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Abstract

We compare the Iserver-Occam, Parix, PVM, and Express parallel
programming environments on a Parsytec GCel with 512 T805 transputers.
The comparison will be made by a detailed analysis of the performance of one
particular application. In our approach we start with this application and isolate
the basic (environment dependent) building blocks. These basic building
blocks, which depend on floating point performance and communication
capabilities of the environments, are analysed independently. We have measured
point to point communication times, global communication times and floating
point performance. All information will be combined into a time complexity
analysis, allowing us to compare the environments on all relevant degrees of
functionality. Together with demands for portability of the code, and
development time (i.e. programmability), an overall judgement of the
environments can be made.

1 Introduction

Real success of Massively Parallel Processing critically depends on

programmability of the parallel computers and on portability of parallel programs.

We are made to believe that “parallel computing has come to age”. Although it is safe

to say that parallel hardware has reached a convincing stage of maturity, both

programmability of the parallel hardware and portability of parallel programs still

pose serious problems to developers of parallel applications.

Today, an application programmer is usually faced with a situation as drawn in

figure 1. A parallel computing platform supports native environments, which allow

very low level programming, or allow a more abstract view of the hardware.

Furthermore, generic environments, also available on other platforms, can be used.

These environments can be grouped in order of decreasing hardware visibility and

increasing portability. Of course, one expects that the price to be paid for portability

is a decrease of control of the hardware and associated degradation of performance.
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Fig. 1. a typical situation encountered by application programmers of parallel
systems.

In this paper we will compare two native environments, Iserver-Occam [1] and

Parix [2], with two generic environments, Express [3] and PVM [4]. All experiments

are executed on the Parsytec GCel. As part of a contract with Genias, Sloot et al.

ported PVM to the GCel [5].

Our experiments allows us to judge the trade-off which clearly exists between

native environments, usually offering a better performance at the price of extensive

programming effort, and generic environments which allow to develop more portable

programs. In this paper we will briefly describe our methodology and summarise the

most important results. Reference [6], chapter 6 contains further details.

As a representative case study we have implemented, in the four environments,

an application from Physics: Elastic Light Scattering simulations using the Coupled

Dipole method [6, 7, 8]. This application is a real application (in the sense that it is

used for actual production), the time complexity of the program is predictable, it

contains global communication routines, and it does not exhibit (severe) load

imbalance.

The run time of the parallel Coupled Dipole implementation is determined by
the floating point performance τcalc, i.e. the time to perform a floating point

operation, and global communication times (specifically a vector gather operation). In

the Iserver-Occam and Parix implementation the global routines are explicitly

implemented using (nearest neighbour) point to point communications. In Express

and PVM we rely on the available global communication routines. In order to

compare the environments we have measured floating point performance, basic

communication routines, global communication routines and finally the execution

time of the parallel Coupled Dipole method.

2 Results



Measurement of the floating point performance of the Coupled Dipole
simulation results in: for Iserver-Occam τcalc = 2.63 µs/flop; for Parix τcalc = 1.28

µs/flop; for Express τcalc = 1.72 µs/flop; and for PVM τcalc = 1.3 µs/flop. Analysis

of the communication performance reveals that:

1] Both the point to point - and the global communication routines can be fitted
to a straight line, Tcomm = τsetup + n τsend, with n the number of transferred

bytes;

2] The Iserver-Occam environment is the most efficient for communication,

followed by Parix, Express and PVM. The send time for the point-to-point

communication is ±0.85 µs/byte, ±.90 µs/byte, 0.90 - 1.54 µs/byte, and 0.8 -

1.8 µs/byte for Iserver-OCCAM, Parix, Express and PVM respectively. The

setup times are (in the same order), ±3.8 µs, 67 µs, 50 - 300 µs, and 2000 -

3000 µs.

3] On large processor domains both Express and PVM have remarkably high

setup times for the global communication routines, in the order of seconds;
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Fig. 2. The execution time of a total Coupled Dipole simulation (including I/O), as a
function of the number of processor, for N = 32 and N = 912; the solid line is for
Parix, the short-dashed line for Iserver-Occam, and the long-dashed line for Express.
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Fig. 3. The efficiency of a total Coupled Dipole simulation (including I/O), as a
function of the number of processor, for N = 32 and N = 912; the solid line is for
Parix, the short-dashed line for Iserver-Occam, and the long-dashed line for Express.

Finally we measured the execution time of the parallel Coupled Dipole

simulation as a function of the number of processors, for a set of relatively small

simulations containing 32 up to 2200 dipoles. Unfortunately, in this case PVM

results are not yet available. We are currently performing these experiments, and the

results will be published elsewhere. From the execution times the parallel efficiencies

are calculated. Typical results for the execution time and efficiencies are shown in

figures 2 and 3 respectively.

Knowledge of the floating point performance and the global communication

capabilities of the environments allows us to interpret and understand the execution

time and efficiency of the application. Next we will investigate if we can predict the

execution time of the Coupled Dipole application, using the results of the basic

performance measurements. We will only present results for the execution time of

one Conjugate Gradient iteration, which is the computational kernel of the Coupled

Dipole simulation. Typical results are shown in figures 4 and 5.

In all cases we can accurately predict the execution time of the Parix, and

Iserver-Occam implementation. For small partitions we can also accurately predict the

execution time of the Express implementation. However for larger partitions errors

between theory and experiment as large as 30 % are observed. These errors can be

traced back to uncertainties in the fit parameters of the global communication routine

in Express.
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Fig. 4. The execution time (in µs) on 32 processors, for one Conjugate Gradient
iteration, as a function of the number of dipoles N ; the dots are the measurements, the
lines are the theoretical predictions; solid line for Parix, short-dashed line for Iserver-
Occam, and long-dashed line for Express.
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Fig. 5. Same as figure 4, but now for 256 processors.

4 Discussion and Conclusions

We can predict the execution time of our specific application in the different

environments using basic performance measurements in these environments.

Therefore, these basic performance measurements, combined with a time complexity



model and information on programmability and portability, allows us to compare the

environments. Table 1 compares the four environments on a scale from good (++) to

poor (--). The environments are judged on programmability (Prog.), on source level

portability between hardware platforms (Port.), on the availability of tools, such as a

performance analyser, debuggers etc. These first three characteristics are independent of

the particular application. The rest of the columns are devoted to application

dependent characteristics. These characteristics are the floating point performance

(F.P.), the communication performance (Comm.), and the scalability, or efficiency,

of the resulting parallel program (Scal.). Depending on the importance of e.g.

portability versus scalability or floating point performance an overall judgement of

the environments can be made.

Prog. Port. Tools F.P. Comm. Scal.

Iserver - - - - - - - ++ ++

Parix +- - - ++ + +

PVM - + ++ - ++ - - -

Express + ++ + + - - -

Table 1. A comparison of the Iserver-Occam, the Parix, and the Express environment
on programmability (Prog.), on source level portability (Port.), on the availability of
tools (Tools), on floating point performance (F.P.), on communication performance
(Comm.), and on scalability, or efficiency, of the resulting parallel program (Scal.).

In conclusion, we have compared the Iserver-Occam, Parix, Express, and PVM

parallel programming environments on a Parsytec GCel, by a detailed analysis of the

performance of a particular application. Our approach allows us to compare the

environments on all relevant degrees of functionality. Together with demands for

portability of the code, and development time (i.e. programmability), an overall

judgement of the environments can be made.
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