means d/dt; the subscript @ denotes the a-component of a D-dimensional
vector, where D is the dimension of the LGCA lattice: and we assume the Einstein summation convention
over repeated Greek indices (e.g., in two dimensions OxCia fi(X, 1) = dscix fi (X, 1) + 8,5, fi(x,1)). Next,
Wesum Eq. (21.12) over the index i and apply Eq. (21.5), Eq. (21.9), and Eq. (21.10), thus arriving at
& p+ dypu=0, or

oo :

— +V.pu=0 (21.13)

at
which is just the equation of continuity that expresses conservation of mass in a compressible fluid. One
@n also first multiply Eq. (21.12) with ¢; and then summate over the index i. In this case, we arrive at

drpu+ dgllgg =0 (21.14)

with

n[rﬁ = Eciuciﬂﬁ [.-]I‘]SJ

The quantity M,s must be interpreted as the flow of the a-component of the momentum into the
f-direction; M,y is the momentum density flux tensor. To proceed, one must be able to find expressions
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for the particle densities f;. This is a highly technical matter that is described in detail in, e.g., Frisch etal.
(1987) or Rivet and Boon (2001). The bottom line is that one first calculates the particle densities for an
LGCA in equilibrium, f”, and then substitute them into Eq. (21.15). This results in an equation that is
almost similar to the Euler equation, i.e., the expression of conservation of momentum for an inviscid
fluid. Next, one proceeds by taking into account small deviations from equilibrium, resulting in viscous
effects. Then, after a lengthy derivation one is able to derive the particle densities, substitute everything
into Eq. (21.15) and derive the full expression for the momentum conservation of the LGCA, which very
closely resembles the Navier-Stokes equations for an incompressible fluid. The viscosity and sound speed
of the LGCA are determined by its exact nature (i.e., the lattice, the discrete velocities, and the exact
definition of the collision operator).

We must stress that the derivations in this section are very loose, in the sense that we ignored many
important details. For instance, the Taylor expansion, which resulted in Eq. (21.12), was only accurate up
to first order. In fact one can show that an LGCA obeys the Navier-Stokes equations up to second order.
Also, we introduced very loosely the concept of equilibrium distributions, and small deviations from
equilibrium that give rise to viscous effects. By using a very powerful technique, known as the Chapmann-
Enskog expansion, one is able to solve Eq. (21.11) and derive expressions for mass and momentum
conservation of an LGCA, which turn out to be almost equal to the equations for a real, incompressible
fluid.

To be complete, we note that the derivation of the Navier-Stokes equations for the LGCA is correct in
the limit of small Mach and small Knudsen numbers. The first restriction means that the flow velocities
must be much smaller than the sound speed of the LGCA, and the second limit demands that the mean
free path of the particles must be much smaller than some macroscopic dimensions of the LGCA, i.e,, the
particle density cannot be too small.

Finally, we must mention one last technical detail. As stated above, the momentum conservation
equations of the LGCA are almost equal to the Navier—Stokes equations of a real fluid. The difference lies
in a factor g(p) in the advection term (the u - Vu term in Eq. [21.8]), which leads to the breakdown of
Galilean invariance. In the low velocity limit, however, this is not a real problem, because the fluid becomes
incompressible and g(p) a constant. A rescaling of the velocity and time with g(p) allows to fully recover
the exact Navier—-Stokes equations for an incompressible fluid.

21.5.3 Simulating an LGCA

Although LGCA simulations can benefit from generic CA environments, there are a few typical aspects of
LGCA that will be discussed here. First, most 2D LGCAs are defined on triangular lattices. Such lattice
should be represented by some 2D array. To denote each node in the triangular lattice with coordinates
(x,y) by integer numbers, we multiply the coordinates by a factor (2,2/ +/3). To avoid awkward diamond-
shaped grids representation, the streaming step is different for even and odd parity of the lattice (see Figure
21.9). This same mapping can be used for the 19 velocity GBL model.

c C 3 Cj Co Cs Co 2
C4
Cy (] 4 Cyq Cy Cy
5 Ala] L
s o Cs |[Ce Cs| Ce
(a) (b) (©)

FIGURE 21.9 The mapping of the original triangular lattice (a) to a square domain. The mapping and streaming is
based on the parity of the lattice. On even lines we propagate using (b) and, for odd lines we propagate using ().
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The state vector per node of an LGCA is 3 p-vector containing bits. So, the total LGCA lattice can be
sored with Nx b bits with N being the total number of nodes in the lattice. The streaming step can be
accomplished by using two different lattice grids. The second lattice is used to calculate the new state at
the next time step from the first lattice. After updating the Jattice, we swap the pointers to the lattices. If
memory size is problem (&g large 3D problems), then it would be possible t0 do the streaming Step
in-place, at the cost of accessing each lattice point several times instead of just once.

The collision can be handled in two ways. If the collision is not Vvery complicated (as with HPP or
FHP-1), then it can be implemented as logical operations on the state bits. For instance, to implement the
HPP collision operator (Eq. [21.3]), one could first define a selection operator Si that returns TRUE if a
head-on collision state is present. For instance, for channel 1 the selection operator S, would be

§y=(m AND (NOT n2) AND n3 AND (NOT n4)) OR ((NOT ny) AND

ny AND (NOT n3) AND n4).

1§ returns 1, collision occurs, and the state m must flip (from 1 to 0 or vice versa). If §; returns 0, the
date n; must stay the same- The postcollision state (my + A1(n)) can be obtained by applying the exclusive
OR operation on M1 with Sy, i.e,m + Aj(n)=m XOR 5;.

This postcollisian value is then streamed using the procedures as sketched above.

Another approach is to use lookup tables. If the collision becomes t00 complex to explicitly write down
the Boolean expression (as with FCHC or GBL) this is the only possibility. However, one may also want
to resort to lookup tables for HPP or FHP as this may be faster. We give an example of the use of lookup
tables in the implementation of the GBL model (for details see Dubbeldam et al.,, 1999). More discussions
on the lookup tables can be found in Rivet and Boon (2001). The first step is to group all 21 states of
GBL in equivalence classes with the same total mass, momentuim, and energy. The collision then amounts
1o randomly selecting 2 state from the equivalence dlass to which the input state belongs. It is clear that
the input state is also among them (meaning no collision when selected as output state), but since most
gquivalence classes are quite large this has little influence. For the 19-bits GBL model we create a collision
table of 2" indexes, followed by the equivalence classes (see Figure 51.10). Every index of an element
in a class points to the start of the class (for instance, in Figure 21.5, 138, 273, and 41,024 all point to
219 4 X). The left 12 bits are used to indicate the number of collision outcomes. If the number is €10,
then the outcome i equal to the input state. Otherwise; the value of the right 20 bits s an index pointing
o the start point of an array of possible postcollision states, of which we choose one at random (using the
information on the size of the equivalence class).

To have solid boundaries or solid objects in the flow, on¢ must be able to set boundary conditions. In
LGCA this is almost trivial using the bounce-back rule, where particles that hit the boundary are reversed
and sent back into the direction they camé from. To start an LGCA simulation the Boolean field must
be initialized. Usually one knows some initial values of the macroscopic fields (the density and the fluid
velocity). Based on these values, the initial Boolean field must be computed. This is done by using the
gquilibrium distribution f that is explicitly known as 2 function of pand uin the limit of small u (se¢
Rivet and Boon, 2001, Chapter 4). This equilibrium distribution gives the average of the Boolean field in
brium (i.e., the probability that a particle is presentin channel i), so, the actual field is computed from
the equilibrium distribution using 2 random number generator that delivers random numbers between
0.0 and 1.0. If the random number is smaller than fi“. then n; 18 initialized to 1, otherwise it is set to 0.

With the initialization and the boundary conditions in place, the LGCA simulation can be started. If the
flow is driven by some pressure gradient, one can apply a body force that, after each collision, effectively
adds some momentum 0 the nodes. This was done in the simulations presented in Figure 21.8. Finally,
{0 extract the wanted macroscopic fields, an ensemble average must be computed. This is typically done
using time- OF space-averaging, or a combination of both. In Figure 2 1.8(b) time averaging Was applied.

LGCA simulations have been executed on every type of computers, from desktop PCs 10 massively
parallel supercomputers, and even dedicated CA and LGCA machines (including prugrammab\e FPGA
hardware). On current state-of-the-art computers, one can easily simulate quite large 2D and 3D LGCAs
(see Dubbeldam et al., 1999) for an example of running the GBL model on a parallel computer).

e
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FIGURE21.10 Collision table. The first 2'? indices are divided into 12 and 20 bits. The left 12 bits denote the nunther
of collision outcomes, the rightmost 20 bits denote an index number from where the collision outcomes are stored in
the table. These collision outcomes start from index 2'7. The figure shows an example for an equivalence class of siz3.

21.5.4 Some Applications

Lattice gases have been and are still being applied® to challenging problems of multiphase fluids in complex
(e.g., porous) flow domains. These typically include fluid mixtures and colloids, reaction diffusions
systems, immiscible fluids and phase separation, multiphase flows, fluids with free interfaces, magneto
hydrodynamics, nonideal fluids, etc. Because of the ease to define boundary conditions using the bounce
back rule, all such complex fluids have been studied in porous media. For details we refer to the LGCA
books and references therein (Rivet and Boon, 2001; Rothman and Zaleski, 1997; Chopard and Drog,
1998).

21.5.5 Lattice Boltzmann Method

Immediately after the discovery of LGCA as a model for hydrodynamics in 1986, it was criticized on
three points. LGCA have noisy dynamics, lack Galilean invariance, and have an exponential complexity
of the collision operator. The noisy dynamics is clearly illustrated in Figure 21.8 and the lack of Galilean
invariance was discussed above. Adding more velocities in an LGCA leads to increasingly more complex
collision operators, exponentially in the number of particles (remember the numbers for GBL and FCHC).
Therefore, another model, the lattice Boltzmann method (LBM), was introduced. This method is reviewed
in detail in Succi (2001).

The basic idea is that one should not model the individual particles n;, but immediately the particl
densities f;, i.e., one iterates the lattice Boltzmann equation (Eq. [21.11]). This means that particle densities
are streamed from cell to cell, and particle densities collide, immediately solving the problem of noisy

©Although it must be said that the Lattice Boltzmann method, which will be mentioned in the next section, currently
is the preferred method over LGCAs, although in special situations LGCAs are still to be preferred.
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(a) (b)

FIGURE 21.11 (a) Flow in a porous fiber mat; and (b) a porous medium composed of a dense random packing of
spheres.

dynamics. However, in a strict sense, we no longer have a CA with a Boolean state vector (in fact, the state
is now a vector of real numbers, so the state space per node is infinite). However, we can view LBM as a
generalized CA. By a clever choice of the equilibrium distributions 1., the model becomes isotropic and
Galilean invariant, thus solving the second problem of LGCA. Finally, a very simple collision operator can
be introduced. This so-called BGK collision operator models the collisions as a single-time relaxation ,
toward equilibrium, i.e.,

; 1 ;
A?(,K(N)z_‘;(ﬁ_ﬁu} (21.16)

Eq(21.11) and Eq. (21.16) together with a definition of the equilibrium distributions result in the Lattice-
BGK (L-BGK) model. The L-BGK model leads to correct hydrodynamic behavior in two and three
dimensions. The L-BGK not only applies to the triangular lattice, but also correctly works for other
lattices, e.g., 2- or 3D cubical lattices with nearest and next-nearest neighbor interactions. The LBM
and especially the L-BGK have found widespread use in simulations of highly complex fluid dynamical
problems, including turbulence, multiphase flows, spinal decomposition, etc. To get a flavor we refer
to Succi (2001). Below we present a few examples of successful L-BGK applications. All these L-BGK
simulations were routinely executed on parallel computers, using a highly efficient parallel implementation
of the L-BGK method (Kandhai et al., 1998).

The L-BGK method has played a significant role in studying flow in porous media. In Figure 21.1 1(a),
we show an example of flow in a porous medium that consists of randomly placed fibers. This fiber mat
isa model system for paper. Through L-BGK simulations, one can compute the permeability of such fiber
mats, as a function of the porosity (Kopenen, et al., 1998). The results showed a remarkable agreement with
experimental results. Since the permeability could be studied over a very large range of volume fractions,
much larger than accessible through experiments, the authors were able to check the quality of theoretical
approximations for this particular problem.

Another example of successful L-BGK simulations of flow in porous media was the transient dispersion
in homogeneous porous media. Figure 21.11(b) shows an example of a medium of a random distribution
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(a)

FIGURE 21.12 (a) Flow in a static mixer reactor; and (b) flow in the lower abdominal aortic bifurcation at peak
systole.

of densely packed spheres. Here the flow around the spheres is computed, as well as advection-diffusion
of tracer particles in the flow, and diffusion of the tracer particles through a microporous structure of
the spheres. From these simulations, the authors could derive transient tracer dispersion curves, which
showed a very good agreement with propagators that were measured using nuclear magnetic resonance
(Kandhai et al., 2002a, 2002b).

L-BGK simulations have been compared extensively with traditional computational fluid dynamics
(CFD) codes. As an example, we mention flow through a static mixer reactor (see Figure 21.12[al).
The flow fields as computed with L-BGK were in very good agreement with results stemming from a
commercial CED package (FLUENT). The computed fluid flux through the system, as a function of the
applied pressure gradient, was in very good agreement with experimental data (Kandhai et al., 1999). It
turned out that preparing the computational grid for L-BGK is trivial (just a Cartesian grid), whereas
creating a body-fitted finite element grid for this geometry is very tedious.

As a final example we mention the application of L-BGK for simulation of blood flow. In Figure 21.12(b),
we show the results of L-BGK simulations of time periodic systolic flow through the bifurcation of the
lower abdominal aorta. The geometry is taken from MRI images of real patients. The results are in good
agreement with previously published studies of systolic flow in region of the arterial tree (Artoli et al,
2005).
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