
An agent based architecture for constructing
Interactive Simulation Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. mr. P. F. van der Heijden
ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Aula der Universiteit
op donderdag 9 december 2004, te 10.00 uur

door

Zhiming Zhao

geboren te Jianhu, Jiangsu, P. R. of China

2

Promotiecommissie:
Promotor: prof. dr. P. M. A. Sloot

Co-promotor: dr. G. D. van Albada

Overige leden: prof. M. Boasson
prof. dr. F. M. T. Brazier
prof. dr. C. Sun
prof. dr. Z. Xu
dr. H. Afsarmanesh
dr. M. Bubak

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The Work described in this thesis has been carried out at the Section Computa-
tional Science at University of Amsterdam, in the Advanced School for Computing
and Imaging (ASCI) graduate school. It was financially supported by University of
Amsterdam, and the European Union through contract number IST-2001-32243 un-
der the CrossGrid project. This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). Part of this project is supported by
a BSIK grant from the Dutch Ministry of Education, Culture and Science (OC&W)
and is part of the ICT innovation program of the Ministry of Economic Affairs (EZ).
Financial support was also received from ASCI.

���������	
��
��������

���
��������
���������
�������

���
����
�������

��������
���������	
���
�� ������!

 ������
�������������
 ������

���
 �"

��������
������
�������
 �����
���
��������#
���
"��#��#

Copyright c
�

2004 by Zhiming Zhao. All rights reserved.

ISBN 90-6446-710-0
ASCI dissertation series number 108.
Printed by Ponsen & Looijen BV, Wageningen.
Author contact: zmzhao@idealinks.net

To Yan and to my parents.

4

Contents

1 Introduction 1
1.1 Territory . 1

1.1.1 Computer simulation . 1
1.1.2 High performance computing . 3
1.1.3 Scientific visualisation . 4
1.1.4 Problem solving environments 5

1.2 Towards an Interactive Simulation System 6
1.2.1 Requirements on the interconnection 6
1.2.2 Requirements on the code incorporation 7
1.2.3 Requirements on the Interaction module 8

1.3 Modularity and integration . 8
1.3.1 Middleware and interoperability 8
1.3.2 Activity orchestration . 11

1.4 Human-system interaction . 12
1.5 Real-time interaction . 13

1.5.1 Performance and service quality 13
1.5.2 Time management . 13

1.6 Engineering methodologies . 14
1.6.1 Software Components and ISSs 15
1.6.2 Agent technology and ISSs . 16

1.7 Summary . 18
1.8 Problem statement . 19
1.9 Thesis organisation . 20

2 An agent based component architecture 23
2.1 Introduction . 23
2.2 Interactive Simulation System Conductor 24

2.2.1 Modules as reusable components 24
2.2.2 Basic architecture . 24

2.3 Agent based design . 25
2.3.1 Agent definition . 25
2.3.2 Activity control . 27
2.3.3 Performance considerations . 27

2.4 Constructing interactive simulation systems 27

ii Contents

2.4.1 Composing an ISS . 27
2.4.2 Run-time framework . 28

2.5 Summary . 29

3 Agent based activity orchestration 31
3.1 An ISS as a multiple Module Agents system 31
3.2 Inherent functionality: component capability 32

3.2.1 Basic model . 32
3.2.2 Capability modelling for the human interaction involved compo-

nents . 34
3.3 Interaction: story and scenarios . 35

3.3.1 Place transition net . 36
3.3.2 Scenario representation . 37
3.3.3 Transitions and actions . 38
3.3.4 Story: a scenario-net instance . 39

3.4 World model . 40
3.4.1 Basic structure . 40
3.4.2 Perception and uncertain belief of the agent world 40

3.5 Controller . 42
3.5.1 Collecting observations . 42
3.5.2 Action execution control . 42

3.6 Story execution . 43
3.6.1 Basic paradigm: distributed scenario execution 43
3.6.2 Hierarchical execution paradigm 46
3.6.3 Centralised coordinator paradigm 47
3.6.4 Scenario switch and execution paradigm selection 48
3.6.5 Handling run-time exceptions . 48

3.7 Summary . 49

4 Implementation and performance analysis 51
4.1 Communication agents . 51

4.1.1 Data object manager . 51
4.1.2 Distribution manager . 52
4.1.3 Events and action execution . 53

4.2 Module Agents . 53
4.3 Putting it all together . 53

4.3.1 Current implementation . 53
4.3.2 Actor and Conductor . 54
4.3.3 Capability and story descriptions 55
4.3.4 Run-time configuration files . 55

4.4 Performance analysis . 56
4.4.1 Example components and the test bed 56
4.4.2 Delay for remote updating shared objects 57
4.4.3 Location of the RTI execution . 58

Contents iii

4.4.4 Remotely updating objects to multiple Consumers 60
4.4.5 Message passing . 60
4.4.6 Object model and update delay 62
4.4.7 Summary . 63

4.5 Performance for action reasoning and story execution 63
4.5.1 Overall observations on the action reasoning 64
4.5.2 Overhead of the reasoning kernel 66
4.5.3 Reasoning complexity and delay 67
4.5.4 Brief comparison between execution paradigms 69
4.5.5 Summary . 69

4.6 Discussion and conclusions . 70
4.6.1 Evaluation . 70
4.6.2 Conclusions . 71

5 Rapid Prototyping of a surgical pre-operative planning environment 73
5.1 Introduction . 73

5.1.1 Background . 73
5.1.2 Goal of the chapter . 75

5.2 From Legacy systems to reusable components 76
5.2.1 Basic steps . 76
5.2.2 Legacy flow simulation and visualisation systems 77
5.2.3 Component 1: C Flow Simulator 78
5.2.4 Component 2: C Desktop VRE 80
5.2.5 Discussion . 81

5.3 Coupling component instances . 82
5.3.1 Basic analysis: roles and interactions 82
5.3.2 Making an interaction story . 83
5.3.3 Executing an ISS . 84
5.3.4 Asynchronous data update . 85

5.4 Automatic tuning of service quality . 87
5.4.1 Adaptable state update . 87
5.4.2 Solutions in ISS-Conductor . 88
5.4.3 An example: adaptable rate for exporting Flow Data 88

5.5 Collaborative interaction in an ISS . 89
5.5.1 Requirements . 90
5.5.2 Basic support . 91

5.6 Collaborative data analysis and decision making 92
5.6.1 User opinions and decision points 92
5.6.2 Collaboratively exploring data 93
5.6.3 Experimental results . 94

5.7 Multiple instances of a scenario net . 95
5.7.1 Scenario template and data class mapping 96

5.8 Summarising discussion . 97
5.9 Conclusions . 98

iv Publications

6 Towards an intelligent planning environment for interactive simula-
tions 101
6.1 Introduction . 101
6.2 A global picture . 103

6.2.1 Proposed functional subsystems 103
6.2.2 Design requirements . 105
6.2.3 ISS-Studio and Grid environments 105
6.2.4 In the context of a PSE framework 106

6.3 Intelligent planning of ISS-Conductor based interactive simulations . 106
6.3.1 Describing experiment requirements 107
6.3.2 Component searching . 108
6.3.3 Story generation . 110
6.3.4 Generating execution scripts . 110

6.4 Prototype and preliminary results . 110
6.4.1 A multi-agent based experiment planning environment 110
6.4.2 Experimental results . 111

6.5 Discussion and conclusions . 113

7 Summary and discussion 115
7.1 Summary . 115
7.2 Conclusions and discussion . 116
7.3 Future work . 118

References 123

Nederlandse Samenvatting 143

Publications 145

Index 147

Acknowledgments 149

Chapter 1

Introduction

1.1 Territory
From their inception over thirty years ago, human-in-the-loop simulations, also called
interactive simulations, have become an increasingly important paradigm in a wide
spectrum of applications, such as hardware design [1], industrial control [2], and spe-
cial training for aerospace or battlefield [3, 4]. Interactive Simulation Systems (ISS)
can significantly improve the efficiency of design verification, decision-making, and
training. Allowing human users to manipulate simulation models and steer their
execution at run time, ISSs are essential to realise Problem Solving Environments
(PSE) for studying complex problems that are difficult to investigate using conven-
tional methodologies.
The construction of ISSs is highly interdisciplinary; besides a profound knowledge
of the application area, it involves the domains of modelling and simulation, scien-
tific visualisation, human computer interaction, distributed computing and system
engineering. The realisation of different development issues is often complex and
time consuming. In scientific research, such development complexity critically ham-
pers the productivity of ISSs; when a scientist explores a complex problem, he has to
spend much of his effort on various implementation issues, instead of on the inves-
tigation of the experiment itself. A layered framework for developing ISSs is crucial
to hide the underlying development issues from scientists and allow them to focus on
the high-level behaviour of the system.
In this thesis we investigate a solution to the complexity issues in ISSs based on
the separation of application logic control and system functionality. We demonstrate
that this solution simplifies the development of ISSs and allows a scientist to quickly
adapt a system to his needs in a rapid prototyping approach. In order to obtain a full
view, we first take a short tour of the principal fields involved.

1.1.1 Computer simulation
Computer simulation refers to the process of building and operating models on com-
puters for the purpose of gaining more insight into a system. It has become an impor-

2 Introduction

tant methodology to complement normal lab experiments when it is too expensive, e.g.
car crash procedures [5], or difficult to perform, e.g. nuclear reaction [6]. Although
the systems being simulated may differ from each other, at an abstract level, all simu-
lation experiments can be described in a similar manner, which mainly includes four
iterative steps: building a computable model, validating the model, simulating the
system and analysing experimental results.

Building a model for a system is to represent the system in a simple but sufficiently
detailed way. A model need not include all the details of the real system, but it should
contain those salient features, which permit us to draw valid conclusions about the
actual system [7]. Using an artificial model to predict the behaviour of an actual
system is a main goal of computer simulations, which implies that the model itself
should be accurate enough and that it can be computed on an acceptably short time
scale.

The validation of the model is based on doing simulation experiments and analysing
the experimental results, where possible by comparing the results to real life experi-
ments and observations. Fig. 1.1 shows general functional components of a simulator
which the model shows some kind of evolution, e.g. according to a simulated time or of
a control parameter that is changed in the course of the real time. Simulation exper-
iments are often computationally demanding, for instance, the computation of a car
crash simulator can take days to achieve certain accuracy [5], which makes the model
validation very time consuming. The need to shorten the validation and execution
time motivate a number of research subjects, such as high performance computing,
scientific visualisation and human-in-the-loop of simulation.

��������������	
������

����
��	
�������

�����

��������

�������

��
������

������	���

�������

����������

����
��	����

��
����
�

����������

�����

���	�����

Figure 1.1: Functional components and the data flow in a simulator. The time stepping
routines define the actual behaviour of the simulator, and the control routines define the exper-
iment performed on the simulation.

1.1 Territory 3

1.1.2 High performance computing
Although the available computing power has increased enormously over the past
decade (see e.g. Fig. 1.2), the demands for a further increase have not diminished.
There are many good reasons for it. As the available computing power increases, more
and more important problems just become feasible; for instance, a model with 2000
elements is adequate to advance the understanding of fluid dynamics 10 years ago,
but now the models often contain more than 106 elements [8, 9]. But for many inter-
esting problems, even a small increase in problem size or complexity demands a large
increase in computing power, e.g. predicating weather for a longer time scale [10].
Apart from optimising the algorithms for doing the computation, the field of High Per-
formance Computing (HPC) strives to make the highest attainable computing power
accessible to the simulation researchers.

����
���������

�����
����� �����

������
���������

���������

����� ���

���� ���� ���� ����
����

����� �����

���
���

� ��� ������
���� ����

����
�����

������

�

��

���

����

�����

������

�������

-XQ��� -XQ��� -XQ��� -XQ��� -XQ��� -XQ��� -XQ��� -XQ��� -XQ��� -XQ���

3H
UIR

UP
DQ

FH
��*

IOR
S�V

�

6XP 1 � 1� ����

+LWDFKL�7VXNXED�
&3�3$&6�����

,QWHO�$6&,�
5('�6DQGLD

,%0�$6&,
�:KLWH

1(&�(DUWK�6LPXODWRU

Figure 1.2: Computing power increases in the past decade. The figure shows the fastest (N=1)
and the slowest (N=500) computer in the list, and the total performance of all computers in the
list. The original information is from the website http://www.top500.org.

One way to gain better performance is to decompose a simulation model into a num-
ber of smaller sub-domains, and to compute them in parallel. To obtain real perfor-
mance improvements, the parallisation needs to take a number of issues into account
such as the quality of the domain decomposition, load balance between tasks, and
communication efficiency. Besides, many important simulation models do not allow a
straightforward parallelisation; the research subject of Parallel Discrete Event Sim-
ulation (PDES) is a typical example.
Recently, another attempt to gain more computing power is being developed, that is to
horizontally interconnect available computing elements from multiple organisations
in Computational Grids and share them among a defined group, called a Virtual Or-
ganisation (VO). The realisation of this ambition requires the resolution of a number
of fundamental issues: resource discovery and allocation, execution monitoring and
fault tolerance, and security controls. In turn, this novel execution environment also
demands changes in the simulation model and its execution.

4 Introduction

1.1.3 Scientific visualisation
In order to validate a simulation model or to explore the parameter space of a vali-
dated model, the developers have to study the data generated by the simulation ex-
periments and compare them with the actual behaviour observed in the real systems.
For complex models, the data can be multi-dimensional and large in volume, e.g. a
blood flow simulator can generate more than 100 Mbytes for a full size abdominal
aorta per time step [11]. Intuitively presenting data can essentially help researchers
to digest the information in the data and to gain deeper insight into the problem. The
process of mapping large quantities of data to the intuitive symbols that are perceiv-
able for human senses, in particular vision, is called scientific visualisation.
The visualisation of data requires a number of processing stages, which in general
include: pre-selecting relevant information from raw data, designing representations
for the information, mapping the representation to intuitive primitives and rendering
the primitives onto certain devices. Data is passed in a pipeline scheme between
procedures; Fig. 1.3 shows a general data flow diagram. The systems that enable the
entire pipeline and in particular support human users to interact with the rendered
objects are called Data Exploration Environments (DEE) in [12]. Special devices,
such as Virtual Reality (VR) systems, are often employed in DEEs for rendering and
exploring complex and large-scale data.

����������

�	
	�

�	

�	
	�

�������	��	
	

����	���	
���

���������

�������

��������	��

��
��	�
��
�

����	
	�

������	
��

�����
��
��

����	���	
���

���������

�����
��

�	
	�

��
��
���

�����
�����

Figure 1.3: A general data flow diagram of visualisation systems. The procedures in a visu-
alisation pipeline constitute the core of the system. The generation of intuitive primitives for
rendering, and the user interaction that controls the execution of pipeline can be performed in
different machines.

Due to the computational cost of data processing and visualisation, simulation ex-
periments and the presentation of results are often separated in time. Static data is
then the only way to pass information from one to the other. This requires additional
investments for storing massive simulation results, especially when the simulation
experiments are time-dependent. More importantly, it limits the efficiency for study-
ing sensitive regions of the parameter space of the model when each configuration of
the parameters requires a separate execution of the model. Yet, when the simulation
itself can not generate meaningful results in a sufficiently short time scale compared
to the cost for transmitting and viewing the volume of static data, little can be done
to improve these shortcomings. With the continuing increase of the computing power,

1.1 Territory 5

the price of hardware coming down and the bandwidth of network increasing, it be-
comes feasible more often to include a real-time simulator into a visualisation as live
data source, which motivates the work on integrating simulation and interactive vi-
sualisation.

1.1.4 Problem solving environments
Problem Solving Environments (PSE)s are integrated software environments that
provide tools and utilities necessary for solving a target domain of problems [13]. PSEs
couple different types of resources and computational technologies both horizontally
and vertically and allow scientists to tackle the scientific problems at a high-level of
abstraction [14]. Horizontally, a PSE provides gluing mechanisms for reusable soft-
ware resources, e.g. simulators, visualisation and data analysis utilities, and allows
scientists to build a new computing system by assembling these resources instead of
developing new software. Vertically, a PSE provides hierarchical schemes to organ-
ise the computational knowledge involved in different types of resources and allows
scientists to work on a given level without being experts on all the others, e.g. a
simulation model developer does not need to be an expert in scientific visualisation.
PSEs were originally proposed in the early 1960s, but due to the strong dependence
on computing power, they have only been successfully realised after the significant
progress was made in HPC. After 1990, a large number of special purpose PSEs have
been prototyped and implemented, e.g. VLAM-G [15], SciRun [16] and CtCoq [17].
Depending on the guise that a PSE takes in the lifecycles of problem solving, a PSE
has also been called differently: e.g. Scientific Portal [18], Virtual Laboratory [19]
and Virtual Workbench [20]. In this thesis, we use the term PSE to cover them all.
The functionality of a PSE depends critically on the use of computer simulations and
can be greatly enhanced by putting a human in their run-time loops. The challenges
for performing experiments using human-in-the-loop simulation not only lie in the
development of a suitable simulation system but also in the management of all types
of, both static and dynamic, data information involved in the experiment, e.g. system
requirements, simulation results, and experiment histories. An efficient support for
managing information can also promote its reusability as resources for new experi-
ments.
The information management can be supported by a number of technologies. Kale-
tas categories these technologies from four perspectives [21, 22]. Data models and
standards are the first one; describing data entities in a system using standard data
models can not only facilitate the information sharing between different system users
but also improve the efficiency for customising models for a new application. Success-
ful standards include the Object Data Management Group (ODMG) standard [23] and
Dublin Core Metadata standard [24]. The second one is from the perspective of man-
aging distributed information. Distributed and federated information management
provides flexible mechanisms to couple distributed databases for storing and access-
ing information; examples include Polar [25] and PEER [26]. Resource management
is the third one; in a distributed computing environment, simulation, visualisation,

6 Introduction

data and different types of tools are all considered as resources which can be de-
ployed in customising specific run-time applications. A number of frameworks for
resource management are developed in Grid computing environment, e.g. Open Grid
Service Architecture based Data Access and Integration (OGSA-DAI) [27]. Finally,
the support for information management is also provided in environments for man-
aging workflow between distributed computing entities and the security control for
the resource access [28,29].

1.2 Towards an Interactive Simulation System
In general, a minimum ISS has three basic modules: simulation, visualisation and in-
teraction. The simulation regularly computes and transfers data to the visualisation
and interaction modules, and a human user can manipulate the simulation param-
eters through the interaction module, as shown in Fig. 1.4. In order to achieve a
higher performance those modules often require dedicated hardware platforms and
thus need to be run in a distributed environment.

���������	�

�������	
���
	��������

�����

�����������	�

���	���	
���

	��������
��	��	�

�	�������	�������

������	
	��������

��	��	
���
���������	

���
	��������
�����

����
�����

�������

�����	���������

���
��
����������

���������	�

Figure 1.4: A basic configuration of ISSs. Solid lines depict the simulation loop, and the dash
lines depict the visualisation loop.

An ISS is often constructed by integrating existing simulation and visualisation sys-
tems. Legacy simulators are likely to include verified implementations of algorithms
that may be applicable to other problems; visualisation tools can be adaptable to work
with different simulators for related domains. An efficient reuse of legacy assets will
reduce both the development costs and risks [30, 31]. The integration between sim-
ulation and visualisation programs requires a number of changes in both, and the
addition of a third module that allows a user to manipulate their run-time behaviour.

1.2.1 Requirements on the interconnection
Basic coupling issues include enabling interaction capabilities in simulation kernels
[32, 33] and in visualisation procedures [34, 35], and communication between them

1.2 Towards an Interactive Simulation System 7

[36, 37]. The interconnection has to take into account a number of issues. The first
one is the existing differences in the data representations at all levels. Sophisticated
data specification, marshalling and interconnection techniques have recently become
available in middleware such as Cactus [38]. The second issue is the very high per-
formance needed for a timely rendering. The performance requirements on both the
data connection between simulation and visualisation and on the visualisation itself
can be reduced by using appropriate data selection techniques to limit the transmit-
ted data to those immediately needed by the visualisation. This is a service that
requires a detailed knowledge of the simulation and visualisation process. Therefore,
it can only be provided at the application level. The third one is the co-ordination
of the system execution. In simple cases, such as a simulation-monitoring system,
e.g. the Jane framework [39], the dependencies between simulation and visualisation
can be handled by a data stream which is controlled either by the simulation or by
the user. In more complex cases where the user’s feedback is to be included in the
running loop of the simulation(s), the correct ordering and synchronisation of actions
becomes even more difficult. Finally, the interconnection also has to take the support
for information management into account, although the support itself might not be
direct functionality of an ISS. Using standard data models to describe the information
involved in interactive simulation based experiments allows a standalone system to
support the information management, and coupling distributed ISS modules using a
unified interface provides a standard way for the support system to gather run-time
information and manage them in a distributed way.

1.2.2 Requirements on the code incorporation

With respect to a simulator, interaction means that the static data that controls the
behaviour of the simulator may be changed during the execution, that the state of the
simulated system may be modified, and that the control routine may be customised
to be fit into the interaction context with the other modules. The first two kinds of
changes must be influenced in a consistent manner throughout a (distributed) simu-
lator program; both kinds can affect the stability and the convergence behaviour of
the simulator. The latter changes affect the control, and possibly the initialisation
routines, but should have little effect on the computing of simulation states, e.g. the
time-stepping routines in Fig. 1.1.
The changes to the visualisation program are related to the fact that the data to be
visualised now arrive as a stream from the simulator, which puts additional time-
constraints on the visualisation process. Depending on the refresh rates of the sim-
ulation states and their volume and complexity, the visualisation process needs to
be adaptable to maintain the synchronisation between the update of the visualised
scenes and the evolution of the simulator. To assist the human user to digest the sim-
ulation states in their evolution context, a visualisation process also needs to comple-
ment the visualised objects with necessary temporal execution information.

8 Introduction

1.2.3 Requirements on the Interaction module
The interaction module provides an interface for a human user to manipulate sim-
ulation settings and states, and ensures that the modifications take effect. The in-
terdependencies between the user interaction and the data representation result in
a tight coupling between the user interface and the visualisation module, which is
especially true when the manipulations of the simulation states can only be done via
visualised objects. The interface should provide the necessary support to the user for
making these modifications. Apart from the human-system interaction, the interac-
tion module also co-ordinates the activities of different modules. We can distinguish
two extreme modes of control for the integrated systems: a strong mode where ac-
tivities of each module are pre-specified as a total/partial order, and a weak mode
where modules behave autonomously and interact with the others under limited con-
straints. Actual systems usually are a hybrid of these two extremes. Because of the
strong dependencies on the specific application, part of the realisation of the interac-
tion module is often fused with the control routines of simulation and visualisation
modules.

Since the 1980s, ISSs have become an important subject in the community of mod-
elling and simulation and high performance computing. Apart from the successful
application in different problem domains, technical issues involved in constructing
ISSs have also been extensively studied. In the remainder of this chapter, we will
first discuss them from the perspectives of module coupling strategies, communica-
tion middleware, user interaction and engineering methodologies. After that, we ad-
dress the scientific research question to be studied.

1.3 Modularity and integration
Coupling simulation and visualisation using a Client-Server paradigm [39] can keep
the simulation and visualisation programs essentially unchanged and allows to run
them in parallel over different computers. In the integration between simulation and
visualisation, two levels of coupling can be roughly distinguished: interoperability
and behaviour orchestration. The coupling can be realised in tight and loose schemes.

1.3.1 Middleware and interoperability
A typical tight-coupling communication mode is the use of high performance commu-
nication libraries such as CAVERN [40] to directly connect simulation and interactive
visualisation modules. A loose-coupling solution can be realised by defining a stan-
dard interface for distributed modules and by interconnecting them using a run-time
infrastructure. Tight coupling often achieve a good performance, but from an engi-
neering point of view, it introduces strong dependencies between modules, and will
decrease the system reusability and portability. In contrast, loose coupling allows

1.3 Modularity and integration 9

modules to function in a relatively independent manner; the replacement of a module
will not require changes in the others. Since the 1990s, a number of software ar-
chitectures and middlewares for distributed and interactive simulation systems have
evolved. We use two examples to discuss how they support the transparent data ac-
cess and the remote interoperability between distributed simulations.

SPLICE

SPLICE is developed at Hollandse Signaalapparaten B. V. (HSA) [41, 42] for large-
scale distributed embedded systems. The architecture aims to reduce the complexity
of the development of large, reactive distributed systems and to provide fault tol-
erance and real-time support. SPLICE couples distributed application processes by
assigning each of them with a communication co-ordinator, called agent � , as shown in
Fig. 1.5.

���������	���
��	����

�������	���

�������

����	� �����

��	�
�	���

�������	���

�������

����	� �����

��	�
�	���

Figure 1.5: Basic components in SPLICE: application processes, each with an agent and a
local data store.

In SPLICE, the data being exchanged between application processes is stored in the
local data stores and is managed by agents. SPLICE distinguishes two types of data:
volatile and persistent. Persistent data is always available for newly created processes,
while volatile data is not. Agents exchange data using a publication/subscription
mechanism. SPLICE is originally designed for real-time control systems and not for
distributed simulation systems, but its agent-based communication mechanism does
contribute a suitable paradigm for wrapping distributed simulation and visualisation
programs and for interconnecting them [12].

High Level Architecture

High Level Architecture (HLA) is another example. It is proposed by the Department
of Defence (DoD) of the U.S. as a standard architecture for interconnecting distributed
defence simulators. HLA is a successor of two earlier protocols: Distributed Inter-

�
We will have more discussion on this term in 1.6.2.

10 Introduction

active Simulation (DIS)† for propagating states among distributed simulations, and
Aggregation Level Simulation Protocol (ALSP) for synchronising simulators at run
time [44] and for distributing events among them [45]. HLA enhances them by im-
proving the support for interconnecting heterogeneous simulations and the scalability
problems [43,46,47].
In HLA, modular components with a well-defined functionality and interface are en-
visioned as basic units, called federates, for building a simulation application, called
a federation. In a federation, data properties are described as object models in which
persistent data is called objects and messages for invoking remote activities are called
interactions. Federate specific properties are described as simulation object models
(SOM) which can be used to derive application specific data properties, called feder-
ation object models (FOM) [48]. Federates do not explicitly communicate with each
other; instead, they are coupled using a Run-Time Infrastructure (RTI), via which
federates subscribe to or publish the data classes that they can produce or consume.
Apart from the data distribution, the RTI also serves the federates to update logical
time and to manage global execution states. A federate invokes these services and re-
acts to the requests from the RTI through its local RTI library (libRTI). Fig 1.6 shows
a logical structure of a federation. A process can contain multiple libRTIs to join mul-
tiple federations as different federates. The DoD’s implementations adopt The ACE
ORB (TAO) [49], an implementation of Real-time CORBA [50], as its basis‡.

������������	
�

������������������

�������

��������	

��
����

��
�������
�������������

�������

Figure 1.6: Distributed federates and the Runtime infrastructure (RTI).

Using the standard interface defined in HLA, simulation, visualisation and interac-
tion modules can be wrapped as federates using libRTI. The data exchanged between
system modules, e.g. simulation states and control data, are incorporated as data
classes according to a federation object model, and can be remotely accessed by fed-
erates via the RTI. The dedicated services for distributed simulation also support the
interoperability and interaction control between ISS modules, e.g. the time manage-
ment services for the delivery of the control messages (interactions), and the data
distribution management services for content-based data distribution. Although the
initial development of HLA is for defence simulations, it was soon applied as a stan-

†DIS was developed in the SIMNET [43] project which was launched by the Defence Advanced
Research Project Agency (DARPA) and the U.S. DoD in the early 1980s for constructing a shared
synthetic military training environment.

‡After September 2002, commercial companies are also allowed to implement and realise the RTI
software [51].

1.3 Modularity and integration 11

dard architecture in many other industrial and scientific simulation systems [52–54].
It also inspired a number of related research subjects, e.g. interconnecting federa-
tions [55], and enhancing the services for managing time [56] and for distributing
data [57]. Later in this chapter we will discuss the time management in more detail.

1.3.2 Activity orchestration

It has been realised a decade ago that de-coupling the activity co-ordination from the
system functionality can improve the flexibility to control the interaction of paral-
lel and distributed systems. Co-ordination languages are an such effort [58]. Linda
[59] is designed to complement computational language with a co-ordination module
for managing the interaction between computing processes. Since it is at language
level, the computation and co-ordination are bound at link stage. Workflow manage-
ment systems (WFMS) [60] are a later example when significant progress has been
achieved in middleware platforms. WFMS are originally developed for automating
the interaction between business processes, but have also been applied to scientific
applications, e.g. Condor [61] and VLAM-G [19].
Basically, a workflow management system works on a middleware with standardised
interface and uses a centralised co-ordinator to orchestrate the system execution by
scheduling the distribution of messages among system components. A workflow man-
agement system explicitly models interaction scenarios of the overall system, and
manages resources which are required by them. In this section, we use VLAM-G as
an example to discuss the solutions to these issues.

Process flow template and resource manager in VLAM-G

VLAM-G is a generic PSE framework, which provides hierarchical solutions to man-
age software and computing resources, and to allow scientists to utilise the resources
to prototype and perform scientific experiments. In VLAM-G, the interaction scenar-
ios in a scientific experiment are modelled as an abstract description of the processes,
called Process Flow Template (PFT); an instance of a PFT is called a topology [15].
The flow between processes is described using data dependencies. At run time, the
execution of a topology is scheduled and co-ordinated by a scheduler, e.g. allocating
computing tasks, and establishing data flow between them. A PFT can have multiple
topologies; each topology is handled by a separated scheduler.
VLAM-G provides a layered framework which allows domain experts and package
developers to work collaboratively. It provides a visual environment to describe the
PFT, and a user-friendly interface to monitor the execution of a topology. Currently,
VLAM-G mainly support complex and data intensive experiments, e.g. hardware in
the loop; the description of the interaction scenario is based on data flow.

12 Introduction

1.4 Human-system interaction

Human-system interaction is another important issue in the ISS development. A
large body of discussions on human-computer interaction and interface design can
be found in the literature, such as on modelling interaction processes [62], on de-
signing interfaces [63], and on human factors [64]. Compared to normal interactive
graphical systems and interactive visualisation environments, ISSs pose additional
concerns when designing their interaction capabilities because of the distributed and
heterogeneous nature of the system.
The first concern is the paradigm of updating simulation states. Before performing
a meaningful action on the system, a user needs to first digest the information pro-
vided by the system. The delay for the perception depends not only on the user’s
knowledge about the system, but also on the volume of the information presented by
the system. Delays for generating and transferring data and visualising them in the
interface are incurred before the user can see the presentation. When those delays
can be negligible, e.g. in the case of simple simulations, the system modules can work
synchronously with the user’s interaction; for complex cases, an asynchronous mode
is more practical. These two modes are also identified as user driven and simulation
driven mode respectively in [12]. Due to the parallel and asynchronous relationship
between simulation and visualisation modules, the system realisation demands ex-
plicit care in controlling the simulation contexts. This is because when the simulation
kernel receives an action request, the context for the request is often in the past of
the current state of the simulation.

The second concern is the manipulation of simulation models, which can range from
only accessing and exploring the simulation results to modifying the simulation model
at run time. Hurrion [65] identified them as three levels: basic operations that change
parameters of the simulation, priority interactions that schedule the execution of the
operations, and algorithm interactions that change driving algorithms of the simu-
lation model. In early systems, the limited capability of presenting information and
supporting interaction restricted the freedom that a user could control the simula-
tion. In the later ISSs complex interactions, such as refining 3-dimensional geomet-
rical structures of the simulation, became feasible. In the system development, the
support for users to accomplish the manipulation must also be addressed, because
the users of an ISS may have different levels of domain knowledge and experiences.
The last one is the portability of the user interface. When an interface can only be
presented on specific hardware, such as an immersive virtual reality device, it will be
less portable than when it can be presented in a normal web browser. As we men-
tioned, special devices are often preferred for exploring complex and large-scale data
information. But as computing intensive simulations will often last longer than a
user can stay in the special hardware environment, a widely available interface to
instantly access and monitor the simulation processes is also needed. They comple-
ment each other. The designer has to consider both the cost for providing a multiple
access front end to the heterogeneous user interface and the characteristics of the

1.5 Real-time interaction 13

simulation kernel.

1.5 Real-time interaction
In ISSs, interaction with the simulation requires the system to respond in near real
time. The term real time means that a system should not only be functionally correct
(must produce its results correctly) but also temporally correct (act within specified
time interval) [66]. Compared with the critical safety systems such as air traffic con-
trol and nuclear plant monitoring, the sense of real time in ISSs is softer, occasional
delayed operations or error actions will not make a system absolutely unacceptable§.
Generally, an ISS has to respond to the user’s request and take its actions with an
acceptable delay. Special purpose ISSs, such as defence simulations, have additional
meaning for real-time that the evolution of the simulated world has to progress ac-
cording to a referred time meter, such as wall clock time. In this section, we will
briefly discuss two aspects of this issue: the service quality and the synchronisation
between distributed simulations.

1.5.1 Performance and service quality
To realise real-time interactions, the system performance is critical; simulation and
interactive visualisation modules must perform sufficiently fast to first satisfy the
minimum requirement demanded by the user interaction and further to be adjustable
to the desired time scale according to the evolution of the simulation states. Effi-
ciently utilising the available computing resources can improve the performance, yet
it is often necessary to optimise the system implementation itself. First of all, the
improvements in the system performance can be obtained by employing custom tech-
nologies for data transmission and presentation, e.g. using multiple connections [37]
or compression techniques [68] to transfer large volumes of data, or distributing vi-
sualisation modules to several computers and rendering them in a dedicated envi-
ronment [69]. Secondly, the quality of the system services can be maximised by the
users when they are allowed to make trade-offs between the resolution of the data
presentation and the delay of the transmission and visualisation. Finally, services for
optimising resource allocation include monitoring and balancing computation load,
such as job migration [70], can improve the run-time performance of the entire sys-
tem.

1.5.2 Time management
When an ISS comprises multiple simulations, as in defence simulation systems, each
simulation must progress in accordance with the global evolution of the system in
order to get correct overall behaviour. Causality conflicts occur when a simulation
advances its time at a different rate than the other simulations expect. The execution

§The DoD’s RTI does not support hard real-time distributed simulations [67].

14 Introduction

of distributed modules must be co-ordinated: each simulation should treat its time
correctly and the events should be interpreted by simulations in a correct order. Those
issues are the concern of time management.
Protocols for synchronising distributed processes have been extensively studied in
research concerned with PDES [71]. In PDES, the causality dependencies between
simulation processes are dictated by their timestamps. Basically two categories of
protocols are available: conservative and optimistic. Conservative protocols require
that each process only processes the events with the minimum timestamp. In con-
trast, optimistic protocols allow simulation processes to evolve without waiting for the
smallest time-stamped events, but employ additional mechanisms for detecting and
recovering from the causality conflicts. The work in PDES primary focuses on per-
forming DES in an as-fast-as-possible manner, but it has been successfully adopted
in real-time interactive simulation systems. For instance, the DIS adopts a conser-
vative Chandy/Misra/Bryant style null messages protocol to synchronise simulators,
and in HLA, transparent interoperability between different types of simulations is
supported [72].
In HLA, a federation execution manages its time issues using services for distributing
messages and for granting time [73]. Messages can be delivered and received accord-
ing to the logical time of the federation. HLA categorises different types of simulators,
e.g. time driven, discrete event driven, real-time, or mixed, as four combinations: time
regulated or not (for sending) and time constrained or not (for receiving), and trans-
parently interconnects them. With the time granting services of the RTI, federates
advance their local simulation time. The time-regulated federates can send messages
with timestamps. In non-time constrained federates, the local time is granted im-
mediately after being requested. In the time constrained federates, the local time of
a federate can only be granted to the logical time which is smaller than the times-
tamps of all the messages being delivered to the destinations. There are three types
of time-constrained federates: conservative event-driven, conservative time-stepped
and optimistic. A conservative federate only processes a message when its local time
has been granted to the time indicated by timestamp of that message. In conservative
time stepped simulations, a lookahead value is set as the interval between time steps.
Optimistic federates aggressively process messages and rollback when they receive a
straggler with a smaller timestamp [74]. The RTI determines the Lower Bound Time
Stamp (LBTS) for each federate.

1.6 Engineering methodologies
For a fully functional ISS, both the overall architecture of the system and that of the
individual system modules tend to be complex. This introduces difficulties in the im-
plementation, and in particular in keeping the system robust and easy to maintain.
Engineering disciplines for tackling large problems provide a number of methods for
managing complexity such as decomposition, abstraction and organisation [75]. Dif-
ferent software engineering methodologies, such as object oriented, component ori-

1.6 Engineering methodologies 15

ented, and agent oriented engineering, brought contributions to designing ISSs.

1.6.1 Software Components and ISSs

Szyperski characterises software components as “units of composition with contrac-
tually specified interfaces and explicit context dependencies only; they can be deployed
independently and are subject to composition by third parties.” [76]. Components en-
capsulate the implementation complexity of software into black boxes, and provide
deployment level reusability. Generally, interface and composition are two basic con-
cepts for building components and component-based systems. The interface describes
the conditions under which the component can provide services and the precise na-
ture of the services, it is intuitively viewed as a contract [77] between component
developer and the potential customers. A component-based system is constructed by
composing and assembling components using a framework which is often designed as
a tiered architecture [78].

It has been realised by ISS developers that employing reusable building blocks can
significantly improve the efficiency not only for the system development itself, but
more importantly for the construction and composition of high-level, large-scale sim-
ulation models or for presentations. In the simulation environment, metaphors such
as objects would be employed to abstract and represent the basic elements of physical
models. ENVISION [79], JAAFAAR [80] and IMSAT [81] provide examples of this
approach. In visualisation environments like IRIS explorer [82] the procedures for
visualisation are formalised and packaged as a number of modules, which can be as-
sembled to build pipelines to visualise a specific set of data. Although in these cases,
the notion of components has not been explicitly used in the system architecture, the
use of customisable building blocks that can be reused for composing specific appli-
cations does share common characteristics with software components [83]. In other
systems, those building blocks are constructed using industrial standard component
architectures: Java Beans are used to implement the model primitives in JISM [84],
CORBA Components are used for wrapping simulations and for facilitating the con-
trol of computing processes [85,86].

Industrial component architectures are mainly designed for the object systems in en-
terprise and business domains; explicit support for low latency communication, thus
parallel interconnection between components, and in particular the parallel layout
of the data structure is not addressed. More importantly the interoperability be-
tween different languages demanded by many simulation systems is not addressed in
the implementation of those components. Novel component architectures suitable for
high performance computing and interactive simulation systems are needed to reap
the benefits of the engineering disciplines of component technology in the system con-
struction.

16 Introduction

Common Component Architecture

The Common Component Architecture (CCA) brings features for industrial software
component architectures into high performance computing. Similar to normal indus-
trial software components, the interface of a CCA component is modelled as a set of
typed ports, which are described using a description language, called Scientific Inter-
face Description Language (SIDL). At the deployment level, the composition between
components is realised by connecting their ports, and the entry of the connection is
defined in a special component called driver. The information about the connections
is maintained in an object called component service by the framework. Since the
integration between components and between components and the framework is im-
plemented using ports, sophisticated flow control for the component activity has to be
realised inside the components.
At run time, the components are instantiated by the framework, and each component
obtains the information about the outside world through the component service ob-
ject. Most of the component interactions are mediated through the framework. To im-
prove the run-time performance, the CCA distinguishes the address spaces of compo-
nents when binding them; direct invocations provided by underlying interfaces such
as MPI or PVM are supported for the components in the same address space [87]. The
CCA framework can support complex parallel computing by using different frame-
works and special communication components.

HLA federates and components

Extending the architectures for interactive simulation and fitting them nicely to the
concept of component-based engineering is another research subject. In [88], Radeski
et al., stated that separating simulation logic from the integration interface of the
RTI is an essential step to mate HLA federates with the component disciplines. Other
researchers described mechanisms to combine HLA federates with CORBA Compo-
nents [89] and Java beans [90]. To realise the explicit control of simulation logic, the
SIMULTAAN Simulation Architecture (SSA) [91] employs a special federate called
“scenario manager”. Such a co-ordinator based mechanism is a common solution for
controlling the task executions in workflow based systems [92,93].

1.6.2 Agent technology and ISSs
Where component technology primarily addresses the problem of integration and in-
teroperability in complex software systems, agent technology addresses the control
of these systems. The Agent Oriented (AO) methodology complements the compo-
nent method with knowledge related notions to manage system complexity [94]. The
concept of agents originated in the mid-1950s as a ‘soft robot’ living and doing its
business within the computer’s world [95]. Nwana [96] identified two main strands
in agent research. The first strand started about 1977, evolved from the field of
Distributed Artificial Intelligence (DAI); its main research interests were in the the-
oretical perspectives of agents, e.g. deliberative activities, symbolic reasoning and

1.6 Engineering methodologies 17

agent architectures. The second strand started about 1990, it mainly focuses on ap-
plying agents as an advanced technology for solving practical problems, e.g. agent
oriented engineering and system modelling. Wooldridge distinguished three types of
agent architectures: deliberative, reactive and hybrid [97]. The difference between
the deliberative and reactive architectures is that the former incorporates a detailed
and accurate symbolic description of the external world and uses sophisticated logic to
reason about the activities, while the latter one only implements a stimulus-reaction
scheme. Reactive architectures are easier to implement but lack a subtle reasoning
capability. Hybrids of the two schemes are commonly used.

Agent technologies contribute to simulation based applications both a new modelling
paradigm, as well as an intelligent solution to system development. Modelling a com-
plex system as a multi-agent system captures the nature of the system behaviour in
a bottom-up manner. Using agents to model and simulate a system, the domain is
decomposed and mapped onto different roles of agents, and human-like behaviours,
such as reasoning activity, are used to model the system behaviour. Successful ex-
amples include transportation systems [98], analysing air spaces [99] and social
simulation [100]. Agent based simulation environments, such as SWARM [101],
REPAST [102] and ASCAPE [103], are developed to facilitate the construction of sim-
ulations. As an intelligent solution, agent technologies have been reported in a large
number of publications for implementing specific functions in interactive simulation
systems, e.g. interaction support [104], probing information [105], co-ordinating dis-
tributed modules [106], facilitating complex system controls [107], and distributing
data objects [108]. Besides these applications, agent based frameworks or middleware
that can couple simulations and visualisation utilities and control their executions
are also developed. One of the examples is the Bond agent environment [109].

Bond

In the Bond architecture, an agent is defined as a mobile object with a certain degree
of intelligence for controlling its behaviour. The Bond framework is implemented in
Java; the agents extend Java objects with communication support and reasoning. An
agent has a model of the external world, and has an agenda containing its goals. The
capabilities of the agent are represented by a hierarchical state transition graph. In
the transition graph, strategies are associated with different states, and a strategy is
basically a sequence of actions. The meta configurations for agent control are stored
in a blueprint repository, which is accessible by the Agent factory to create agents.
The strategies are also stored in a data base. Agents exchange messages using the
XML [110] or KQML [111] formats and a globally shared tuplespace is used to en-
hance the message communications. Between hosts, communication engines provide
underlying interconnection services. The global activities are controlled by a work-
flow management agent which co-operates with a performance monitoring agent. The
Bond architecture has been successfully applied to implement and interconnect PDE

18 Introduction

solvers [112].

1.7 Summary
The development of an ISS involves different issues: valid simulation and visualisa-
tion kernels, interoperability between distributed modules, and orchestration of the
system behaviour. The use of advanced engineering methodologies to improve the
productivity of developing interactive simulation systems actually started nearly a
decade ago. The early work has addressed three main levels in the software architec-
ture. At a middleware level, platforms like the DIS and HLA contribute a well-defined
interface for supporting interoperability between distributed simulation components.
At a simulation development level, reusable component or agent architectures, e.g.
Java beans, CCA or Bond, and the engineering technologies supporting these archi-
tectures are used to construct systems components. And at an application-logic con-
trol level, interaction scenarios have been isolated from the simulations in a number
of systems, e.g. SSA.
A suitable architecture for interactive simulation must provide the following support:

1. Wrapping legacy simulation and visualisation programs. Reusing existing ma-
ture simulation and visualisation kernels reduces development costs; the archi-
tecture necessarily provides interface to wrap legacy assets and to couple them
using certain frameworks.

2. Interoperability between distributed system modules. A framework supporting
transparent access and invocation of remote data and operations is essential to
realise a loose-coupling scheme between system modules. Apart from it, services
for distributed simulations, e.g. managing time and distributing data based on
simulation context, are also needed when the system supports complex interac-
tion.

3. Real-time interaction is a basic requirement for human-in-the-loop interaction,
although hard real time is not required. The implementation of the architecture
has to take the system performance into account.

4. Orchestration of system behaviour. An explicit and flexible control of the system
behaviour allows an ISS to be customised for different scenarios, and can there-
fore efficiently shorten the life cycle of system prototyping. The orchestration
mechanism has to not only provide a powerful description of possible interac-
tion scenarios, but also an efficient paradigm to co-ordinate the execution.

A comparison of existing architectures is shown in Fig. 1.7. We can see, all the archi-
tectures in Fig. 1.7 can be used to wrap simulation and visualisation programs and to
support interoperability between distributed system modules. Most of the architec-
tures provide a description mechanism to specify the functionality of the components,

1.8 Problem statement 19

�:
UD
SS

LQJ

�,Q
WHU

RS
HUD

ELO
LW\

�5
HD
O�WL

PH
�LQ

WHU
DF
WLR

Q

�,Q
WHU

IDF
H

�GH
VFU

LSW
LRQ

�$
FWL

YLW
\

�RU
FK
HVW

UD
WLR

Q

�&
RP

SR
VLW
LRQ

�&
RP

PH
QWV

+/$ /RFDO
57,�OLE�

57,� 6RIW�ZLWK
WLPH
PDQDJHPHQW�

6LPXODWLRQ
2EMHFW
0RGHO�

,PSOLFLW�
,Q�WKH�IHGHUDWH
IXQFWLRQDOLW\�

)HGHUDWLRQ
2EMHFW
0RGHO�

6XLWDEOH�IRU�LQWHURSHUDELOLW\
EHWZHHQ�GLVWULEXWHG
VLPXODWLRQ�

66$ %DVHG
RQ
+/$�

57,��DQG
5&,�

6RIW��+/$
EDVHG�

6LPXODWLRQ
2EMHFW
0RGHO�

([SOLFLW�
,Q�D�FHQWUDOLVHG�FR�
RUGLQDWRU�

6LPXODWLRQ
VFHQDULR�

%DVHG�RQ�+/$��ZLWK�PXOWL�
OHYHO�FRPPXQLFDWLRQ��DQG�D
FHQWUDOLVHG�VFHQDULR
PDQDJHU�

63/,&($JHQWV� $JHQWV� +DUG� 'DWD� ,PSOLFLW�
,QVLGH�WKH
IXQFWLRQDOLW\�RI
DSSOLFDWLRQ�SURFHVVHV
DQG�DJHQWV�

'DWD�IORZ� 6XLWDEOH�IRU�KDUG�UHDO�WLPH
VXSSRUW��DQG�GLVWULEXWHG
FRPPDQG�FRQWURO�V\VWHP�

&&$ 3RUWV�)UDPHZRUN� 6RIW� 6FLHQWLILF
,'/�

,PSOLFLW�
,QVLGH�FRPSRQHQWV
DQG�IUDPHZRUN�

'DWD�IORZ� 6XLWDEOH�IRU�KLJK
SHUIRUPDQFH�FRPSXWLQJ�

%RQG %RQG
DJHQWV�

%RQG
IUDPHZRUN�

3RRU�)LQLWH�VWDWH
PDFKLQH�

,PSOLFLW�
,QVLGH�%RQG�DJHQWV�

%OXHSULQW
�)LQLWH�VWDWH
PDFKLQH
EDVHG��

$�-DYD�EDVHG
LPSOHPHQWDWLRQ��:LWK
FHUWDLQ�UHDVRQLQJ�DELOLW\�RQ
EHKDYLRXU�FRQWURO�

Figure 1.7: Summary of available architectures.

e.g. the SOM (Simulation Object Model) in HLA and the SIDL (Scientific Interface
Description Language) in the CCA, and an integration mechanism for assembling the
components and for realising their run-time binding. In those architectures, the in-
terface specifications are basically used to promote the interoperability between com-
ponents; an explicit layer for controlling overall interactions is not defined. In HLA,
this often causes a tight coupling between simulation logic control and the federate
implementation. In the CCA, a port-based interface is used to describe the intercon-
nection structure between components. This mechanism can simplify the description
of data and control flows, but the structure-based description fails to catch temporal
behaviour aspects e.g. the concurrent activities and run-time conditions on the com-
ponent connections, and the realisation of such cases will have to involve the code
level development.

1.8 Problem statement

A clear de-coupling between application logic control and the inherent functionality
is essential to enhance the reusability of the simulation assets and the adaptability
of the system behaviour. Each of available architectures has its success stories in ap-
plication. However, we have seen from the analysis none of them can both explicitly
promote such separation and provide all necessary services for distributed simula-
tion. They either realise the application logic control such as activity orchestration
inside the constituent system components, or have limited capability to model hu-

20 Introduction

man interactions at the system behaviour level. This leads to the statement of our
research problem.
The main goal of the research is to enhance existing architectures by providing a mech-
anism to separate application logic control from the inherent system functionality, so
that they can utilise legacy simulation and visualisation programs to create the re-
sources demanded by PSEs so that scientists can rapidly prototype an ISS and con-
centrate on deploying it in scientific experiments from the perspective of the high-level
activities rather than the development of the system itself. More specifically, we inves-
tigate the requirements on these issues at a system level, and propose a novel ISS
architecture based on the state of the art of distributed simulation middleware and
engineering technologies. We provide a proof of concept by defining an extension to
an existing architecture: HLA.

1.9 Thesis organisation

In this thesis, we propose an agent-based architecture, called Interactive Simulation
System Conductor (ISS-Conductor), for encapsulating the functionality of the legacy
simulation or visualisation systems and for realising the interconnection between
them. The thesis is organised as follows:

In chapter two, we introduce the architecture of ISS-Conductor, and briefly discuss
its design issues. In the architecture, the component activities and system behaviour
are orchestrated by a number of agents. In the knowledge base of the agents, the com-
ponent capability and the application specific interaction constraints are described.

In the third chapter, we describe the design of ISS-Conductor, in particular the con-
trol mechanisms of the system behaviour. The modelling mechanisms of component
capabilities and interaction scenarios, and three execution paradigms of agents are
discussed.

The implementation details of ISS-Conductor are described in chapter four. The
current implementation is on top of High Level Architecture and realises the reason-
ing functionality using Prolog. We also discuss the performance characteristics of the
implementation.

In the fifth chapter, we use an application from biomedicine to demonstrate the main
features of ISS-Conductor. We discuss the procedures to incorporate a legacy system
into the ISS-Conductor architecture, and to deploy them into an interactive system.
The discussion also includes agent based performance control and collaborative inter-
action support.

In the sixth chapter, we discuss the issues on one level higher: the feasibility of
automated composition of ISS-Conductor based interactive simulation. We propose

1.9 Thesis organisation 21

an environment, called ISS-Studio, to facilitate the construction of ISS-Conductor
compliant components, the assembling of interactive simulation systems, and the
control of their execution. We focus on the issues related to semantic level component
discovery and agent support for component assembling.

The final chapter summarises the research and discusses its future directions.

22 Introduction

Chapter 2

An agent based component
architecture

De-coupling application specific control from the functionality of a system is essential
to improve the reusability and flexibility of its constituent components. Interactive
Simulation System Conductor (ISS-Conductor) is an agent based architecture pro-
posed to complement existing middlewares � .

2.1 Introduction
Separating application specific control from the basic data level operations requires
mechanisms for both describing and orchestrating the high-level system behaviour.
Data flow is the most popular mechanism to model system level interactions, e.g.
in [16, 113]. Basically, there are two paradigms to orchestrate system behaviour: us-
ing a dedicated interaction co-ordinator, e.g. in workflow management systems [60],
to schedule the control events between system modules, or incorporating each mod-
ule as a standard machinery, which is able to autonomously interpret interaction
constraints. The first paradigm has been successfully applied in a number of appli-
cations [114, 115]. However, in the case of ISSs, where the user drives the system
interactions, such paradigm shows a number of shortcomings. First, the paradigm
mostly deals with data flow based dependencies; to support sophisticated control
for human-in-the-loop interactions, not only a suitable description mechanism is de-
manded, but also the monitoring on run-time states in each module is required for
interpreting the system interaction constraints. When the number of system mod-
ules increases, the centralised control paradigm faces fault tolerance and scalability
problems. Second, using a separate co-ordinator to orchestrate the system behaviour
on the one hand can reduce the requirements on the code incorporation of simulation

�
Parts of this chapter have been published in Z. Zhao, R. G. Belleman, G. D. van Albada and P.

M. A. Sloot. “System integration for interactive simulation systems using intelligent agents”, in the
Proceedings of the 7th annual conference of the Advanced School for Computing and Imaging, May
2001. An extended version has also been submitted to international journal Concurrency: Practice
and Experience.

24 An agent based component architecture

modules, but on the other hand that will also introduce dependencies between the
co-ordinator and the control interface of the system modules. Unlike from the work
presented in [87,116], we propose a novel architecture based on the second paradigm.

The goal of ISS-Conductor is to provide a layered architecture for encapsulating the
functionality and the run-time control of ISS modules, and for rapid prototyping of a
system. The control of a system as complex as an ISS requires certain intelligence.
Agent technologies provide a suitable approach to include control intelligence with
the behaviour of a set of operations, therefore, we use them to interface the services
provided by underlying ISS middleware, and to implement the orchestration of the
system.
This chapter is organised as follows. First, we briefly introduce the ISS-Conductor
architecture, and then describe its deployment in prototyping interactive simulation
systems. Finally, we discuss the requirements and challenges of the development.

2.2 Interactive Simulation System Conductor

2.2.1 Modules as reusable components
In order to make the reuse of legacy ISSs really efficient and worthwhile, a degree of
granularity for the components to be reused must be carefully chosen. The smallest
components that could reasonably be considered are the individual routines, which
would be packaged into a reusable library. Such libraries might be similar to existing
mathematical and visualisation libraries, and would lose much of the sophistication
of the carefully crafted simulation and visualisation modules, as the essence of the
modules often lies in the interaction between the routines. The largest component
that could be considered for reuse is the actual ISS as a whole. From the preceding
description of its structure, it will be clear that an ISS usually cannot be adapted to
a new application domain, or even to a new execution environment, without a major
overhaul. A better granularity is at the module level: the principal modules of an
ISS, e.g. simulation or interactive visualisation, are envisioned as basic reusable
units for constructing ISSs. These units are encapsulated as components, in which
the computing core from the principal module, e.g. the time-stepping routines in the
simulator, would remain nearly unchanged.

2.2.2 Basic architecture
Originally, in designing ISS-Conductor, an approach was chosen where a relatively
small control and I/O module would be added to a largely unchanged legacy code,
with the aim of adapting the module’s behaviour to the requirements of an ISS [4,5].
By keeping these foreign modules apart from the legacy control routines we could
localise the application specific control and keep the major part of the legacy code

2.3 Agent based design 25

������ ���	
�����

���������
�� ��������
��
���

�������������

��
������

����
��������

��������
������

�����������������

	�����������

�������������������	������������

�����������������������������

����������

�����������

��������������
��	
���������

����
��������

������

����
��������

������

Figure 2.1: Basic architecture of an ISS-Conductor component.

unchanged. However, this approach allowed only limited control of the system be-
haviour. Therefore, the control routines of the legacy systems were also modified and
so that they can be controlled by a foreign module. An ISS-Conductor component
thus consists of two primary parts: an Actor for encapsulating the functionality of
a legacy system and a Conductor for controlling the run-time activities of the Actor.
The run-time integration between component instances is through a software bus.
Inside a component, both the Actor and the Conductor have a Communication Agent
(ComA) which provides a uniform interface to exchange information with the soft-
ware bus. In the Actor, the ComA wraps the computing core and data structures in
the legacy code and provides an interface for remote access and invocation. In the
Conductor, a control agent called a Module Agent (MA) provides the control intelli-
gence for the behaviour of the component in a specific application context. Fig. 2.1
depicts the basic architecture.

2.3 Agent based design

2.3.1 Agent definition

ComAs are designed using a reactive architecture, as shown in the left part of Fig.
2.2. In the reflex architecture, sensors and effectors are interfaces for the agent to ex-
change information with the external world. The sensors listen to the external world,
generate tasks for the recognised events and pass them to the task interpreter. The
interpreter finds proper actions for the task in a task-action lookup table. Finally, the
effectors carry out the actions. An important reason that we start with this architec-
ture is because it is simple and extensible. For instance, when the task-action lookup
table and the interpreter are complemented with a reasoning engine, the intelligence
for action selection and execution will be immediately improved. Using it, agents can
thus be constructed incrementally.

26 An agent based component architecture

In the Actor, a ComA wraps the legacy system and interfaces it to the underlying
communication middleware to realise the information exchange with the other Co-
mAs. The functional components in the legacy systems are incorporated as activities
in the ComA, and their associated control data are represented as data objects which
can be accessed and manipulated remotely by the other components via the software
bus framework. Since ComAs do not require sophisticated reasoning mechanisms
for controlling their actions, they either pass the events observed from the external
world to MAs or directly carry out the instructions sent from MAs. Fig. 2.3 shows an
example of ComA in an Actor.

��������	���
����

�
��
�
�
��
�

�
�
	

�
�

���	���
��
���	�

�	����������

���	�������	������������

Figure 2.2: A simple agent kernel.

������

����������	��
�������������	�

��		�������������

�
��
	
�
��
�

	
�
�
�
�

��������	�
 ����������������

������������������������

����

��������

���

����

����

����

�����������

��	����	�������������

��	� �

!�	

�������

������

����������

�������������

���

����

�������"

Figure 2.3: An Actor and its ComA.

An MA incorporates aspects of a deliberative agent. It employs a world model to track
the changes of the external world and to obtain rational perceptions on the actual
execution states of the other modules. Using the information supplied by the world
model and the knowledge represented in the knowledge base, a reasoning engine is
then used to find proper actions for the Actor to perform. Fig. 2.4 depicts a basic MA
architecture.

��������	�
��

�
��
�
�
��
�

�
�
	

�
�

��������	�
 ��	������������

���	�����

������

� ����

�����

���������

��	�

Figure 2.4: The basic architecture of MA.

2.4 Constructing interactive simulation systems 27

2.3.2 Activity control

Inside a component, the action execution and the reasoning process are carried out
by the Actor and the Conductor respectively. The capability of the simulation or vi-
sualisation system is described as knowledge of the MA in the Conductor, and its
implementation is located in the Actor as a collection of actions and data objects. To
take part in an ISS, each MA also receives a description of the interaction constraints
and dependencies with the other components. Using these two types of knowledge,
together with the information from the world model, an MA can then take a deci-
sion on the actions that the Actor should perform. After performing an action, the
Actor reports the execution status to its MA while updates its world model. To keep
the world model up to date, MAs also have to exchange their perceptions. The data
objects that represent the control data or states in the legacy simulation or visualisa-
tion systems are maintained by the ComA in the Actor, and most of these objects only
need to be accessible and shared among Actors. Depending on the level of detail of the
knowledge representation, some of those objects are also needed by the Conductor of
the component.

2.3.3 Performance considerations

As mentioned, adaptability and flexibility are often traded against performance in
ISSs. In the ISS-Conductor architecture, performance is considered in three ways.
First of all, the Actor retains the well-tuned computational kernels of the legacy im-
plementation of the simulation and visualisation, and the interface for realising the
parallelisation, such as MPI [119] or PVM [120]. Secondly, the implementation of
ComA employs dedicated middleware for data distribution, which not only offers the
necessary flexibility for adapting the data distribution but also ensures the necessary
performance. Finally, the separation of functionality (Actor) and control (Conductor)
allows the computation and control to be parallelised.

2.4 Constructing interactive simulation systems

2.4.1 Composing an ISS

Using the ISS-Conductor methodology, an ISS can then be developed by selecting the
proper components and composing run-time interaction constraints and dependencies
between them. The customisation of the component activities is achieved through the
knowledge base level of MAs. In the knowledge base of MA, the specification of the
component functionality, also called the capability of the component, is used for qual-
ification checks when the component is to be included in an ISS. The output of a
composition, also called a story, is a specification of the constraints governing the in-
teraction among the component instances. At run time, each Component instance is

28 An agent based component architecture

assigned a role† with a unique name. MAs orchestrate the system behaviour accord-
ing to a story. The basic development paradigm is shown in Fig. 2.5.

��������	
��

������� ������� �����	�

�	���������	�����������

�	������
���	�����������	������������

�	����������	�����������	���������

����

�����������	
������

����������

Figure 2.5: A basic paradigm of assembling ISS-Conductor based components.

Using such an approach, the development for an ISS is shifted from realising basic in-
terconnections to describing the high-level interaction constraints. It also introduces
two important questions. The first one is how to describe the component capability
and the interaction stories and the second one is how to do the qualification check for
components. We will leave these questions for the next two chapters.

2.4.2 Run-time framework
The run-time integration between components is through a software-bus- like frame-
work, which is normally the infrastructure provided by the middleware that ComAs
reside on. The middleware has to provide a number of services demanded by the
ComAs: distributed object access, message passing, and data distribution. These ser-
vices are available in many object oriented middlewares, such as CORBA and HLA.
Currently, HLA is used, but the design is not necessarily bound to it. Dependencies
on the underlying middleware can be localised in ComAs so that the whole implemen-
tation is portable.
Components are directly plugged into the software bus and no intermediate assem-
bly components, like the containers in the CORBA Component Model (CCM) [121],
are needed. One of the reasons is that ISS-Conductor components are derived from
legacy simulation and visualisation systems; a component not only encapsulates the
computational routines and data structures of a legacy system but also the neces-
sary logical dependencies between them and the conditions for accessing and invoking
them. This integration paradigm shifts the development focus from the assembly of
small size computational routines to the specification of constraints on the high-level
system behaviour between component instances. These constraints are described as
knowledge in the Module Agents.

†In the context of this thesis, a role refers to an identifier of a component instance. A story is more
than a static description of a system behaviour; it refers to the description of interaction constraints.

2.5 Summary 29

2.5 Summary
In this chapter we have described the basic architecture of ISS-Conductor. As we have
stated in the beginning, the goal of ISS-Conductor is to provide a layered framework
for constructing interactive simulation systems, so that the logic control of system
behaviour can be separated from the basic coupling details. To approach the goal,

1. ISS-Conductor proposes an autonomous machinery which can wrap the func-
tional units of a legacy simulation or visualisation program, and provide an
abstract interface for composing high level interaction among them.

2. It provides an agent framework to encapsulate the computing kernel and the
control intelligence of a legacy system, and to incorporate them as a reusable
component.

3. At run time, the agents couple the components in a layered scheme: Com-
munication Agents for basic interoperability between components, and Module
Agents for controlling system behaviour.

Compared to the solution proposed by Radeski et al., [88] or the one realised in the SI-
MULTAAN Simulation Architecture (SSA) [91], ISS-Conductor takes a further step:
it employs agent technologies to enhance HLA federates; the interconnection inter-
faces and the interaction control are encapsulated in different agents. The logic struc-
ture and the run-time flow of data and activities between component instances are de-
scribed as knowledge in the agents. No special centralised co-ordinator is employed
to control the system behaviour. Using software component and agent technologies in
constructing ISSs is a novel approach. Compared with the architecture proposed by
the CCA and Bond, ISS-Conductor takes the advantages of available advanced mid-
dleware. It views the principal ISS module as components, and focuses on the activity
control between them.

30 An agent based component architecture

Chapter 3

Agent based activity orchestration

In this chapter, we first give a functional description of the architecture and then
discuss how the agents control the run-time system behaviour. We focus on a number
of innovative designs in ISS-Conductor: capability and story modelling mechanisms,
and scenario execution paradigms � .

3.1 An ISS as a multiple Module Agents system
First, we give a short review on the basic concepts introduced in the preceding chap-
ter. An ISS-Conductor component has an Actor and a Conductor, which respectively
encapsulate the functionalities of a simulation or visualisation system and control
the run-time activities. Using ISS-Conductor components, an ISS is realised as a
collection of component instances with different roles and a story of the interaction
constraints between them. A story is designed based on the capabilities of the em-
ployed components. The Module Agents in the Conductors use the capability and
story to control the run-time system behaviour.
As we have discussed in chapter two, an MA achieves its deliberative control on run-
time activities using a reasoning kernel, as shown in Fig. 2.4. The knowledge base
of the reasoning kernel not only contains the descriptions of story and capability, but
also contains the control intelligence for reasoning on activities and for interacting
with the other MAs. An MA can thus be described as a machinery which contains
four functional components: a controller, a world model, a story and a capability, as
shown in Fig. 3.1. The capability serves as a sort of expert system for answering
“what can I actually do?”. The story indicates “what am I expected to do?”. The world
model shows “what is going on in the environment?”. The controller realises general
strategies for managing the world model and capability, for interpreting the contents
of a story and for controlling the Actor.

�
This chapter is based on publication: Z. Zhao, G. D. van Albada and P. M. A. Sloot. “Interaction

Scenario: Orchestrating Agents in a multi-agent System”, in the proceedings of the 4th workshop on
Agent-Based Simulation, ISBN 3-936-150-25-7, Montpellier, France, 2003. An extended version has
also been accepted by internal journal of simulation transaction.

32 Agent based activity orchestration

�����������

	 ���

��
���
����������

��������������

��������	�
��

������

Figure 3.1: A logical view of the functional components in an MA.

The chapter is organised as follows. In 3.2 and 3.3, we describe the basic models of
component capabilities and interaction stories. In 3.4 and 3.5 we discuss the design
of world model and controller. After that, we discuss three execution paradigms of
interaction story in 3.6.

3.2 Inherent functionality: component capability
The functionality of a component defines its capability to serve the others, which
determines the spectrum of behaviour that a component can perform.

3.2.1 Basic model

A traditional and also widely used method to describe the behaviour of a system is
through sequences of states or actions. A classical model is the Finite State Machine
(FSM) model [122]. A typical example is the activity diagram [123], in which the
states are action or sub-activity states and transitions are triggered by completion of
the actions or sub-activities in the source states. An activity diagram captures the na-
ture of system behaviour using dependencies between activities and is an important
method to model software behaviour. In ISS-Conductor, the component capabilities
are modelled using activity diagrams. The dependencies between activities are de-
scribed using the execution states of activity performance, data, and condition guards.
The quality descriptions of the activities are also included as part of the capability for
the purpose of component selection and run-time performance adaptation. The com-
ponent capability is thus defined as 5 elements: (Actions, States, Data, Transitions,
Quality) where:

1. Actions is a set of activities that the component can perform. It always includes
an initial action and a set of terminal actions. Each action is associated with
two lists of shared data classes for indicating its input and output of data objects
respectively. Before an action can be executed, the instances of all the shared
classes in its input list have to be available in the input buffer.

3.2 Inherent functionality: component capability 33

2. States is a set of states that describe the possible execution status of the actions.
It consists of two non-intersecting subsets:

�
Sun f inished � , for describing the unfin-

ished states, which always contains one initial state and a number of proceeding
states, and

�
S f inished � , for describing the finished states. At run time, the state

of an action always starts from the initial state, then shifts to the proceeding
states, and finally one of the final states.

3. Data is a set of typed data objects which can be either internal or sharable.

4. Transitions is a set of transitions between Actions. A transition is described
using the state of the starting action, an event and a set of guard expressions.
A transition is active when the guard expressions are evaluated to true and the
instances of the shared classes described in the input list of the target action are
available in the input buffer. An action is called doable when it has an active
transition from the current action.

5. Quality specifies the quality attributes of the component activities and data. In
Chapter 5, we will have more discussion on this point.

The capability can also be represented by an activity-transition graph. Assume we
have a simulator for solving some equation. It has 5 actions

�
Start, InitSimula-

tion, DoStep, ExportResult, Stop � . The action executions have four possible states:�
Sun f inished � =

�
toDo, doing � and

�
S f inished � =

�
succeed, failed � . The initial setting for the

computational and control routines is represented in the data object Setting; the com-
putational results are formalised as data object Result. The activity-transform graph
is depicted in Fig. 3.2.

������

����	����

������

����������	

���

�������

����������

������

�����

����	

���������

�����

����	�����

��������	��� ��������	����� ��������	�����

��������	�������������	�����

��������	����� �������
����

����������
���������

 ������������

����������!"#�

$ ��

� �����	�����

�������
����

�������������������

 ������%��������

Figure 3.2: A partial activity-transition graph of the example. In the description, actions:
Start, DoStep and Stop do not have dependencies on data objects, the action InitSimulation
requires a Setting object as its input, and the action ExportData has a Result object as its
output. In the example, the action DoStep has a transition with a condition guard: error �
Setting.error, which means the action will only be performed when the error is larger than a
given bound.

The ISS-Conductor is designed on top of object-oriented middleware. The issues re-
lated to the ownership of the objects such as object creation, destruction and update

34 Agent based activity orchestration

will be handled by the services from the underlying software bus. If an object in the
input class list of an action is not updated, the controller will request the owner of the
object to update the content before executing the action. If an action has an object in
its output list, and the component does not hold its ownership, then the action will
issue a request to the software bus to negotiate the ownership before performing the
update operations.

3.2.2 Capability modelling for the human interaction involved
components

The run-time behaviour of a human-interaction involved component is influenced by
both the MA and the human user, thus the human actions have to be considered when
modelling its capability. Before discussing the details, we shall first take a look at the
basic structure of a stand-alone interactive system.
From the perspective of task processing and human interaction, the functionality of
an interactive visualisation system can be described as a hierarchical structure using
the notions from Activity Theory [124,125]†. The top layer is a set of tasks supported
by the system, the middle layer is a set of goal-directed subtasks which can be per-
formed by the user to realise each task, and the bottom layer is a set of operations
for carrying out each subtask. An operation can be mapped onto an element in the
user interface. The interface manager of the interaction system ensures that the de-
pendencies between tasks and interface elements are handled. Fig. 3.3 shows an
example of an interactive visualisation tool which allows three basic tasks: selecting
a task, exploring data and stopping the system.

������

����	

���	

�����

����	

������

����	

������

���������	

������

����	

����

���������	

��	

������
���	 ���������	

����������	

���������

�������������	

�����������	

����������������������

�����������������������

��������	

��������������	

������������������������

��������������������������

 �������	

Figure 3.3: A simple model of human interaction involved systems.

The capability model of an interactive system needs to meet two requirements, first,
the run-time behaviour of the interactive system can be controllable by the activi-
ties in the capability, and second, it inherits the legacy support for human-centred

†To avoid the unnecessary confusions with the capability model, we use the terms task and subtask
instead of activity and action as the notions.

3.3 Interaction: story and scenarios 35

interaction. In principle, the activities of the system can be modelled at any level of
tasks, subtasks and operations. However, it is not preferable to model the component
activity at the operation level, because when the legacy controls for the dependencies
between interface elements are taken by the Module Agent, the concurrency between
the user activities and the agent control tends to introduce a large state space. Cur-
rently, we use the task level. Each task is modelled as two actions: enable and disable
which influence the user interaction by enabling and disabling the interface elements
respectively.‡ The capability also includes actions for handling I/O operations. Al-
though not being modelled as the actions in the component capability, the human
actions are important in describing the dependencies between the agent actions. A
suitable way is to model them as states: the subtasks that the user is performing
are modelled as the state of the user behaviour. The other part of the capabilities,
such as Events, Data, Transitions and Quality can be derived in the same way as for
a non-interactive component. Fig. 3.4 shows the activity-transition graph of the Fig.
3.3.

�����������	
��

��	���������������	�	�

��������	�	������

��	���������������	�	�

�������������	�	�

�������	�	������
��	���������

��	���������

�����

��	��������
�� 	!�

��	��������
�� 	!�

����	��

"����#

����	��

"���
�$�#�����	��"���
�����#�

����	��

"��������������#�

����	��"
	�
������# ����	��

"�������%	�	#�

����	��

"�����

���������#�
����	��

"�������%	�	#�

Figure 3.4: Capability modelling of the components involved with human interactions. A par-
tial activity-transition graph of Fig. 3.3. The term InState describes the state of user activities.

3.3 Interaction: story and scenarios

A story provides rules to steer the run-time behaviour of the component instances.
To decrease the complexity, a story is divided into a number of simpler fragments,
called scenarios. Those scenarios can be reused in different stories. A scenario can be,
in principle, specified in a number of ways, e.g. activity diagrams [126], state charts
[127] and Petri Nets [128]. Because of the well-established theoretical framework
and more importantly the suitability for representing the common flow patterns and
concurrency dependencies [129], a Petri Net based approach [130] is adopted.

‡Enabling and disabling interface elements is supported by most of the user interface development
toolkits.

36 Agent based activity orchestration

3.3.1 Place transition net
The concept of a Petri Net was originally developed by C. A. Petri in the 1960s. It has
been a widely applied for modelling system behaviour, in particular concurrent activi-
ties. Petri Net has actually become a generic word referring to a body of research such
as elementary net theories, place transition graphs, and high level graphs [131,132].
Place transition graphs are a sort of automata that can handle relations between
conditions and the occurrence of events [130].
A place transition (PT) graph can be specified as a triple, (SP, ST, SF) [133] where:

1. SP is an finite set of places;

2. ST is an finite set of transitions. SP � ST = /0;

3. SF is a map between SP and ST, and between ST and SP. SF � (SP � ST) � (ST
� SP).

A number of concepts are used to specify the properties of PT nets:

1. Weight is a map between SF and natural numbers
�
1,2, ... � . In this chapter, we

only use the nets that have equal weights, 1, for all links in the SF.

2. A Marking of a PT graph is a map between SP and
�
0, 1, 2, ... � . M(p) denotes

the number that marks the place p, it also reflects the number of tokens in that
place.

3. Pre-set of x, denoted as � x, is defined as � x =
�

y � SP � ST � (y, x) � SF � , x � SP
� ST.

4. Post-set of x, denoted as x � , is defined as x � =
�

y � SP � ST � (x, y) � SF � , x �
SP � ST.

5. A transition T is enabled when each element of its pre-set has at least one token.�
p ��� T, M(p) 	 0.

6. A enabled transition A can be executed, also called fired. The execution will
update the marking of the net. The update rule is that all elements in the pre-
set of the transition decrease by one token, and all elements in the post-set of
the transition increase by one token.

7. An execution of a PT graph can be described using the sequence of occurred
markings. The set of all possible sequences yields a connected graph, named the
marking graph of the PT graph.

Fig. 3.5 shows a model of data production-consumption relation. On the left side, a
PT graph contains five places: a, b, c, d and e, and four transitions: t1, t2, t3 and
t4. The initial mark is (1, 0, 0, 1, 1, 0) and t1 is the first enabled transition. After
executing t1, the place a passes one token to b; the mark of the net is updated as (0,
1, 0, 1, 1, 0) and t2 is another enabled transition. The marking graph shown on the
right side of the figure describes all the possible marks.

3.3 Interaction: story and scenarios 37

�

�
�

�

�

�

��	
	
	�	�	
�

�
	�	
	�	�	
�

��	
	�	
	�	
�

�
	�	�	
	�	
�

�
	�	
	�	
	��

��	
	
	�	
	��

������	�����	�����	����	�����	������

�
����	
	
	�	�	
�

������������

���������

������������

������������

��

��

�� ��

��

��

��

��

��	
	�	
	
	��

��

��

Figure 3.5: A PT net based model of data production-consumption relation.

3.3.2 Scenario representation

A simple PT graph captures the qualitative properties between the concurrent activ-
ities, but not the quantitative properties of the conditions for a specific transition. A
common solution is to associate additional information with either the nodes (places
and transitions) or the relation links. In ISS-Conductor, the extension is added to
places and the links between places and their post sets.
In a scenario, the activity dependencies between the roles are modelled using an ex-
tended PT graph, named a scenario net. It models the interactions using two types
of dependencies between the activities of different component instances. The concur-
rency dependencies between them constitute the first type, which are represented as
the relation links between places and transitions, and the tokens of the places. The
second type of the dependencies are the specific conditions for each action, which are
represented as the control expressions in the pre-set of the transition and in the links
between the transition and its pre-set.
In a scenario net, transitions and places have unique names. Transitions are used
to specify activities or nested scenario nets. When specifying an activity, a transition
contains an action and a role name, where the role is expected to perform the action
at run time. The role is called the responsible role of the transition. When specifying
a nested scenario net, a transition contains the name of a scenario net and a special
action called Do Scenario. Places and the links between places and their post sets are
used to describe the conditions. A place is optionally associated with a set of expres-
sions, named place expressions, which contain three subsets, for describing the initial
conditions, control conditions and the state-modification rules of the place. Each link
between a place and its post set is optionally associated a set of guard expressions. We
will discuss the semantics of these expressions later. In the expressions, parameters
are accessible by all roles when they are updated by the place expressions, or only
accessible by a specific role when they are updated by the world model of that role.
We use PR(

�
P �) to represent all the parameters that are read by the place expressions

38 Agent based activity orchestration

of the place set
�
P � or the guard expressions in the links between all the elements in�

P � and their post sets, and use PW(
�
P �) to represent all the parameters that will be

updated by the place expressions of the place set
�
P � .

The execution of a scenario net is dependent on its marking, the place expressions
and the guard expressions in the links:

1. The initialisation of a scenario net takes two steps: it first assigns the initial
marking M0 to the places, and then executes the initial expressions in all places
of the scenario net once.

2. A transition is enabled when all the places of its pre-set have at least one token,
the control expressions in all these places are evaluated as true, and the guard
expressions in all the links between the transition and its pre set are evaluated
as true.

3. If the action in an enabled transition is doable, the transition can be executed
(also called fired). The execution will update the marking of the scenario net. It
first executes all the state-modification expressions of the places in the pre-set
of the transition, and then updates the tokens of all the places in the pre-set and
the post-set of the transition as in a normal PT graph.

The execution of a transition updates the state of the scenario net. The basic rules of
the PT graph handle the concurrency dependencies between the activities by chang-
ing the marking of the net, and the execution rules for the place expressions update
the control conditions for the activities. Since the responsible role of a transition
will evaluate all the expressions in the places of its pre-set and in the relation links
between them, it needs to have right to access the parameters in the expressions.

3.3.3 Transitions and actions
In a story four special actions, named story-control actions, are also defined:
Start Scenario, End Scenario, Synchronisation Actions and Do Scenario.

1. In a scenario net, one and only one transition contains Start Scenario. The
transition defines the synchronisation point for starting the scenario net. The
role that is responsible for doing the Start Scenario action is the responsible role
for the scenario net.

2. In a scenario net, one and only one transition contains End Scenario. The tran-
sition defines the synchronisation point for stopping the scenario execution.

3. A scenario net may contain a number of Synchronisation Actions. The transi-
tions define points for one or more roles to synchronise their activities.

4. A scenario net may contain a number of Do Scenario actions. As we have men-
tioned, a Do Scenario action defines the entrance to a nested scenario net.
The responsible role of the nested scenario net is responsible for doing the
Do Scenario action.

3.3 Interaction: story and scenarios 39

The story-control actions are always doable. The actions specified in the scenario net
must either be defined in the capability of a role or be story-control actions. In a
scenario net, only the key activities of the involved roles need to be described, and
the capabilities of the roles are responsible for searching intermediate actions to link
them.
Let’s take an example. There are two components a Producer and a Consumer, which
capabilities are shown in Fig. 3.6. We want to build a simple scenario for three roles:
Producer A is an instance of the component Producer, and Consumer A and Con-
sumer B are two instances of the component Consumer. In the scenario, Producer A
produces data for both Consumer A and Consumer B 10 times. Data transmissions
between Producer A, Consumer A and Consumer B are through a software bus and
use a publication/subscription mechanism, which means each data object produced by
Producer A can be consumed by both Consumer A and Consumer B. The Producer A
only continues when the Consumer A and Consumer B both finish their consumption
(controlled by the Synchronisation Action at transition Sat5). In the scenario net, the
place-expressions are only specified when they are not empty. The responsible role
is Producer A. At its run-time, the parameters SA and SB increase by one after the
Consumer A and Consumer B consumed a data. The expressions in Sap2 and Sap7
control the branch after the Sat5.

����
����	����
����	���������	�����

���

����
����	
�����

��������������
����
�����
�����

����
���

����
�����
�����

����
���

����

����
����	
�����

�����������

����
����	
��������	���������

����
���
�	�����	

���
���	������	����

����

����
����	����	

��
��
���

����

���
�����
�������!��"�������

���������
�

 ��!"���#� ��!"���$
%

&���"'��#�&���"'��$
	�&���"'��$�%

�#����#�������������������������

����������������� �����������$�����%�%

&����������#�������������������������

����������������������� ��������

��������
�(��(�

�)���(*�(��

����	

�!�(�+,-��

�(���

��	
����
�(��(�

&���"'��

����	

�!�(�+,-��

�(���

���.
����	����	����������

Figure 3.6: A sample scenario for roles Producer A, Consumer A and Consumer B. More
examples will be discussed in the next chapter.

3.3.4 Story: a scenario-net instance
A story is a scenario-net instance. It may contain a number of nested scenario nets
which are also called scenarios of the story. When the End Scenario action of a
story has been executed, the system will exit. The responsible role for doing the
End Scenario action broadcasts an exit message to all the roles in the system, and

40 Agent based activity orchestration

the peer roles will do the actions that are in a path leading to one of the terminal
actions in their capabilities.

3.4 World model
To behave rationally in a story, a role has to know not only its own execution status
but also the progress of the other roles. Each role has to track the state of the entire
system in order to make correct decisions on its activities. The world model provides
the necessary services.

3.4.1 Basic structure
The world model tracks and processes the changes of the external world using a uni-
form structure

�
(parameter, observations, perception) � . Parameters are the things that

are being tracked and observations are the temporary value of parameters, which are
ordered by their time stamps. The perception analyses the observations, both the
value and their time stamps, and maps them to a set of qualitative descriptions or
obtains the latest value, called belief of the parameter.
Based on the type of information, parameters are classified in five groups:

1. Agent world related parameters are the names of the involved roles in the story.
The perceive function returns the believed states for the role. The state of a role
is determined based on two issues: if the role is present in the system, and if the
role has recently updated its state. Four states are defined: never heard of, is
updated, is not updated and has disappeared. The semantics and the transitions
between them will be discussed later.

2. Story related parameters are for scenario changes. The perception function re-
turns its believed story state, which includes the current scenario net.

3. Scenario related parameters are for the marking of the scenario net. The per-
ceive function returns the believed marking for the scenario.

4. Execution related parameters are for activities and their states. The perceive
function returns the believed current action and its state.

5. Data related parameters are the names of data objects. The perceive function
returns the believed value of object attributes.

3.4.2 Perception and uncertain belief of the agent world
For the agent world, perception can use the value of the observations as well as sta-
tistical functions, e.g. minimum, maximum and average of the intervals between the
time stamps of the observations, and a belief-transition graph to derive the belief
of a parameter. A belief-transition graph is a state machine based model, in which

3.4 World model 41

the states describe the possible belief and the guards in the state transitions are de-
scribed using the statistical functions or the values of the observation. Initially a role
perceives all the peer roles as never heard of ; after receiving state-update messages,
the beliefs of the corresponding peer roles will be turned into is updated or is not up-
dated depending on the time intervals for updating new states; finally, if the role has
not received any messages from a peer role for a relatively long interval, the peer role
will be perceived as has disappeared.

In the belief-transition graph, not all the transitions can easily be represented using
a single function, e.g. an agent can not distinguish whether a peer role is not updated
or has disappeared when no messages have been received from that role for a period
of time. Based on the fuzzy state machines discussed in [134,135], uncertain belief is
introduced to reason on those situations, as shown in Fig. 3.7. Two types of belief are
defined: certain or uncertain. The uncertain beliefs are associated with a set of opera-
tions, called proof actions, which can be invoked for gathering additional information
to make the belief certain. The degree of the uncertainty is represented by a real
number which is between 0 and 1. If a belief is certain, its degree is always 1. When
it is a uncertain belief, the invocation of the proof actions will change the degree of the
uncertainty. When the degree of the uncertainty achieves zero or one, the belief will
be transferred to a certain one. The world model can hold an incorrect belief about
the neighbours, e.g. when the network connection temporarily breaks, the neighbours
will be perceived as has disappeared, but after the connection resumes, the belief will
be turned into is updated, as shown in the graph.

������

��	
��	�

������������
����

�����������	����

������������
����

����������	���� ����
�������

��������

��
� ����

����������	����

����
����

��

������������
����

����������	����

�����������
� ����

����������	����

��

!��
���
��	�

���������"

	��
���
��	

#$���%

&�����'

��

��	
��	�

���������"

������	
��	

#$���%

&�����'

(�)��

��
�	��%�

�����������
� ���������������	����

���
������*

���������	
��	����������

��������	����������	������������	�����������

�	�������	��	������	����

�	��������	��	���	������	
��	������	
���	��	����

�	����������	��	���	������	
��	������	��	������	
���	��	����

�	��������	����	��������	����	
��	�����	��������

�	��������	����	��������	����	
��	��	���	�������

��������

��
� ������

��������	����

��������

��
� ��
����

��������	
����

Figure 3.7: A belief-transition graph for deriving the states of neighbour roles.

42 Agent based activity orchestration

3.5 Controller
The controller co-ordinates the functional components in an MA and collaborates with
the other roles to carry out the story execution. In more detail, the controller pro-
cesses the information observed by the sensor, updates the world model, finds suitable
actions from the story and capability, and controls the execution of the actions.

3.5.1 Collecting observations
The first thing that the controller does is to collect the information observed by the
sensors. The sensors are actually the ComA of the Conductor. There are basically
three types of information which could be observed by the ComA. The first one is sig-
nals that the software bus passes to the ComAs, which are normally generated by the
protocols of the underlying middleware. The second one is messages that components
send to each other. The purpose of a message is either to update or to query the state
information. The difference between them is that the second type of messages expects
a reaction from the receiver. The third one is the reflection of the new value of data
objects and their attributes.
The ComA in the Conductor observes the events from the external world and passes
them to the controller in the MA. The controller then generates more specific events
for the world model to update corresponding parameters. The controller checks regu-
larly whether the world model has any proof actions that need to be invoked.

3.5.2 Action execution control
The controller also controls the action execution. In general, the controller handles
two types of actions: those specified in the story or the capability, and those that are
a response to the normal events, including proof actions. The first type of actions can
only be executed when the previous one has been finished, while the second one can
be executed at any time. For the first type of actions, if it is not a story control action,
it will have to be sent to the Actor. The controller handles the protocols for action
sending and searching using the states provided by the world model, as shown in Fig.
3.8.

��������� 	����

���	�����

	�������������

���� �

������

�

�����

	
�
��
�
��
��
��
��
�

�
��������������

�����

������������

��������������������
���������������������

Figure 3.8: The action control between an Actor and a conductor, and its reflection in the
world model.

3.6 Story execution 43

The action requested by the story is possibly not immediately doable by the capability,
but can be doable after a certain number of intermediate actions. For this kind of
actions, the controller considers the states of the action that is executed by the Actor
as a nested state, and uses it to control the update of the story state, as shown in Fig.
3.9.

���� ��
����	

�

����

���� ��
����	

�

�����
��
�����������	����	�������������

����
���������

����
����������	

	�������������
�

	������������

�����
������

������

������
�������������

�����
�����������	������������
�

	������������

Figure 3.9: The execution states of the actions.

Another main function of the controller is to collaborate with the other roles to execute
a story. This will be discussed in the next section.

3.6 Story execution
At run time, the MA in a component interprets the story and controls its behaviour.
The MAs collaboratively orchestrate the overall system behaviour in three possible
paradigms: distributed, hierarchical and centralised.

3.6.1 Basic paradigm: distributed scenario execution
In distributed scenario execution each role maintains its own execution state of the
story, and independently finds enabled transitions from the scenario net using its
local states. Execution proceeds through four basic phases: finding actions, executing
actions, updating the local story state and synchronising the state with the other
roles.

Finding actions

Searching for an action normally takes two steps. The MA first finds an enabled tran-
sition from the scenario net, and then checks if the action defined in the transition
is doable. A story-control action is always doable and a normal action has to be ap-
proved by the capability. When the action in the enabled transition is not directly

44 Agent based activity orchestration

doable, the searching rules will find an intermediate action from the capability, which
leads a path to it.

Action execution and concurrency control

Story-control actions are executed by the Conductors, and the normal actions are ex-
ecuted by the Actors. Before an action is executed, its safety with regard to possible
concurrently executed actions has to be checked. A concurrency conflict occurs when
there are two transitions for which two different roles are responsible, and the exe-
cution of one transition might disable the condition of the other one. Fig. 3.10 shows
an example of concurrency conflicts and the possible illegal markings. The scenario
fragment contains four transitions: role A is responsible for T1 and T3, and role B is
responsible for T2 and T4. When executing in the distributed paradigm, both role A
and B have an initial mark of the scenario net: (1, 0, 0, 0), and both of them have an
enabled transition: T1 and T2 respectively. If both of them simultaneously execute
the transitions, the mark of the scenario net will be turned into (0, 1, 1, 0), which is
apparently invalid in the actual marking graph of the scenario net, as shown on the
left bottom of the figure. In the scenario net, T1 and T2 have concurrency dependen-
cies, and are called critical transitions.

������������

��	
���������

��	�����������

������

��	
���������

��	�����������

������

��������	
�������

���������������

������������ ������������

����������������������

������������ ������������

������������ ������������

����������� �����������

������������ ������������

������������� �������������

��

�� ��

����������������������

�� ��������

�!

������������

�� �������� ��"��������

������������ ������������

������������ ������������

����"�������� ���� ��������

�� �������� ��"��������

��"��������

Figure 3.10: A scenario fragment and its marking graph are shown on the left side. The
right side shows a possible execution sequence of role A and B, when they do not apply any
concurrency controls. The dashed arrows indicate the marking changes that are perceived by
the peer role; the markings in Italic font are invalid.

The concurrency conflicts can be checked using the following rules. Assume that
role A and B are responsible for two different transitions Ti and Tj in a scenario S.
The transition Ti and Tj are critical transitions when executing either of them might

3.6 Story execution 45

change the condition of the other: the number of tokens in the pre-set or the condi-
tion expressions in the places and in the relation links. In more detail, the critical
transitions can be identified using � Ti � � Tj

�� /0 or PW(� Ti) � PW(� Tj)
�� /0 or PR(� Ti) �

PW(� Tj)
�� /0 or PW(� Ti) � PR(� Tj)

�� /0. Role R is an involved role for a critical transi-
tion Ti when R is responsible for Ti, or it is responsible for a transition Tj which is in
conflict with Ti.

To execute a critical transition, a role has to negotiate with the other involved roles to
ensure mutual agreement. A negotiation is designed based on the algorithm described
in [136]. The local time of the roles is used for the comparison; the one with the
smallest value wins.

State update and synchronisation

After a transition has been executed, a role first updates its local state of the scenario
net and then causes the other roles to synchronise their local states. A role broadcasts
an update-request message to the other roles when it has updated its local state. The
peer roles synchronise their local states by mimicking the execution of the state after
receiving the state update request message. The synchronisation operation can only
take place once for each request.

The services provided by the Run Time Infrastructure of HLA, e.g. ordered-message
delivery, can not easily handle the synchronisation, because message delivery is not
always reliable, e.g. due to a temporary loss of the connections between roles. Pro-
cessing the messages in a Receive-Ordered (RO) way, a role cannot ensure that all
its requests for state-update have been received by the peer roles, neither can it en-
sure that it has received all the requests from the peer roles. On the other hand,
with Time-Stamp-Ordered (TSO) message delivery, the grant of the federation time
will be blocked by one agent when it is out of function. A high-level control for the
synchronisation is needed.

To record the executions of transitions, each role maintains two groups of data struc-
tures in its world model. The first one is called master table, which records all the
transitions that it has executed, and each item in the master table is also associated
with an acknowledgement table. And the second one is called slave table which records
all the transitions for which update request messages were received; a separate slave
table is maintained for each peer role. Fig. 3.11 shows the basic structure.

These tables ensure that any executions performed by a role will be synchronised by
all the peer roles exactly once. First, the sequence of the transitions executed by a role
is tracked using the master table, the acknowledgement tables check if the transitions
have been reflected by all the peer roles. Second, the slave tables record the histories
of the transitions executed by the peer roles, which guarantees that the local update
for each transition only takes place once.

46 Agent based activity orchestration

������
�����������	

����������	

�����
����	

�����������	
������

��������

���	�

���������

�������������

��������

������

�����������

��	

��������� ��

�������!��"�

������

��

��

��
�#

����"��������
�� ��$������%��&���

����"�����������'����
%��&����%����#�

Figure 3.11: Data structure for state synchronisation.

3.6.2 Hierarchical execution paradigm
In the distributed paradigm, the state update messages are broadcasted. If the num-
ber of roles or transitions increases, the number of messages will also dramatically
increase, and the massive number of small size messages will degrade the system
performance. The hierarchical execution paradigm is proposed to overcome this prob-
lem. It intends to limit the number of messages by only sending the update requests
to the roles that really need them. First we will define some basic concepts.
We define that two roles Ra and Rb are tightly dependent, denoted as tDep(Ra, Rb),
when Ta and Tb which are the responsibility of role Ra and Rb respectively satisfy at
least one of the following conditions: (� Ta � Tb �) � (� Tb � Ta �) � (� Ta � � Tb)

�� /0 or
(PW(� Ta) � PW(� Tb)) � (PW(� Ta) � PR(� Tb)) � (PR(� Ta) � PW(� Tb)

�� /0. Two roles Ra and
Rb are loosely dependent, denoted as lDep(Ra, Rb), when Ta and Tb are not tightly
dependent, but there exists a sequence of roles

�
R1, R2, ����� , Rn � which has tDep(Ra,

R1), tDep(R1, R2), ����� , tDep(Rn, Rb). And two roles are dependent when they are either
tightly or loosely dependent. From the definition, we can see if a scenario net is
connected, which means no transitions are isolated from the others, any two roles are
dependent.
The basic idea of the hierarchical paradigm is that all the roles which are tightly de-
pendent should receive the update request messages from each other. Therefore, the
distribution of the update-request messages will be multicast instead of broadcast. To
construct the multicast groups, a dependency tree is proposed:

1. The nodes in the tree contain a non-empty set of roles, the root node only con-
tains one role that is the responsible role for the scenario. A role can only belong
to one node in the tree. The

�
R � is the set of all the roles in the node.

2. For a role R, all the roles that are tightly dependent with it must belong to one
of the possible nodes: the same node with R, its parent node, or one of its child
nodes.

3.6 Story execution 47

3. Any two roles Ra and Rb which belong to the same node must be either tightly
dependent or loosely dependent. And if they are loosely dependent, there must
exist a set of roles

�
Rs � =

�
Rs1, Rs2... Rsn � which has

�
Rs � � �

R � and tDep(Ra, Rs1),
tDep(Rs1, Rs2), tDep(Rs2, Rs3), ����� , tDep(Rsn, Rb).

4. Any two roles Ra and Rb which neither belong to the same node, nor to parent-
child node pair must not be tightly dependent.

In a connected scenario net, any two roles are dependent, which means a dependency
tree can always be derived. Using the dependency tree the multicast groups for dis-
tributing state-update messages can then be allocated. All the roles that are in the
same node or the parent-child nodes will be in one group, and the roles that do not be-
long to the same node or parent-child nodes will be in different group. The multicast
groups are handled using the data distribution services provided by the underlying
middleware, which will be discussed in the next chapter.

3.6.3 Centralised coordinator paradigm

The final execution paradigm is to interpret a scenario using a centralised co-ordinator.
An important reason for employing this paradigm is that the cost of the negotiation
operations, especially when the number of critical transitions and the number of their
involved roles are large. The centralised co-ordinator paradigm works as follows:

1. The responsible role of the scenario is set as the co-ordinator.

2. Only the co-ordinator maintains the state of the scenario net, and only the co-
ordinator searches the enabled transitions.

3. The co-ordinator searches enabled transitions not only for itself but also for all
the other roles in the scenario.

4. When a subordinate role receives a transition sent by the co-ordinator, it will
check the doable actions using its own capability. When the action in the tran-
sition has been executed, it sends back the execution state to the co-ordinator,
and requests for the next enabled transition.

5. Between subordinate roles, no update request messages are sent.

To allow the co-ordinator to check the enabled transition for different roles, the pa-
rameters defined in all place expressions should be accessible by the co-ordinator.
Therefore, for this paradigm, the subordinate roles necessarily send the value of their
private parameters to the co-ordinator during the scenario execution.

48 Agent based activity orchestration

3.6.4 Scenario switch and execution paradigm selection

When entering an ISS, a role initialises the story as the first scenario. A new scenario
is switched on when a Do Scenario action is executed. The role that executes the
Do Scenario action first broadcasts a scenario-switch message to all the roles, then
saves the execution state of the current scenario, which includes the mark of the
current scenario net and the setting of its execution paradigm, after that it initialises
the new scenario. When a peer role receives a switch announcement, it saves the state
of the current scenario, and then initialises the new scenario. Currently, no parallel
scenarios are allowed, which means at one time, there can only be one active scenario
in the system.
When a scenario is started, its responsible role makes a decision on the execution
paradigm, which is based on two basic facts: the total number of the involved roles
and the total number of critical transitions in the scenario. The facts for designing
the rule are that the centralised paradigm can handle the critical transitions more
efficiently than the other two paradigms, but its performance will decrease when the
total number of the roles is large. The threshold values for the number of roles and
the number of transitions are empirically set in the knowledge base. The responsible
role announces the decision on the execution paradigm to the other involved roles
before executing the action Start Scenario.
Roles choose multicast groups for receiving messages and data objects when entering
a scenario. If a role is not involved in a scenario, it will not join any groups for receiv-
ing state-update messages. But the messages for scenario switches are broadcasted
to all roles. In the next chapter, we will discuss how the adaptation is realised using
the distribution routing spaces.
When a role executes the End Scenario action, the current scenario will exit. If the
current scenario is the story, the execution of the system will finish. Otherwise, the
role restores the state of the previous scenario, then broadcasts a restore message to
all the other roles. Exiting a nested scenario means the completion of a Do Scenario
action in the previous scenario, the role therefore also needs to update the states of
the previous scenario net and announces a state update message to the other roles.
The history of the scenarios is tracked by the master and slave tables of the story.

3.6.5 Handling run-time exceptions

At run time, the execution of a story can have a number of exceptional situations,
e.g. some roles never show up in the scenario, join the scenario while the others
have already started the execution, or suddenly disappear from the system. These
exceptions can have different reasons such as the temporal loss of the network con-
nection, a temporarily unavailable computational infrastructure, or internal errors
in the component, which can occur at any time, especially when the run-time envi-
ronment contains a large collection of heterogeneous computational resources such
as computational Grids. To execute a story robustly, the MA employs a number of
strategies to handle those exceptional circumstances.

3.7 Summary 49

First of all, a scenario can only be started when the responsible role is present. This
implies two things: when a story is started, the responsible role for the story has to be
present, and a Do Scenario action can only be executed by the role that is responsible
for the nested scenario net. The presence of a role is determined by the world model.
Secondly, a role is not allowed to enter into a scenario when the other roles have
already started the execution. It means that the normal roles of the scenario have
to be present in the scenario before the responsible role starts the execution. This
strategy is also related to a third one that the transitions that are the responsibility
of absent roles will always be considered as enabled. Making this assumption avoids
that the execution is blocked by an absent role. During the execution, if a component
crashes, the other roles will eventually perceive that role as disappeared from the
story. If a role disappeared from the story, the other roles will use the same strategy
as for an absent role to handle the rest of the scenario. If the responsible role of
the scenario crashes, the roles will switch their scenario to End Story to terminate
the system. Finally, if the story contains a invalid transition, e.g. the action in the
transition is not defined in the capability or will never be doable from the current
state, the responsible role of the transition will announce a message to the other role
that it quits from the scenario. And the other roles will use the second and third
strategies to handle the rest of the scenario.

3.7 Summary
In this chapter, we have discussed the core design of Module Agents and the mech-
anisms for orchestrating interaction among them. As we have discussed in the pre-
vious chapter, ISS-Conductor realises the separation between system functionality
and application specific interactions using a layered agent framework, in which Co-
mAs realise the basic communication details and MAs provide an abstract structure
to control the activity. The component functionality is modelled as a finite state ma-
chine (capability), which can be programmed with the other components using a Petri
net based mechanism (scenario net). In this chapter, we have not presented the ex-
perimental results of the development, but from the discussion, we can enumerate a
number of design characteristics.

1. Describing the capabilities of the components and the interaction dependencies
separately is essential to support scientists to prototype an ISS from high level.

2. The capability of a component is modelled using a Finite State Machine based
model. A uniform mechanism is proposed for describing the capabilities of both
normal components and components involved human-interaction. In the model,
the human activities are modelled as different states based on the activity the-
ory.

3. The interaction dependencies between components are modelled using a Petri
net based mechanism, called scenario net. In a scenario net, component activi-
ties are described in transitions, and conditions for the activities are described

50 Agent based activity orchestration

using expressions in places and in the relation links. The rich semantics of Petri
nets can describe the interaction constraints not only from the perspective of
data dependencies, as often used in scientific workflow systems, e.g. SciRun,
Sculf, and GridAnt [16, 137, 138], but also from the concurrency relations be-
tween activities. It achieves a paradigm for rapid prototyping of ISSs.

4. The world model plays an important role in the run-time control of system be-
haviour. In ISS-Conductor, the world model includes fuzzy states in the percep-
tion of the other MAs.

5. Three execution paradigms are proposed in MAs. The execution of ISS-Conductor
offers more flexible paradigms than centralised control: distributed and hierar-
chical ones.

In the coming two chapters, we will first discuss the implementation details of ISS-
Conductor and then use a medical application as a test to demonstrate the main
features of the architecture.

Chapter 4

Implementation and performance
analysis

In this chapter, we discuss the implementation of ISS-Conductor. We start with Com-
munication Agents and Module Agents, and then discuss how they are combined in
the Actor and Conductor of an ISS-Conductor component, after that we study a test
case to investigate the performance characteristics of the system � .

4.1 Communication agents
A Communication Agent has a data object manager for managing the structure and
contents of data, a distribution manager for sharing the data with other ComAs, and
a reflex task-processing engine for responding to events received from the external
world.

4.1.1 Data object manager
In a ComA, the structure of the data is described as data classes, which contain a set
of attributes, and the contents of the data are managed as instantiations of the data
classes. A class is called shared when its instances can be accessed remotely by other
ComAs, otherwise called internal. The shared classes that have persistent instances
are called shared object classes, otherwise they are called message classes, and their
instances are called shared objects and messages respectively. A shared object class
can be syntactically mapped to classes which are defined in the other ComAs. The
data object manager manages the lifecycle of data objects and provides name services
for them. It also buffers the contents of the shared objects that are updated by re-
mote ComAs before the ComA processes them. Inherently, ISS-Conductor predefines
a number of data classes in the ComAs:

�
Parts of this chapter have been published in Z. Zhao, R. G. Belleman, G. D. van Albada and P. M.

A. Sloot. “ State Update and Scenario Switch in an Agent Based Solution to Constructing Interactive
Simulation Systems”, in the proceedings of the Communication Networks and Distributed Systems
Modelling and Simulation Conference, San Antonio, US, 2002.

52 Implementation and performance analysis

1. Monitor is an internal class. Its attributes point to the data structure defined in
the Actor for tracking and accessing their run-time values;

2. Task is an internal class, which describes the structure of the events;

3. ComA Message is a shared class, which describes the structure of the informa-
tion exchanged between the Actor and the Conductor in a component;

4. MA Message is a shared class, which describes the structure of the information
exchanged between Conductors;

5. Control Message is a shared class, which describes the structure of the informa-
tion exchanged between all Actors and Conductors.

4.1.2 Distribution manager
Using a software bus to communicate, ComAs exchange both shared objects and mes-
sages using a publish/subscribe mechanism. The multicast groups for distribution are
handled by a distribution manager through routing spaces. The routing spaces are
defined as two-dimensional planes, where regions are determined by the co-ordinates
of two diagonal points. One shared class can only be associated with one routing re-
gion at a specific time. At run time, a ComA can change the policies for distributing
a shared object by modifying the region of the associated routing space. The basic
rule is that ComAs can only exchange a shared object when they have overlapped re-
gions. To simplify the region adaptation, ComAs provide four routings profiles: inside
a component, Actors/Conductor only, all components, and away from the others, as
shown in Fig. 4.1. Four routing spaces are predefined in ComAs: componentRouting,
agentRouting, controlRouting and objectRouting which are used for delivering ComA
Messages, MA Messages, Control Messages and persistent objects respectively, as
shown in Table 4.1.

Table 4.1: Messages and their associated routing spaces.
Messages Routing spaces Default profiles

ComA message componentRouting Inside a component
MA message agentRouting All Conductors

Control message controlRouting All Actors and Conductors
Data objects objectRouting All Actors

4.2 Module Agents 53

�����������

����������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�����������

����������

�	�� �	�� �	�� �	��

	��
	��
	��
	��

	��
	��
	��
	��

���������	

���	����� ���������

����

�����	�

��������	�����

Figure 4.1: Routing spaces and their four default profiles defined for ComAs. Roles are
�
A,

B, C � , the ComAs at Conductor are
�
Ac, Bc, Cc � and the ComA at Actor are

�
Aa, Ba, Ca � . The

regions for the Conductors use solid lines; and for Actors use dash lines. XMIN, YMIN, XMAX
and YMAX are the boundary of the entire region.

4.1.3 Events and action execution
A ComA listens to the software bus and generates tasks for the received events. An
event can be a reflection of value changes of a shared object, receiving a message, or a
control signal from the software bus. A task has a name, a count for required number
of executions, and a content. Tasks are passed to an interpreter via a FIFO queue,
and the interpreter searches suitable actions for the task using a lookup table. The
interpreter invokes an action and tracks its run-time state using the Monitor object.

4.2 Module Agents
In the Conductor, a Module Agent incorporates a reasoning kernel to realise the intel-
ligence for controlling the component behaviour. The reasoning kernel contains five
parts: a Capability for describing the basic functionality of the component, a Story for
describing the interaction constraints with the other components, a World Model for
tracking the state of the external world, a set of Control rules for searching activity
and co-ordinating with the other peers, and a Reasoning engine for interfacing with
the event interpreter. The basic structure of a MA has been discussed in the previous
chapter.

4.3 Putting it all together

4.3.1 Current implementation
The implementation of HLA specification Version 1.3 and the RTI Next Generation
Version 5 is used as the underlying software bus. Using HLA terminology, an ISS
is called a federation, each ComA represents a federate, and the RTI is the physical

54 Implementation and performance analysis

world for the agents. The sensors and effectors of a ComA are realised by the local
RTI library (libRTI). The data object manager uses the Object Management services
to declare shared classes, to update object values and to reflect the changes of the
objects from the RTI. The distribution of data objects is realised using the Data Dis-
tribution Management services and time Management services. The run-time system
is managed using Federation Management services.
The basic information of a ComA, such as name, type and the location of the capability
specification is described in a structure called ComARole, which is used to initialise
the kernel of an agent. The event-processing loop only starts after the ComA has
been initialised as a federate and has joined a federation. Fig. 4.2 shows the basic
lifecycle of a ComA. The reasoning kernel of an MA is written in Prolog. In an MA, the
task interpreter is implemented using C++; it is coupled with the reasoning kernel
using a client-server style. The interface is realised using the Logic Server of Amzi
Prolog [139].

���������

�	
�����������

����������������

���������	���

���������������

����������������

��������	�
����
������� ��!

�����������
���������"����

��������

�������!�

������

���������	����#

$���#������ ��������

������#

������	
���

�������

%����

������#� ��������

����

&�!��
����	����#

�����

$���#

�����

������#������������

���������	���

������#���!�

�����

Figure 4.2: A detailed lifecycle of a ComA.

4.3.2 Actor and Conductor
Using the ComA and MA, the Actor and Conductor can be constructed. An Actor
wraps the legacy assets of a simulation or an interactive visualisation system. The
data structures are encapsulated as internal/shared data classes, and the computa-
tional routines are incorporated as actions which are registered in the lookup table
of the ComA. Following general engineering principles, the development of an Ac-
tor takes a number of steps, e.g. requirement analysis, capability specification, code
incorporation, validation, and executable generation. In the next chapter we will dis-
cuss these issues with a test case. A Conductor contains a ComA and a MA. The task

4.3 Putting it all together 55

processing loop of the ComA and MA are merged, and the lookup table of the ComA
only contains the communication-related actions.
The Conductor of a component is equipped with a user interface, which can be
launched optionally at run time. The interface presents basic execution informa-
tion of ComAs, reasoning procedures of MA, data objects’ states, the states of the
other MAs and a tool for interacting with the other users. Fig. 4.3 shows a snapshot.
In the next chapter, we will discuss the utilisation of this tool in more detail.

Figure 4.3: The snapshot of the GUI of a Conductor.

4.3.3 Capability and story descriptions
Using the ISS-Conductor architecture, an ISS can be constructed by instantiating
suitable components and describing the interaction constraints between the compo-
nent instances. Each component has an explicit description of its capability. XML
schema [110] based templates are defined for describing the capabilities of compo-
nents, and the interaction story between component instances. The capability tem-
plate contains sections for describing the data classes, the actions and states, and
the activity-transition graph. It is derived from the Object Model Templates (OMT)
provided by HLA for documenting the object models for simulation and federation.
Using the specification, a tool called isscTempG is provided to generate the source
framework of the component. The story template allows the user to describe the par-
ticipating component instances, the projections between their shared classes, and the
activity flows.

4.3.4 Run-time configuration files
The design of the ISS-Conductor treats HLA and the Amzi Logic Server as black
boxes, their kernels are not modified in the ComA and MA. The run-time configu-
ration files required by HLA and the Logic Server e.g. the specification file for the

56 Implementation and performance analysis

federation object and the configuration file for the RTI, and the configuration file for
the Amzi logic server, are generated automatically from the specification files of ca-
pability and story, as shown in Fig. 4.4.

������ ���	
�����

����������

	
��

����

	���

��	�������������

������������

���	

���

������
�����

������	

��	�������������

������������

���	

���

������
�����

������	

����������

������
�����

�������

��� ��	��

�������!�
���

����

��� ��	������

����"

���#

�������$���%

��������������

Figure 4.4: Generating run-time configuration files.

4.4 Performance analysis
The performance study of the current implementation focuses on communication re-
lated issues, such as latency and throughput for ComAs to remotely update shared
objects, and the reasoning related issues, such as overhead for the Module Agent to
take decisions on activity control. We use these experiments to briefly evaluate the
implementation.

4.4.1 Example components and the test bed
We construct two example components using the current implementation of ISS-
Conductor. A Producer component (Producer for short) maintains a shared object,
dataObj, which has an adjustable-size attribute called dataField. The Producer has
four actions: init for resetting the size of dataField, adaptSize for increasing the size
of dataField, exportData for updating the value of the object attributes, and stop for
exiting the system. Each invocation of adaptSize doubles the size of dataField. A
Consumer component (Consumer for short) contains three actions: init, the initial ac-
tion, consumeData for receiving data objects, and stop for exiting the system. Fig. 4.5
shows the capability of these two components. Using these two components, we build
a simple communication scenario for updating shared data objects.
The test bed is the super computer of the Dutch ASCI research school (DASII) [140],
which contains 200 Pentium III nodes, distributed in 5 clusters. The clusters are con-
nected via SurfNet [141]. Each node has one Myrinet card [142] and one fast Ethernet

4.4 Performance analysis 57

������������
����	�
���

����

���������

�����

������	
����
�������

���������

���

�����

���������

��������	�

�������

��������������

����������������

Figure 4.5: Two components constructed for benchmarking ISS-Conductor.

card. The operating system is Redhat Linux. The data transmission between ComAs
is reliable.

4.4.2 Delay for remote updating shared objects
The first thing we studied is the delay of updating shared objects. The services for
updating shared data objects and for reflecting their changes are provided by the
Object Management services from the RTI, which are realised using TAO, a real-time
implementation of CORBA [121]. At its basis, the connections use TCP sockets over
a fast Ethernet.

���������	
���� �����	
���� �����	
����

�����������
��������������

��������	�
�

�����������
���

����
����	�
�

���������������

����

Figure 4.6: Action reasoning and update of shared objects in between run-time roles.

Fig. 4.6 shows three phases for updating a shared object, first the ComA updates
the object contents locally, then pushes the changes of the attribute value to remote
ComAs which have subscribed to the data class, finally the remote ComAs reflect the
data from the local RTI library. The delays of the local-update and the reflection
include the overhead of the data object manager in the ComA, and the encoding and
decoding of the RTI services. The delays of the remote update include the overhead
of the RTI Object Management services, TAO and the TCP sockets. We measure

58 Implementation and performance analysis

these delays at the ComA layer and treat them as one. For comparison purpose, the
communication performance of a pure TCP sockets has also been measured.
In the experiment, the RTI execution is launched in the fileserver of the cluster
das2.nikhef.nl†, and two nodes (node201 and node202) in the cluster are used for
executing Consumer and Producer respectively. Each measurement takes 23 time
steps, which starts from the attribute size of 16 bytes and doubles the size after each
step until 64 Mega bytes. In total, the measurement has been done 50 times.
From the measurements, we observed a number of things. First, the delay for a
remote update is larger than the local updating and reflection, as shown in Fig. 4.7.
Second, the RTI introduces certain overhead on the communication; for small size
objects (smaller than 8K bytes) the delay remains nearly constant as 0.002, which is
larger than transferring data using TCP Sockets, as shown in 4.8. Third, the delay
for remotely updating linearly increases when the size of the data object increases.
In the figures, we observed strange curves in the measurements, for both the RTI
and TCP sockets, which are inherent to the Ethernet cards on the DAS II system‡.
Improvements are expected when the system is upgraded [143]. Fourth, for large
objects, the throughput of the remote update can achieve 8 Mbytes per second, which
is comparable to the throughput of TCP sockets.

0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000 10000 100000

Object size (KB, 1K=1024bytes)

T
im

e
(s

ec
o

n
d

s)

Local update Remote update Local reflection

Figure 4.7: The delays of the local update and reflection and for the remote update of a shared
object. The error bars indicate the standard deviation at each step.

4.4.3 Location of the RTI execution
In distributed problem solving environments, the RTI execution is a software re-
source, which can be shared by different applications. How the location of the RTI
execution influences the remote update of shared objects is an important issue for
executing an ISS. In this experiment, we measured the remote update between two

†The cluster of das2.nikhef.nl is located at University of Amsterdam; fs2, and node201 and node202
are in this cluster.

‡We did not observe the similar behaviour from the measurements between two local Linux work-
stations. The discussion on this particular issue is out of the scope of this thesis.

4.4 Performance analysis 59

0.00001

0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000 10000 100000

Package size (KB, 1K=1024bytes)

T
im

e
(s

ec
o

n
d

s)

Remote update Socket

Figure 4.8: Remote update of shared objects and the throughput of pure TCP sockets.

nodes as in the previous experiment, but run the RTI execution in three different
locations, as shown in Fig. 4.9.
From the measurements, we find that the delays for the remote update are reasonably
close to the original system, as shown in Fig. 4.10. It shows that the location of RTI
execution does not have a clear influence on the remote update of shared objects.

�����

���

���

	
�����������

	
����
�����

�����

�������� �������������
����������

�������
��
��

�������

���������
���

Figure 4.9: The basic architecture of DASII and the configurations of the experiment. The
RTI is executed in fs1, fs2, and nics.

������

�����

����

���

�

��

���� ��� � �� ��� ���� ����� �����
�$WWULEXWH�VL]H��.%���. ����E\WHV�

7LP
H��

VH
FR

QG
V�

1,&6)6�)6�

Figure 4.10: Update delay with different RTI locations. The error bars indicate the standard
deviations.

60 Implementation and performance analysis

4.4.4 Remotely updating objects to multiple Consumers
In an ISS, a shared object is often updated and consumed by more than one consumer,
the correlation between the update delay and the number of consumers is important
for analysing the overall performance of the ISS. We run the test case in four con-
figurations, one producer with one, two, four, and eight consumers respectively. The
experiments are executed in a single cluster; the delays of the remote update between
the producer and each consumer are measured. When a configuration contains more
than one consumer, the delay TR, which is defined as the range from the moment
that the first consumer starts the reflection until the moment that the last consumer
finishes, is also measured.
We first looked at the mean of TR. The measurements clearly show that the TR in-
creases when the size of the object attribute increases and when the number of con-
sumers increase, as shown in Fig. 4.11. The error bars indicate the standard devia-
tions at each time step.

0.0001

0.001

0.01

0.1

1

10

100

0.01 1 100 10000 1000000
Attribute size (KB, 1K=1024bytes)

T
im

e
(s

ec
o

n
d

s)

8 X
4 X
2 X

Figure 4.11: The comparison of the TR.

By analysing the updating delay for each consumer, we found the remote update oc-
curs in a one-by-one manner, which starts from the first consumer that joins the feder-
ation and ends with the last consumer, as shown in Fig. 4.12. An important reason for
being so is that the RTI being used in the experiment does not support the multicast
over TCP sockets. But the delay for the Nth consumer is smaller than N times the
first consumer, as shown in Fig. 4.13. Because the local RTI library in the producer
omits the operations for initialising remote updates when there are more consumers.
The delay between the producer and the first consumer is consistent within the range
of standard deviations, see Fig. 4.14.

4.4.5 Message passing
Messages are another type of data being exchanged between components. In ISS-
Conductor, a typical message size is 90 bytes. The RTI of HLA treats the message
distribution differently from the object distribution because of the non-persistency;
but the underlying communication services are both based on sockets. Using the TCP
sockets, messages are distributed to multiple receivers in a same manner as in data

4.4 Performance analysis 61

0.001

0.01

0.1

1

10

100

0.01 1 100 10000 1000000
Attribute size (KB, 1K=1024bytes)

T
im

e
(s

ec
o

n
d

s)

8th
7th
6th
5th
4th
3rd
2nd
1st

Figure 4.12: The remote update of all eight consumers.

0.01

0.1

1

10

100

0.01 1 100 10000 1000000

Attribute size (KB, 1K=1024bytes)

T
im

e
(s

ec
o

n
d

s)

8th 8*1st

Figure 4.13: Compare the remote update delay of the 8th consumer and 8 times delay of the
first consumer.

0.001

0.01

0.1

1

10

0.01 1 100 10000 1000000
Attribute size (KB, 1K=1024bytes)

T
im

e
(s

ec
o

n
d

s) 1X
2X
4X
8X

Figure 4.14: The remote update of the first Consumer in the federation in different configura-
tions).

objects distribution. Fig. 4.15 shows the delay of sending a message to four receivers
(each receive in a separate host).
We studied how a federate simultaneously handles both object distribution and mes-
sage passing. A scenario, as shown in Fig. 4.16, is used in the experiment. Since
we knew that both objects and messages are delivered sequentially, when the size of
object is large, the message sent from Consumer A will arrive at the Producer A and

62 Implementation and performance analysis

0

0.002

0.004

0.006

0.008

0.01

0 5 10 15 20 25

Time step

T
im

e
(s

ec
o

n
d

s)

1st 2nd 3rd 4th

Figure 4.15: Passing messages to four receivers. The error bars indicate the standard devia-
tions.

Consumer B when they are still sending and receiving respectively. We did the mea-
surement in a same number of iterations as the previous scenarios. Fig. 4.17 shows
the averages of 50 measurements. From the results, we see a federate has a delay in
receiving income messages when it is sending large size data objects, but it has little
influence when it is receiving data objects. The local RTI library of a federate handles
the income messages before receiving the data objects, as shown by the curve in the
Consumer B. This helps agents to respond to the incoming event in real time.

��������	
�������	 ��������

�������

������
������

�������

Figure 4.16: A scenario of sending data objects and messages between three component in-
stances.

4.4.6 Object model and update delay

Finally, we studied the correlation between the structure of an object model and its
remote update delay. In the experiment, we only focus on the object models with dif-
ferent number of attributes. We modified the object model in the previous experiment
to have 16 attributes. And run the experiments in 4 configurations, in which the Pro-
ducer updates 1, 2, 4, 8 and 16 attributes respectively and the attributes have equal
sizes. In each configuration, the total size of the data attributes remains same. Fig.
4.18 shows the results of 50 measurements. We can see that the number of attributes
does not influence the remote update of the object. It implies that the total size of the
attributes is the main issue influencing the remote update delay.

4.5 Performance for action reasoning and story execution 63

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000 10000 100000

Object size (KB, 1K=1024bytes)

T
im

e
(s

ec
o

n
d

s)

Producer A Consumer B

Figure 4.17: The influence between object distribution and message passing. The error bars
show the standard deviation at each time step.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16

Number of attributes

T
im

e
(s

ec
o

n
d

s)

16K 32K 64K

Figure 4.18: Remote update delay of different number of attributes. The error bars show the
standard deviation at each time step.

4.4.7 Summary
The results of the experiments can be summarised as follows.

1. The remote update of a shared object depends on the size of the object and the
number of the subscribers of the class, and does not have a clear dependencies
on the location of the RTI execution and the number of attributes in the object.

2. For large size data objects, ComAs can achieve a comparable update delay to the
normal TCP sockets. For small size objects, the latency of ComA is higher than
the TCP sockets.

4.5 Performance for action reasoning and story ex-
ecution

In this section, we focus on three main issues: first, the overall quality of the Module
Agent, e.g. its correctness for making decisions on actions, second, the overhead of the

64 Implementation and performance analysis

reasoning kernel, e.g. the delay for searching solutions, and third, a brief comparison
of the performance of the three execution paradigms.
The benchmark story employs six roles, in which Producer A (PA), Producer B (PB),
and Producer C (PC) are instances of the Producer, and Consumer A (CA), Con-
sumer B (CB), and Consumer C (CC) are instances the Consumer. The story, as
shown in Fig. 4.19, has three scenarios. The first scenario, called Scenario A, involves
three roles: Producer A, Consumer A, and Consumer B. The Producer A exports data
for the Consumer A and Consumer B, and continues after they finish the consump-
tion, as shown in Fig. 4.20. The second scenario, Scenario B, involves Producer A,
Producer B, and Consumer C. In this scenario, Producer A and Producer B have crit-
ical transitions SbT7 and SbT8, as shown in Fig. 4.21. And the third scenario,
Scenario C, involves Producer A, Consumer A, Producer C, and Consumer C. This
scenario has a dependency tree which is more than two layers, as shown in Fig. 4.22.
The scenarios are switched in the sequence of Start Story, Scenario A, Scenario B,
Scenario C and End Story. The dataObj is mapped to Object1 in Producer A, Pro-
ducer B, Consumer A and Consumer B, and is mapped to Object2 in Producer C and
Consumer C.

�� �� ��

�� �� ��

��

������	
���

������	
������

��

�	
�������

����	
������

��

�	
�������

����	
������

��

�	
�������

����	
������

��

������	
���

����	
������

Figure 4.19: Benchmark story. It has three nested scenario nets: T2 (scenario A), T3 (scenario
B) and T4 (scenario C).

The experiment has been executed in a single cluster of the DASII. Roles are executed
in separate nodes; one role, both its Actor and Conductor, is executed in one node.
The producerA is the responsible role for the initial scenario (scenarioA). At run time,
ISS-Conductor generates a number of log files. The MAs generate a reasoning log
file, which contains all the queries to the reasoning kernel, and the time cost for each
query. We study the performance using these log files.

4.5.1 Overall observations on the action reasoning
From the perspective of the reasoning engine, all the facts of the Capability and Story
and the rules for execution control are represented as Prolog terms. Table 4.2 shows
a number of terms in the instances of Consumer and Producer.
The story is forced to execute in a distributed, hierarchical and centralised execu-
tion paradigm respectively. Each paradigm has been executed 20 times. From the
experiment, we observed the following; first, the federates of all the roles (Actor and

4.5 Performance for action reasoning and story execution 65

����
����	����
��
�	�����

���

����

����

����	
����

���������������
����

�����
����

����
�������

����

����	
����������

����

�����
�����

����
�������

����

����

����	
����

�����������

����

����	
�������	����������

����

����

����	
����

�	��������

����

���� ����

���

���

�����
������!��"�������
����

����
��	����
�
�	����
��
��

Figure 4.20: Scenario A (involved roles: Producer A, Consumer A and Consumer B). Using
the publish and subscribe mechanism, a data object can be simultaneously consumed by mul-
tiple consumers.

����

����

�������	
��������	
�������		

����

����	
����

���������������

����

�����
����

����
�������

����

����	
����

���������
�����

����

����

����	
����������������

�����

����	
����

��	����������

�����

����

����
���	
���������	
���	�

����

����	
����������

����

����	
��� �������

���!

����	
����

���������
�����

���� ����

��������

����������

���"

����	
��� �

�	�����#��

���$

����	
������	�����#��

����%

����	
��� �

�����������

Figure 4.21: Scenario B (involved roles: Producer A, Producer B, Consumer A). SbT7 and
SbT8 are two critical transitions.

Conductor are two federates, and there are in total 12 federates) can successfully join
and resign from the story federation. Second, all the Conductors can correctly find
the actions for their Actor (by comparing the activity sequences with the scenario
marking-graph). And finally, the roles in each scenario can successfully adapt their

66 Implementation and performance analysis

����

����
��������	

����
���	

������������

����

����	
��������������������

���

����

����

����

����

�����
����	����������	�����

�����

����

����	
����������

����

����	
����

�	��������

����

����	
����

�����������

����

�����
����

����
�������

����

�����
����������

����

����	
����

�	��������

���

����	
����

�����������

���!

�����
����

����
�������

����"

����	
�������	����������

����
����	����������	�����

����

�����
��������	

����
���	

������������

Figure 4.22: Scenario C (involved roles: Producer A, Consumer A, Producer C and Con-
sumer C).

��

�

�

�

�

����������

����������

��������������

��

���

��

��

���

��

��

��

��

�

�

���	
������ ��	
��	��� ��
�
������

�����
����

�����
����

�����
����

��

������

��

������

��

�� ��

��

����������

	
���

��

�

�

�

�

��

�

�

�

�

�

�

Figure 4.23: Topologies of the routing spaces of the involved roles. The roles that are not
involved in the scenario set their routing spaces using the away from the others profile.

routing spaces, non-involved roles do not receive state information from the scenario,
and involved roles can adapt their scenario in the correct way.

4.5.2 Overhead of the reasoning kernel
The overhead of the reasoning kernel is defined as the delays for processing the events
that are received from the task interpreter, e.g. for reporting observations and for

4.5 Performance for action reasoning and story execution 67

Table 4.2: Facts and rules in the knowledge base of the Consumer and Producer components.
The story facts and reasoning rules are consistent for all the component instances.

Capability facts Story facts Reasoning rules
Consumer 20 154 380
Producer 28 154 380

querying new actions. The events for all three scenarios are traced in Producer A; the
total numbers and the time cost for each processing are shown in Fig. 4.24.

([HFXWLRQ�SDUDGLJP &HQWUDOLVHG 'LVWULEXWHG +LHUDUFKLFDO
7RWDO�HYHQWV ����� ��� ����� ��� ����� ���

0LQ ������� ������� �������
$YHUDJH

�6WDQGDUG
GHYLDWLRQ�

�����
�������

�����
�������

�����
�������

3URFHVVLQJ
FRVW

�VHFRQGV�

0D[����� ����� �����

Figure 4.24: The total number of events and the time cost for processing an event.

In the centralised model, the co-ordinator has to search activities for all the other
peers and maintain the states for them; therefore the total number of events is
much higher than the distributed and hierarchical paradigms. In the hierarchical
paradigm, irrelevant events are filtered, the total number of events is less than for
the other two.
From the results, we can see the maximum delay for querying is less than 0.05 sec-
onds, and the average cost is about 0.002 seconds which is comparable to the latency
of the object distribution in ComAs (0.002 seconds). From this point, we can say that
the reasoning kernel does not necessarily introduce a bottleneck of the system perfor-
mance.

4.5.3 Reasoning complexity and delay
In this section, we briefly analyse the complexity of reasoning procedures in an MA
and figure out the upper bound of the delays. In general, the reasoning engine accepts
two types of requests from the task interpreter, see the architecture of MAs in Fig.
2.4: asserting observations to the world model, and querying activities for the Actor.
The delay for the first type of operations is inherent to the implementation of the
Prolog reasoning engine; the update of the dynamic database in the Prolog reasoning
engine causes the overhead. The delay for the second type is related to the description
of a scenario net, capability, and the number of involved roles. Since the operation for
searching a doable action is frequently invoked in the second type for control run-time
behaviour, we use the computing complexity of this operation to analyse the reasoning
delay.

68 Implementation and performance analysis

According to the algorithm we discussed in chapter three, searching a doable activity
takes two steps. It first finds an enabled transition from a scenario net, and then
finds a doable action from the capability for the transition. To find an enabled tran-
sition from a scenario net, the reasoning engine needs to traverse the transitions in a
scenario net, and to scan the places in the pre set of a transition, therefore the com-
plexity is O(Nt � Np ��� Npg � Ntg)). Np and Nt denote the number of places and transitions,
Npg and Ntg denote the maximum number of guide expressions in places and relation
links, and Nr denote the number of roles. Finding a doable action in the capability can
be two cases. If the action in the transition is doable return the action, the searching
cost is merely for finding the fact from the dynamic database and evaluate the expres-
sion. Therefore the complexity is O(Na � Nag), in which Na and Nt respectively denote the
number of activities and transitions in the capability, and Nag denotes the maximum
number of guide expressions in links. Otherwise the reasoning engine has to find
another action in the capability which leads a path to the action; in Prolog, using a
recursive algorithm to find the path between two nodes in a graph, the complexity
is O(PT

Na
� Nag), T is the possible intermediate actions in the path. In distributed and

hierarchical paradigms, each role does all the search procedures; for the centralised
paradigm, the co-ordinator not only searches actions for itself but also the enabled
transitions for all the other involved roles, and the other peers only searches doable
activities. We can consider the number of guide expressions as a constant, and the
evaluation of the guide expressions is mostly inherent to the Prolog reasoning engine.
The complexities of searching procedure are thus depicted in Table 4.3.

Table 4.3: Searching complexity of an activity.
Execution paradigm The best case The worst case
Centralised paradigm

Co-ordinator O(Nr � Np � Nt) + O(Na) O(Nr � Np � Nt ��� O(PT
Na

)
Peers O(Na) O(PT

Na
)

Distributed paradigm O(Np � Nt) � O(Na) O(Np � Nt) � O(PT
Na

)
Hierarchical paradigm O(Np � Nt) � O(Na) O(Np � Nt) � O(PT

Na
)

Using Prolog to implement the high level searching strategies, the programming itself
is easier and flexible, but the price is the low efficiency of searching itself. In the
analysis, we do not include the assumption on the order of clauses and other tricks,
because most of them require knowledge on the capability and scenario net. From
the analysis, we see that the performance can be principally improved in a number of
ways. First, a sufficient detail scenario net makes the searching cost for doable action
close to the best case; a small T means the reasoning engine does not need to find
many intermediate activities. Second, a complex scenario net can be divided into a
number of smaller sub nets, so that both Nt and Np are small.

4.5 Performance for action reasoning and story execution 69

4.5.4 Brief comparison between execution paradigms

We study the execution paradigms by comparing their execution time for each sce-
nario. Since Producer A is the responsible role for all the scenarios, its time costs
for each scenario when using different paradigm are compared. Fig. 4.25 shows the
mean of the 20 executions.

�
�

��
��
��
��
��
��
��
��

6FHQDULR�$ 6FHQDULR�% 6FHQDULR�&

7LP
H��

VH
FR

QG
V�

&HQWUDOLVHG 'LVWULEXWHG +LHUDUFKLFDO

Figure 4.25: The time cost by Producer A for each scenario in different execution paradigms.
The error bars show the standard deviations.

From the results, we clearly see that the execution paradigms do influence the perfor-
mance of the execution. When the scenario (scenario B) contains critical transitions,
the centralised paradigm has a better performance than the other two. When the sce-
nario (scenario C) has a dependency tree which has more than two layers, the hierar-
chical paradigm can get a better performance. An important reason for that is that
when the dependency tree is deep the centralised paradigm does not exploit the par-
allelisation between the loosely dependent roles. It also introduces a load-balancing
problem in the central co-ordinator; the central co-ordinator has to do many more
queries than the other two paradigms. That is also the reason that when the num-
ber of roles is small as in scenario A, the centralised paradigm can achieve a better
performance than the other two.
Between the distributed and hierarchical paradigm, the performance difference is not
remarkable when the dependency tree is only two layers, as in scenario A and B. We
can clearly see that the hierarchical paradigm reduced the number of messages in
scenario C, as shown in Fig. 4.26.

4.5.5 Summary

From the experiments, we can say the current implementation of the reasoning ker-
nel can correctly realise the interpretation of a story, and the MAs can successfully
control the system execution. The system performance is influenced by the design
of the scenario and the selection of the execution paradigm. The reasoning kernel
has a comparable latency to the ComAs, and is not necessarily a killer for the system
performance.

70 Implementation and performance analysis

�

��

���

���

���

���

���

6FHQDULR�$ 6FHQDULR�% 6FHQDULR�&
1X

PE
HU�

RI�
PH

VV
DJ

HV

'LVWULEXWHG +LHUDUFKLFDO

Figure 4.26: The total number of state-update messages received by the Producer A in each
scenario.

4.6 Discussion and conclusions

4.6.1 Evaluation
In this chapter, we have discussed the implementation of Communication Agents and
Module Agents and have studied the associated performance issues. In ComAs, the
services provided by the RTI of HLA are used for the underlying data communication.
In the MAs, the control intelligence for activity control and decision making is realised
using a logic language (Prolog). Its reasoning engine supports the solution searching
and maintenance of dynamic databases.
An original goal of ISS-Conductor is to provide an architecture which can efficiently
interconnect simulation and visualisation programs, and can support the rapid proto-
typing of interactive simulation systems. We have not deployed ISS-Conductor in real
cases of simulation and visualisation systems. Yet, from the experimental results
presented in 4.4 and 4.5, we can evaluate the development from following aspects:

1. We have implemented the agent framework discussed in chapter two. By
constructing the interaction story of the test case, we see that using the ISS-
Conductor components, the system behaviour can be adapted at the story level
and does not demand modifications to the component kernels. The logic of the
system behaviour can be adapted at the story level.

2. We have realised the story execution mechanisms discussed in chapter three. In
4.5, we have executed the scenarios in distributed, hierarchical and centralised
modes. From the experiments, we see that the current implementation of the
reasoning kernel can correctly realise the interpretation of a story, and the MAs
can successfully control the system execution.

3. In the experiments, we have also studied a number of performance characteris-
tics of the implementation. The Communication Agents add limited overhead on
the data transmission; in general, the latency of transferring messages or small
size objects is acceptable for soft real-time interaction§. The ComAs achieve a

§As we have mentioned, the DoD’s RTI does not support hard real-time distributed simulations [67].

4.6 Discussion and conclusions 71

comparable throughput to pure TCP sockets when transmitting large size ob-
jects. Of course, the transmission can be optimised at application level; in the
next chapter we will show how parallel data producers improve the transmission
delay.

From the experimental results, we can say that the implementation of ISS-Conductor
fulfils the basic design requirements.

4.6.2 Conclusions
The discussion leads following conclusions:

1. High Level Architecture (HLA) provides a flexible interface for implementing
ComAs. The RTI services provide a standard way for accessing and updating
shared objects, and for adapting the multicast group between the roles. The RTI
services can support the real-time interaction between ISS modules.

2. Separating the control of the run-time interactions from the functionality of the
system modules improves the reusability of the constituent system components
and the adaptability of the overall system behaviour.

3. By benchmarking the Module Agents, we see that the reasoning delay of Prolog
is comparable to the communication latency in the test case. By analysing the
reasoning complexity of the implementation, we can see the performance is de-
pendent on the complexity of scenario net, and the scenario net can be simplified
by dividing into smaller sub nets. Therefore, the reasoning is not necessarily the
bottleneck for the system performance.

In the next chapter, we will use a test case to demonstrate the main features of ISS-
Conductor.

72 Implementation and performance analysis

Chapter 5

Rapid Prototyping of a surgical
pre-operative planning

environment

5.1 Introduction
Making an optimal plan for a vascular operation is difficult, not only because locating
and analysing the affected vessels is time consuming but also because the surgeon
must consider the effects of the operation on the other possible diseases of the patient.
Using computers to simulate the surgical procedures and to evaluate their effects is
considered to be an important aid for pre-operative planning [144–146]. However, the
complexity of developing such simulation systems and the very high requirements
on system performance and real-time interaction hamper their introduction. In this
chapter, we use the ISS-Conductor architecture for rapidly prototyping an adaptable
environment for planning vascular operations � .

5.1.1 Background
Vascular disorders, such as stenosis or aneurysms†, can cause serious diseases due to
their influences on the blood flow; improving the flow quality in the affected vessels
is the basic approach to treat these disorders. Vascular reconstruction is a surgical
procedure which redirects the blood flow from the affected area using a grafted bridge,
also called a bypass. It is applied when less invasive treatments, e.g. thrombolysis
and balloon angioplasty [149] are not an option.

�
Parts of this chapter have been published in Z. Zhao, R. G. Belleman, G. D. van Albada and P.

M. A. Sloot. “AG-IVE an agent based solution to constructing Interactive Simulation Systems” in the
proceedings of the second International Conference of Computational Science (ICCS02), Amsterdam,
NL, 2002.

†A stenosis is a obstruction or narrowing of the artery by the accumulation of fat, cholesterol and
other substances in the vascular wall. Aneurysms are a ballooning out of the wall of an artery due to
a weakness in the wall [147,148].

74 Rapid Prototyping of a surgical pre-operative planning environment

In vascular operations, to optimally place a bypass, one has to consider not only the
structure of the affected artery but also the actual improvement in the blood flow.
To plan an operation, a surgeon first needs information about the location and the
structure of the affected artery. Medical imaging techniques, e.g. X-ray angiography,
computed tomography (CT) or MRI (magnetic resonance imaging), can be used to
obtain digital images of the vessel structures, which can be represented intuitively.
After that, a plan is made based on the analysis provided by radiologists. A number
of simulation or visualisation based tools can be used to aid the design and evaluation
of a plan. The first of these would be a tool for analysing medical images, with which
a user (surgeon or radiologist) can locate and segment the information of affected
vessels from the raw scanned images. An interactive visualisation for representing
segmented information as 3D objects and for prototyping trial bypasses would be
next. A simulator for computing properties of the blood flow in vessels is desirable for
evaluating the actual effect of a bypass. A possible scenario for deploying these tools
in operation preparation is shown in Fig. 5.1.

�������

�	�
������

��
	�������

������������
	����

�����������������

�������

��	����

�����������

�������������

������������

�������

������������	�������

�����������������

Figure 5.1: A scenario of simulation based operation planning.

During the past decade, the development of these tools has attracted a great deal of
attention from both the Medical and Computational Science communities [150–152].
A series of tools for medical image processing and visualisation [153,154], and for sim-
ulating blood flows [155] have been developed. Using these existing tools, a synthetic
environment for making a surgical plan and for simulating activities in an operation
theatre may be developed. Compared to using standalone tools, an integrated envi-
ronment has a number of advantages. First, it allows a surgeon to tune the structure
of a bypass in the run-time loop of the blood simulation, which can not only improve
the efficiency for bypass refinement, but also save the resource consumption for both
computation and storage. Secondly, by coupling these tools together it becomes pos-
sible to mimic the actual activities in an operation theatre, which is very useful for
surgeons.
The Section Computational Science (SCS) at University of Amsterdam (UvA) [156]
has been specially interested in simulating blood flows and in building virtual reality
based environments for exploring medical images. A number of simulation and visu-
alisation packages were produced. In this chapter, we use some of these packages as
basic material to prototype an interactive environment for simulation aided operation
planning, and thus show the use and limitation of the ISS-Conductor architecture as
a rapid prototyping environment.

5.1 Introduction 75

5.1.2 Goal of the chapter
Two packages: a flow simulator (Flow Simulator) and an interactive visualisation
tool (Desktop VRE) are selected as basic material for demonstrating the deployment
of the ISS-Conductor architecture:

1. Wrapping legacy systems as software components. The first feature provided
by ISS-Conductor is to encapsulate legacy systems as reusable components. In
section 5.2, we explain the detailed procedures for incorporating a fluid-flow
simulator and an interactive visualisation program into the ISS-Conductor ar-
chitecture.

2. Coupling components to create an Interactive Simulation System. An ISS is con-
structed using components. At run time, the Communication Agents realise
the basic interconnection between component instances, and the Module Agents
control their scenario specific activities. In section 5.3, we discuss the basic steps
for coupling the components.

3. Adaptable interaction. The behaviour of an ISS can be adapted by modifying
the activity constraints in the story. In section 5.3.4, two scenarios are used to
demonstrate this feature.

4. Including application specific control intelligence. Without changing the imple-
mentation of the components, an ISS developer can include application specific
control intelligence in the knowledge base of agents. In section 5.4, we use an
example to demonstrate it.

5. Supporting problem solving. Using ISS-Conductor, an ISS can be promoted to
support problem solving, e.g. collaborative solution searching, at the system
behaviour description level. In 5.5, we use an example to describe its realisation.

We demonstrate these features and discuss the experimental results for a number
of focal points related to the implementation quality of ISS-Conductor. The first fo-
cus is the development costs, when using ISS-Conductor for wrapping simulation and
visualisation programs and for coupling them into an ISS, the second focus is the re-
mote update delay for simulation results, and the third one is the scalability of an
ISS when it supports collaborative interactions. There are a number of reasons for
choosing these issues. First, rapidly prototyping human-in-the-loop simulation based
experiments is one of the original goals of developing ISS-Conductor; reducing the
development costs for an ISS is a necessary promise of the implementation. Second,
updating the simulation results between distributed modules is critical to the system
performance, both for refreshing visualisation scenes and for human interaction. Fi-
nally, the RTI of HLA claims to be a scalable software; ISS-Conductor complements
the basic HLA services with high-level support for controlling interaction scenarios,
thus, its influence on the system scalability is also an important issue.

76 Rapid Prototyping of a surgical pre-operative planning environment

5.2 From Legacy systems to reusable components
In this section, we shall discuss the basic procedures to incorporate a legacy sim-
ulation or visualisation program into the ISS-Conductor compliant architecture. A
simulation and a visualisation are used as examples.

5.2.1 Basic steps
Incorporating a legacy simulation or visualisation system into the ISS-Conductor ar-
chitecture takes three main steps: 1) defining the capability of the component, 2)
adapting the source code into the required style and 3) generating the executable
component.

Defining the component capability

The capability of a component is defined based on the analyses of the documentation
of the legacy system and of the requirements of the component.

1. Defining data classes. The data structures defined in the legacy systems are de-
scribed as data classes; the classes to be used only by the component are defined
as internal classes, others are defined as shared classes. The definition of the
data classes can be documented using OMT [48] based templates (see section
4.3.3).

2. Defining actions. The actions of the component are defined based on the actual
functionality of the legacy system and the desired services that the product com-
ponent intends to offer. The data dependencies of an action are described as two
lists of data classes for indicating the input and output requirements respec-
tively. The actions contain an initial and one or more terminal actions. The final
execution states of an action are defined based on the possible execution output.

3. Describing action dependencies. The dependencies between actions are de-
scribed based on the control and data flow in the legacy system.

Finally, using the capability template (see section 4.3.3), a capability specification is
produced.

Incorporating source code

A source framework can be automatically generated according to the capability spec-
ification. The framework contains an interface for wrapping the legacy assets as an
Actor, and code for generating a Conductor. The component developer needs to asso-
ciate the legacy routines and data structures with the wrapper interface of the Actor.

5.2 From Legacy systems to reusable components 77

1. The variables defined in the legacy system are directly associated with the at-
tributes of the internal data objects in the Actor. The association has to take into
account the consistency between the lifecycle of the data objects and the scopes
of the variables.

2. In the Actor, the initialisation of the ComA is related to the original execution
style of the legacy system: sequential, multithread or multiple processes. A
process can only contain one ComA. If it is a multithread system, the ComA is
incorporated as a separate thread. If it has multiple processes at run time, each
process has its own ComA.

Generating the executable

The final step is to generate the executable of the component; it includes a capability
specification and binaries of Actor and Conductor. Without supplying any stories,
a component can be executed in a debug mode. In the debug mode, the Conductor
generates a dummy story to invoke the actions in the Actor and test their possible
transitions. The component generates a number of log files, which can be used by the
developer to debug the implementation.

5.2.2 Legacy flow simulation and visualisation systems
The Flow Simulator can simulate blood flow using a given geometrical boundary. The
setting of the simulation is passed to the program through a configuration file. The
computing kernel uses the lattice-Boltzmann method [157] and is written in C. The
program is parallelised using the Message Passing Interface (MPI) [119]. Fig. 5.2
shows its basic functionality. The program first checks the validity of the input setting
before the simulation, it has a routine for exporting intermediate computing results
to data files. The end condition of the computation is controlled using a maximum
iteration number.

���������	
���

��������

��	
���
��

�������

���������

�����
�

�����������
��

�����

��
���
�����
��
�����
��

�����
���

 ��

�
�����
��

!�����

�����
��

��������

��������

����������

������
��"

��
�����
�������

����

�������	����	

�����	����

!�����������
#�����������

���
�
��

Figure 5.2: The basic functionality of Flow Simulator.

The Desktop VRE system is derived from an earlier system, named the Virtual Radi-
ology Explorer (VRE) [158], which was originally developed for an immersive virtual-

78 Rapid Prototyping of a surgical pre-operative planning environment

reality environment, the CAVE [159]. The Desktop VRE system ports the basic func-
tionality of the VRE system and realises it on normal desktops. It allows a user to
compose geometrical structures for doing flow simulations. The visualisation kernel
is implemented using the Visualisation Toolkit (VTK) [160], and the basic data struc-
tures are in VTK formats. Fig. 5.3 shows the main features of the Desktop VRE
system.

�
�
�
��
��
��
�	

�
�
�

�������
�

�������

����
����

�
�
�

�������

�
�
�

����

����
���
����

���������

�������

���������	��

�����
�����

���

	�����

����
���
����

����	����

��������������

����
����

������� �	����

Figure 5.3: The basic functionality of Desktop VRE.

Following the basic steps, the two legacy systems have been incorporated as two com-
ponents: C Flow Simulator and C Desktop VRE.

5.2.3 Component 1: C Flow Simulator
Capability description and incorporation

The data structures and variables in the Flow Simulator are grouped into three
data classes. An internal class called Status Monitor encapsulates the variables for
controlling computing loop and simulation states. Two shared classes encapsulate
the setting for the simulation and the properties of fluid flow, called Flow Setting and
Flow Output respectively. The basic functionality of the legacy system is described us-
ing eight actions: Start, Get Simulation Setting, Set Default Setting, Init Simulation,
Export Flow, Compute, Rest, and Quit, in which Start and Quit are the initial and ter-
minal activities respectively. According to the execution branches of the Flow Simulator
implementation, two finished states are defined for describing the execution: succeed
and failed. Fig. 5.4 shows the dependencies of these actions.

Overhead on computing

The Flow Simulator is a parallel program, so each process is equipped with a ComA.
The data and actions are wrapped in the Actor. Using the debug mode, we measured
the time cost for computing an iteration in both Flow Simulator and C Flow Simulator.
The compute action in C Flow Simulator is imported from the computing loop in

5.2 From Legacy systems to reusable components 79

��������	
�������������

���	��������������

��
�	���

���������

�����
������
��������

��
���

���� ��
�	����������

���������	
�����

!�"�����	���

������	���#���	���

$��"����

#����� %����

��
�	���

���������	��

���������	��

	�������
����&

���

������	��

��������	��

	����
�����&

���

������	��

����������

���'	�((()�	����*&

���'	�(((+�������&

���

���������

���������

Figure 5.4: A partial activity-transition graph of the C Flow Simulator component. See the
definition of component capability in section 3.2.

Flow Simulator; some overhead may be introduced by the processing of ComA events.
Fig. 5.5 shows the time cost for an iteration when using a tube with 32 � 32 � 64 lattice
units as the geometrical structure. The results are the average of 1000 iterations.
From the measurements, we can observe the overhead of the ISS-Conductor, espe-
cially when the number of processes is small. We can see that the computing cost
for each iteration decreases when the number of processes increases; but due to the
increasing costs for inter-process communication, the standard deviation for the com-
putation also increases. From the comparison, we can see that the performance of the
ISS-Conductor component is reasonably close to that of the legacy implementation.

�

����

���

����

���

����

���

� � � �

1XPEHU�RI�SURFHVVHV

7LP
H��

VH
FR

QG
V�

/HJDF\�V\VWHP ,66�&RQGXFWRU

Figure 5.5: Performance comparison between ISS-Conductor component and legacy imple-
mentation. The measurement shows the time cost for one iteration. The error bars indicate the
standard deviations.

80 Rapid Prototyping of a surgical pre-operative planning environment

5.2.4 Component 2: C Desktop VRE

Capability description and incorporation

Similar to the C Flow Simulator component, the C Desktop VRE component also has
three data classes: an internal class, which encapsulates the variables for controlling
the visualisation pipeline and the user activity states, and two shared classes which
encapsulate the input flow data and the output of the flow boundary, called Flow Data
and Flow Boundary respectively. The Desktop VRE program is a human-centred in-
teraction system. In Chapter three, we discussed an activity-theory-based layered
model to describe the capability of such systems (see section 3.2.2). The functionality
of the Desktop VRE system is modelled as four main tasks: composing a simulation
setting, visualising flow data, selecting tasks and exiting the execution. The sub-
tasks for each task are used to model the user activity states. The operations for each
subtask are mapped to corresponding elements in the user interface. Fig. 5.6 shows
the layered picture of the functionality. Fig. 5.7 shows a partial activity transition
graph of the capability.
In the activity transition graph, the actions to handle the input and output of shared
data objects are also included, e.g. Refesh Flow Data action. The data classes appear
in the pre or post condition list of the action, and the transformation between ISS-
Conductor data objects to application specific data format are also implemented.

����

��������	

���	��

���	

���	���

����

�	�	��

�	��

�	�	��

������	

����

����	�

	���

������	

����

������

	��������

������	

����������

�	������

��������	����

����

�	�	�����

���

 	�	���	

������	�

����	�

�������

�	�	������

�	�	�����

Figure 5.6: A layered vision of the functionality of the Desktop VRE system.

5.2 From Legacy systems to reusable components 81

�����������	
��

��	����������������������

��	����������������������

������������	�������������

����������������� 	�!��

��	����"��	���������

��������	�	������

��	����"��	���������

#����$�������	�	�

�������	�	������

��	�����%���

��	�����%���

&���

��	��������
��'	(�

��	��������
��'	(�

����	��

)�%��*

����	��

)����
�"�*�����	��

)����
�������*�
����	��)����
��%��*�

����	��

)�	+�,� &���*���

����	��

)�	�
��,� &���*�

����	��

)����$�%�������*�

����	��

)�	�
���%��*�

���)����	��

)����$�%�������**�

Figure 5.7: A partial activity-transition of the C Desktop VRE component. The term InState
describes the user activity state.

Latency of state update

The Conductor of a component can be executed in an interactive mode. From the user
interface of the Conductor, the user can see the world model and other run-time infor-
mation of the Actor. The delay for perceiving user activity is critical for the Conductor
to make decisions on controlling component behaviour. We measured the latency for
the Conductor to perceive the states of user activities. The latency is defined as the
delay from the user interactions with an interface element, e.g. clicking a button,
until the Conductor perceives it. The experiment is performed on two separate nodes
in DAS II supercomputer. The average latency is about 0.002 seconds, which is close
to the latency for passing an HLA message.

5.2.5 Discussion

In this section, we have discussed the basic procedures to incorporate a legacy sys-
tem into the ISS-Conductor architecture, and demonstrated them using two existing
systems. These two legacy systems are well documented, the incorporation of the two
components took in total 40 working hours. Half of the time was spent in defining the
data classes and activity transition graphs. Since the state and action names appear
as normal strings in the code, any misspelling cannot be checked at compiling time,
which is inconvenient for debugging.

82 Rapid Prototyping of a surgical pre-operative planning environment

5.3 Coupling component instances
The components are deployed for rapidly prototyping an interactive simulation sys-
tem. The main goal is to demonstrate the development of an interactive story, and
the adaptability of the system behaviour. We start from a simple scenario, called
Blood Flow Studying, in which a surgeon studies the properties of blood flow in a
given bypass using a live flow simulation.

5.3.1 Basic analysis: roles and interactions
In the Blood Flow Studying scenario, components take two roles: one for simulating
blood flow noted as Blood Simulator and one for simultaneous presentation of the
flow data called Surgeon, which are instances of the C Flow Simulator and
C Desktop VRE components respectively. For the moment, we assume these two com-
ponents are qualified for these two roles. In the next chapter, we will have more dis-
cussion on component selection and composition. The interaction between the roles
can be described using an activity diagram, as in Fig. 5.8. In the diagram, activity
states are the actions defined in the capabilities of the components. The data classes
are mapped to shared data classes defined in each component respectively. The con-
ditions at the decision point are described using the states of user actions.

�������� 	
�������
�����

��������	
������������

�	��

�����������	
������������

��������

��������	����
�
�

���������	����
�
�

���
�	������
	�����	���

��
�	������
	�����	���

������
���������

���������	����!�

��
�	���������������������

"#�
��

"	��$��	��

Figure 5.8: An activity diagram for Blood Flow Studying scenario. The term UserState de-
scribes the activity state of a user.

5.3 Coupling component instances 83

5.3.2 Making an interaction story

An interaction story contains three main parts: a common data interface between
roles, one or more scenario nets for describing their activity dependencies, and run-
time requirements for generating execution scripts. A common data interface defines
an object model for different roles to exchange their data. In HLA, such object models
are also called the Federation Object Models. Since mapping between data classes
is only syntactic, the semantic level checking has to be done in the design stage.
A scenario net can be derived from activity diagrams. In the Blood Flow Studying
scenario, the branches in the decision point are based on the user’s activity. If the
user is in the FinishExploring state, the scenario finishes. The user’s activity state is
monitored by the ComA coupled with the GUI of the legacy system.
ISS-Conductor provides interface for describing guard conditions between activities.
Fig. 5.9 shows a scenario net of the scenario. The story file contains descriptions of
the required resources, e.g. number of processors and computing hours. This part of
the description are used to generate scripts for different job submission tools, such as
Portable Batch System (PBS) [161].

��������	
��

������������	
�

�����

���������
��

�	����������
���	������

�����

���������
��

�
����	�

�����

���������
��

���
�����
��
��������	
��

 	!�	"#���
��$����

�%������	
��

$�"�&�	�'�"����"	���
��

��(������	
��

���������	
�

�)������	
��
���&�	��
��������	������

��

�*������	
��

�+�,#�
��-,��

�)

�.

��

�*

�%

��
�.������	
��

/��������������
���	������

��

��

0"	�����	�1����	
��

����"#����
����2�
3
�10"	�����	�1����	
��

����"#����
����22�

Figure 5.9: A scenario net of the Blood Flow Studying scenario.

84 Rapid Prototyping of a surgical pre-operative planning environment

5.3.3 Executing an ISS
At run time, a component is initialised as a role by assigning a name and a story. The
Actor and Conductor of a role can be executed on different machines. The responsible
role of the scenario is loaded later than the other roles. Since the update of simulation
states (computing results of the flow) is critical for the human interaction, we studied
a number of related performance characteristics using the example.

Execution

The system is executed on a single cluster of the DAS II supercomputer. The Actor
of the Blood Simulator is submitted using the open PBS tool, and its Conductor is
executed on a separate node. The Conductor and Actor of the Surgeon are executed
on separate nodes. The RTI is executed on a file server of the cluster. From the exper-
iment, we see, all the ComAs can successfully join in and resign from the federation.
The Blood Flow object can be correctly visualised in the interface of Surgeon. Fig.
5.10 shows a screen snapshot.

Figure 5.10: A screen snapshot of the Blood Flow Studying scenario. The left window shows
the interface of the Conductor and the right one is the interface of the C Desktop VRE compo-
nent. The flow boundary is a tube with 32 � 32 � 64 lattices. The image in the window shows the
velocity vectors of the calculated flow field.

Remotely updating multiple shared objects

When executing the Blood Simulator role in parallel, each process maintains only a
part of the simulation results as different instances of the Blood Flow class. These
instances have to be merged before being visualised by the Surgeon. The merging can
take place on either side. When the simulation is more compute intensive than the
visualisation module, the second strategy is preferable, it is adopted in the current
implementation.
In the scenario, the geometrical structure of the Bypass object is a tube. In the exper-
iment, three different sizes of tubes are used, which are 32 � 32 � 16, 32 � 32 � 32 and

5.3 Coupling component instances 85

32 � 32 � 64 (lattice units)‡.

�

���

���

���

���

�

� � � � � ��1XPEHU�RI�VLPXODWLRQ�SURFHVVHV

7LP
H��

VH
FR

QG
V�

������ ������ ������

Figure 5.11: Remote update of shared objects when the simulation is executed on multiple
processes. The error bars indicate the standard deviations of 100 measurements.

The delay of updating a Blood Flow object is measured as the interval between the
moment that the first simulation process starts to update its object and the moment
that the visualisation component finishes its reflection of the object from the last sim-
ulation process. Each experiment is performed using four configurations: the simula-
tion is executed in one, two, four and eight processes respectively. Fig. 5.11 shows the
mean of the 100 measurements, and the error bars indicate the standard deviations.
From the results, we can see the delay for remotely updating and reflecting multiple
objects increases with the size of data objects, but within the standard deviation, it is
independent of the numbers of processes. When the number of simulation processes
increases, the size of the data object maintained in each process decreases but the
total volume of the data objects remains same. At run time, the simulation processes
can update the data objects simultaneously, but the RTI call-back function for reflect-
ing the updates can only handle them sequentially, therefore the total update delay
remains constant.

5.3.4 Asynchronous data update
From the execution of the Blood Flow Studying scenario, we see that the Blood
Simulator role only continues its Compute action after the execution of action Re-
fresh Flow Data in the Surgeon role, which means the simulation is paused while
the data is being visualised. When the simulation has a large number of lattice
points, this is inefficient. One way to improve it is to allow the Blood Simulator
role to compute asynchronously with the Surgeon role. We call the new scenario
as Blood Flow Studying Asy. In the Blood Flow Studying Asy scenario, the decision
point for continuing computing does not directly depend on the execution of Refresh
Flow Data activity. Fig. 5.12 shows the scenario net.
As we mentioned in the chapter 3, the updates of a shared object are buffered by
the ComA before being processed. The buffer size can be customised at run-time. In

‡The size of the objects when using these three geometrical structures are 512KB, 1MB and 2MB
respectively.

86 Rapid Prototyping of a surgical pre-operative planning environment

��������	
��

������������	
�

�����

���������
��

�	����������
���	������

�����

���������
��

�
����	�

�����

���������
��

���
�����
��

��������	
��

 	!�	"#���
��$����

�%������	
��

$�"�&�	�'�"����"	���
��

�(������	
��
���&�	��
��������	������

��

�(

�)

�%

��

�)������	
��
*��������������
���	������

��

��

�+������	
��

���������	
�

��

,"	�����	

-����	
��

����"#����
����.�

/
�-,"	�����	

-����	
��

����"#����
����..�

Figure 5.12: Asynchronous data transmission between the Surgeon A and Blood Simulator
component instances.

the asynchronous scenario, we set the buffer size as the maximum, therefore all the
simulation results can be visualised if even there is no synchronisation check.
We compared these two scenarios. At run time, each invocation of the Compute action
calculates 20 iterations. The time intervals between two invocations of the Com-
pute actions are measured. Fig. 5.13 shows the mean of 50 measurements when
Flow Simulator role in each scenario is executed in 1 and 2 processes. We can clearly
see an improvement in asynchronous case.

�
�
�
�
�

��
��
��
��

� �
1XPEHU�RI�SURFHVVHV�LQ�%ORRGB6LPXODWRU

7LP
H�L

QWH
UYD

O�E
HWZ

HH
Q�W

ZR
�

FR
PS

XWH
�DF

WLR
QV

��V
HF

RQ
GV

��

6\QFKURQRXV $V\QFKURQRXV

Figure 5.13: A comparison of the time interval between two invocations of Compute actions.

5.4 Automatic tuning of service quality 87

5.4 Automatic tuning of service quality

Optimising the performance of constituent components and improving the overall ser-
vice quality of the system is another important concern in the system development. In
this section, we discuss how the performance optimisation is included in the prototype
ISS.

5.4.1 Adaptable state update

The visualisation of the simulation results is an important quality attribute of an ISS,
which refers not only to the quality of the data presentation, but also to the update
of dynamically changed simulation results in the visualisation pipeline. The user
prefers to see a smooth change of the simulation states. In the interaction scenario
discussed in the previous section, the Blood Flow is preferably available whenever
the Surgeon role needs to invoke the Refresh Flow Data action, and it has a minimal
number of un-processed data in its input buffer§. From the discussion in the previous
section, we see that neither of the update paradigms can surely meet this require-
ment. In the synchronous scenario, computing and visualisation actually work in a
sequential way, and the delay for updating visualisation scene is not only introduced
by the visualisation itself but also by the computing in the simulation. In the asyn-
chronous scenario, the rate of exporting simulation results is only dependent on the
speed for doing the compute action, and cannot guarantee the Refresh Flow Data ac-
tion always gets object instance when it needs.
Fig. 5.14 shows the basic activities and the time costs for updating a Blood Flow
object. The total delay is the sum of a number of individual delays: computing (Tc),
exporting data (Te), receiving data (Tr) and refreshing the visualisation and rendering
(TR). Tf and Tm are relatively small and remain independent with the size of the
object¶. Tc is related to the number of the lattice points in each simulation process and
the number of the iterations in each cycle; Te, Tt , and Tr are dependent on the volume
of the data; and TR is not only related to the data volume but also the algorithms for
visualisation and rendering. Belleman gave a detailed discussion on these issues in
his Ph.D thesis [12].
The performance of the object update can be improved using a number of techniques,
such as applying dedicated algorithms to accelerate the computing action [155, 162],
choosing efficient representation for data visualisation [34, 163], or reducing the vol-
ume of the data object [164]. However, the requirements discussed above still cannot
be met by only applying those techniques. One of the reasons is that these techniques
mainly aim at improving the performance of a single component, which do not con-
sider the run-time interaction with the other related components. Traditionally, the
control parameters of different components are statically configured in the coupling
solution, which does not include the consideration of the run-time service quality of

§The updates of a shared object is buffered in the ComA of the receiver role.
¶We can see this from the experiments in the previous chapter.

88 Rapid Prototyping of a surgical pre-operative planning environment

��������	

����

������	

����

������	

����������

����������

����

������	

����������������

��������

���������������

�����

���������������

����� �������

��������

�������

��

�� ��

�� ��

��

��

���������������������������������������	
� �!

Figure 5.14: Basic time costs for updating a Flow Data object.

the computing environment. In the ISS-Conductor architecture, a framework is pro-
vided for adapting the service quality of components and for optimising the overall
system performance.

5.4.2 Solutions in ISS-Conductor
In ISS-Conductor, the quality attributes of the services and the control parameters
that can be used to tune the service quality are explicitly described in the compo-
nent capability. In the story, the constraints between the service attributes of each
component are described as the requirements on the global system service quality.
The services provided by an ISS-Conductor component include its activities and the
data objects it produces. At run time, the ComAs in a component monitor the service
quality, and the MA in the Conductor propagates the observations of actual service
quality to the other MAs and can tune the control parameters according to the per-
formance requirements. In a scenario, only one MA at one time is allowed to evaluate
the constraints and to modify its parameters; a control token is used to co-ordinate
the procedure.

5.4.3 An example: adaptable rate for exporting Flow Data
In the system, the computational costs for Tc, Te, Tr and TR are measured using wall
clock time. The goal of the example is to let the simulation adapt its computing
cost so that the idle time between refresh data is minimal. Since the Tc is the only
adaptable parameter, which can be adapted by changing the number of iterations
at each time step. The Tc needs to meet the condition that Tc + Te is close to TR,
which means the total time cost between two compute actions is close to delay of the
Refresh Flow Data action. Of course, this does not guarantee an optimal solution
when the minimal cost for a single iteration is bigger than TR. In those cases, other
techniques are necessary to improve the adaptability of Te and Tc. Executing the
optimised asynchronous scenario, we can see the idle time that Refresh Flow Data
waits for data is reduced, as shown in Fig. 5.15.

5.5 Collaborative interaction in an ISS 89

�

�

�

��

��

��

� � � � � � � � � � ��
,WK�LQYRFDWLRQ�RI�5HIUHVK'DWD�DFWLRQ

,GO
H�L

LP
H��

VH
FR

QG
V�

6\QFKURQRXV $V\QFKURQRXV :LWK�3HUIRUPDQFH�WXQLQJ

Figure 5.15: The idle time between invoking Refresh Flow Data actions.

As we discussed in the first chapter, the performance tuning of the system service
includes tradeoffs between different quality attributes. In this example, reducing the
computing time, on the one hand, decreases the idle time for visualisation to receive
refreshed simulation results, but on the other hand, also increases the total time cost
for the simulation to achieve the convergence, as shown in Fig. 5.16.

�
��
��
��
��
��
��
��
��

$V\QFKURQRXV 6\QFKURQRXV :LWK�SHUIRUPDQFH
WXQLQJ

7RWDO�WLPH�FRVW�IRU�WKH�ILUVW����LWHUDWLRQV

7R
WDO

�WLP
H��

VH
FR

QG
V�

Figure 5.16: The total time for simulation to do 80 iterations computing.

5.5 Collaborative interaction in an ISS

There are a number of reasons for supporting collaborative activities in a surgical
planning environment. First, the tasks of an operation involve different roles in the
operation theatre, e.g. surgeon and anaesthetist; the design of a surgical plan is by
nature teamwork between these roles. Second, allowing multiple users to collabo-
ratively search for optimal operative plans can improve the efficiency for exploring
possible solutions to a specific case [165, 166]. Finally, analysing data and making
decisions with multiple experts can improve the soundness of a plan. In this section,
we briefly discuss how the collaborative interaction is supported in the ISS-Conductor
architecture.

90 Rapid Prototyping of a surgical pre-operative planning environment

5.5.1 Requirements

In a surgical planning environment, collaborative activities between users may vary
in terms of the phases of operation planning. At the design stage, a group of users
work together to prototype an experimental ISS for evaluating surgical procedures,
and at run time, users collaboratively manipulate the simulation parameters and
steer its computing processes. Bardram [167] classified the dynamics of collaborative
activities into three layered groups: co-ordinated activities where each user focuses on
his own task and passes his work to the others in a batch like paradigm, co-operative
activities where a number of users share a common objective and co-operate with each
other to make the achievement of the objective easier, and co-constructive activities
where users can define and adapt their run-time objectives during the interaction.
To support collaborative interaction, the development of an ISS needs to consider
not only the conventional issues in normal CSCW (Computer Supported Co-operative
Work) applications, e.g. concurrency control, data distribution, conflicts handling,
and consistence maintenance [167–170], but also additional simulation specific is-
sues. First, the shared objects being manipulated by the users are live simulations,
which are not only updated by the users but also by the simulation itself; the evo-
lution of the simulation states has to be taken into account when co-ordinating user
activities. Second, an efficient distribution mechanism is needed for maintaining the
performance required for timely rendering and human real-time interactions. Finally,
the interaction policies between users should be customisable for being deployed in
Problem Solving Environments.
During the past decade, computer mediated collaborative interactions have been
studied in both the communities of CSCW and Modelling and Simulation [171–175].
The CSCW community contributed a spectrum of paradigms for supporting collabo-
rative work between a group of users [176], and a collection of toolkits for realising
them. From the perspective of implementation, three basic coupling schemes between
user interfaces and the shared objects were developed: a centralised, a distributed
and a hybrid one. In the centralised scheme, a co-ordinator is employed to handle the
dialogues between users and to interpret the co-operation policies, e.g. in RING [177]
and SCARP [178]. In some systems, the co-ordinator also manages the content that
is visualised in the interfaces of the distributed users, such as in MOVE [179]. In the
distributed scheme, the issues related to the co-operative interactions are handled by
the front-end applications of the users, e.g. COCA [180]. In the hybrid scheme, both
mechanisms are used, e.g. in Clover [181].
From a different point of view, these issues were also studied in the simulation com-
munity in the context of co-ordinating distributed simulation processes; the solutions
were formulated as the standard services in the ISS supported middleware, e.g. HLA
and DIS. These middlewares cannot only facilitate the interoperability between sim-
ulation processes but can also be used to support the collaborative interactions. But
most of these services are low level, the high level co-ordination of user activities and
of the control for collaboration polices have to be realised in the functionality of the
application. A commonly used approach to separate them from the application specific

5.5 Collaborative interaction in an ISS 91

logic controls is to employ an independent interpreter for the interaction scenarios,
as in the SIMULTAAN Simulation Architecture (SSA) [91].
Benefiting from the existing work, ISS-Conductor employs the basic services provided
by HLA and encapsulates them as the functionality of agents. These agents provide
additional services for supporting collaborative interaction. Compared to the other
systems, it emphasises different features. First, an ISS-Conductor component intends
to work with the existing CSCW tools; the support for general multi-user interactions,
e.g. teleconferencing, are not emphasised in the architecture of ISS-Conductor. Sec-
ond, it aims at wrapping legacy simulation and interactive visualisation systems, and
at providing reconfigurable coupling mechanisms between them. It focuses on han-
dling activity dependencies and for interpreting collaboration policies between the
users of interactive visualisation tools, instead of on specific features e.g. WYSISWIS

�

of the data presentation. Third, no static centralised co-ordinator is required in ISS-
Conductor. Although the execution of components can also be centralised paradigm,
the decision on which one acts as the co-ordinator is made by agents at run time.
The support for the controlling collaborative activities is included as part of inherent
function of the components.

5.5.2 Basic support
To support collaborative interactions, a number of fundamental issues have to be
taken into account, such as co-ordinating activities of different users, controlling con-
current operations and distributing interaction data. The ISS-Conductor architecture
has straight solutions to them.

1. Activity co-ordination. The user activities are co-ordinated using the scenario
net. The module agent steers the users’ activity by enabling and disabling the
interface elements in the user interface. The Petri net based scenario net can
describe basic patterns of activity dependencies, e.g. sequential, branch, merge
and synchronisation.

2. Concurrency control. Controls for concurrent data access and update is an im-
portant issue in collaborative interaction. In ISS-Conductor, the concurrency
control can be handled at both ComA and MA levels. At the ComA level, the own-
ership management services provided by the underlying RTI handle the modi-
fication requests on a single shared object; only the ComA holds the ownership
of a shared object can update its content or delete it. At the MA level, module
agents execute concurrent transitions in a scenario net (see section 3.6.1) by ne-
gotiation. The ComA level control is applied even when the MA level control is
not used.

3. Data distribution. At run time, the shared objects are distributed between com-
ponent instances through a number of routing spaces (see section 4.1.2). The

�
What you see is what I see.

92 Rapid Prototyping of a surgical pre-operative planning environment

execution states of a component are distributed between all relevant module
agents in the scenario net. Shared objects are distributed among all the ComAs
of the participating Actors. An MA can adapt the routing space at run time.

4. User awareness and information exchange. Two mechanisms allow a user to
perceive the activities of the other users. First, if a user updates the content of
a shared object, the changes of the shared object will be notified by the other
component instances by the object management services provided by the RTI.
Second, a component instance can be launched in an interactive mode, in which
a user interface of the Conductor will be displayed. A user can see the visualised
world model of the MA from the interface. From the interface, a user can directly
chat with the others.

Apart from these, ISS-Conductor also provides two additional services for supporting
collaborative interactions: user controlled scenario execution and multiple execution
of a scenario template. In the coming two sections, we will explain them using exam-
ples.

5.6 Collaborative data analysis and decision mak-
ing

A straight way to include a human in the execution loop of a scenario is to use the
user’s activity state to describe the guard conditions in the scenario net; we have seen
how it works in the previous examples. However, such a mechanism has a number
of shortcomings when a scenario has multiple users. First, the possible states of
user activity are dependent on a specific component; they can be used in designing
a scenario net only when the component is known. Second, because the scenario net
does not have synchronisation control on the states of user activities; it is difficult for
an MA to keep the states from different users up to date when checking them in a
condition guard. ISS-Conductor provides another mechanism to do so: allowing users
to explicitly express their opinions on the decision points at run time.

5.6.1 User opinions and decision points
In a scenario net, a place can be associated with a number of opinion choices and a
list of roles expected to select these opinions. The opinions are used to describe the
condition guards in the relation links between the place and the transitions in its post
set. At run time, the information can be displayed by the GUI of the Conductor, when
the place is enabled � � ; and a user can select a proper opinion via the Conductor GUI.
To use the feature, the roles requested to express their opinions in a scenario have
to be synchronised. It implies, first, at run time, one user can have maximally one

� �
In Chapter 3, we discussed that a place is enabled when it has at least one token, and the control

expressions are evaluated as true.

5.6 Collaborative data analysis and decision making 93

enabled place to choose the opinions at any one time, and second, when a role has
opinions displayed in its Conductor GUI, the role can not execute any other possible
transitions in the scenario net. In ISS-Conductor, the state of the scenario net is
synchronised between all the roles, therefore, all participant roles in the scenario
have consistent state of the scenario, which means the presentation of the opinions
are identical for each user. At run time, when a user selects an option from the
Conductor interface, the Conductor propagates the selection to the others. When the
state (number of tokens) of the place has been updated, the opinion information are
cleaned.

5.6.2 Collaboratively exploring data
An easy extension to the single user scenario discussed above is to allow multiple sur-
geons to simultaneously explore the simulation results of the blood flow and to jointly
make decisions on the current bypass. We call this scenario Collaborative Blood
Flow Studying. First, one of the users composes a bypass for an input data, and then
starts a simulation of the blood flow for it. After that all users explore the results of
the simulator and decide if they accept the bypass or build a new one.
We build this scenario based on the Blood Flow Studying scenario. Three roles are
defined: Surgeon A and Surgeon B are two instances of the C Desktop VRE compo-
nent, and Blood Simulator is an instance of the Flow Simulator component. The
common data interface remains same as the Blood Flow Studying Asy scenario. Fig.
5.17 depicts the scenario net of the interactions.
In Fig. 5.17, the Place P8 is associated with three possible opinions: makeNewBy-
pass, continueSimulation and accept. The execution of the scenario distinguishes the
cases when both surgeons accept the simulation results, or at least one of them does
not accept. At run time, the place p8 can only be enabled when both Surgeon A and
Surgeon B have finished their action Refresh Flow Data, and no other possible tran-
sitions can be executed when p8 is enabled.

94 Rapid Prototyping of a surgical pre-operative planning environment

��������	
���

������������	
�

������

���������
��

�	����������
���	������

������

���������
��

�
����	�

������

���������
��

���
�����
��

� ������	
���

!	"�	#$���
��%����

�&������	
���
���'�	��
��������	������

��

�&

�(
��

�(������	
���
)��������������
���	������

��

��

��*�

�+������	
����

!	"�	#$���
��%����

��&���

��*������	
���

�,�-$�
��-��

�.

�.������	
���

�,�-$�
��-��

��������	�
	�����
	�������������	�

�������	�
	�����
	�������������
�

�������	�
	�����
	�������������������
�

�������	�
	�����
	�������������������

���������	
���

���������	
�

��	�	
�����������
����������
�����

��������������

�
��	����	�� ��	
��

��������
�+

����

Figure 5.17: Multiple users explore the Blood Flow object. The term UserOpinion describes
the opinion choice selected by a user. When both surgeons accept the simulation results, or one
of them does not accept, the simulation scenario ends. The high level scenario decides whether
to make a new scenario or to finish the entire story.

5.6.3 Experimental results
Fig. 5.18 shows the run-time interface of the Conductor. The users can also use the
chat interface to discuss the simulation results. When supporting multiple users to
explore data, the scalability of the system is an important quality attribute of the
implementation. We studied the delay for remotely updating data objects changes††

when the number of users increases in the system. We compared the delay between a
number of configurations: one, two and four surgeons in the system. The experiment
was performed on the DAS II environment, Fig. 5.19 shows the average of 20 mea-
surements.

††The delay is defined as the time interval from the first simulation process starts to send data until
the last visualisation process finishes receiving the entire data.

5.7 Multiple instances of a scenario net 95

Figure 5.18: User’s opinions and the chatting interface.

�
�
�
�
�
�
�

� � � � � �
1XPEHU�RI�SURFHVVHV�LQ�%ORRGB6LPXODWRU

'H
OD\

��V
HF

RQ
GV

�

2QH�VXUJHRQ 7ZR�VXUJHRQV)RXU�VXUJHRQV

Figure 5.19: The delay for remotely updating Blood Flow object with one, two and four Sur-
geons. The error bars indicate the standard deviations. The size of data object is 2M bytes.

From the measurements, we can see, when the number of surgeons increases, the
time delay for all surgeons to receive the data objects from the simulation increases.
This is because of the fact that the RTI distributes to the receivers one by one. But
when the simulation runs in parallel, the delay for distributing data objects can be
reduced, see the case of four surgeons. We knew from the previous chapter that the
data objects are normally distributed to the consumers in one by one according to
the order in which they joined the federation. But when more than one federate
produces data objects, the parallelisation of the transmission would reduce the entire
distribution delay.

5.7 Multiple instances of a scenario net
In the previous example, there is only one simulation instance to produce results
for all users; this paradigm is very useful when making joint decisions on a specific
simulation setting, but it can also be very inefficient when searching for an optimised
configuration for a simulation model. One of the solutions is to equip each user with
an independent instance of the simulation, and to allow them to interact with the
simulation in parallel. In this section, we discuss how this is realised using the ISS-

96 Rapid Prototyping of a surgical pre-operative planning environment

Conductor architecture.

5.7.1 Scenario template and data class mapping

In ISS-Conductor, a generalised scenario net, called scenario template, is supported.
A scenario template is a special scenario net, in which the role name and data classes
are not concrete, and have to be instantiated before being executed. A scenario tem-
plate explicitly describes the allowed non-intersected sets of roles and data classes,
which can be used to instantiate the template; these sets are also called the domain of
a template. A template can only be instanced by an element in the domain once, which
means one role can only create and take part in one instance of a scenario template.
The ComA of the role in one scenario instance can switch its data class to a different
one defined in another instance. This is realised using the class mapping in ComA; we
have discussed this feature in chapter 4. In HLA, when a federate subscribes a data
class, all the objects of that data class are distributed to the federate within a same
routing space. Declaring them as a same class but using routing spaces to control
the distribution of different objects is also a solution, but that requires sophisticated
controls on the region sizes of the distribution routing spaces.
At run time, a scenario template is executed in a similar way as an ordinary scenario.
In the chapter 3, we mentioned, a scenario is executed when it is the top-level scenario
of the story, or it is a sub scenario of another scenario net. A sub scenario is entered
from a special transition defined in its higher level scenario. A role checks whether
it is responsible or involved in a scenario by searching its name in the scenario net.
When the scenario is a template, a role checks it from the domain of the template,
since no concrete role names are defined in the transitions. Apart from it, the basic
execution mechanism of the scenario is same as the normal scenarios.
During the execution, a role can switch its data object to a different one and check the
situation of the other users. When a role switched its data class to a one instantiated
in another template instance, the state update of its original scenario instance is
paused. A scenario instance can only be ended by its creator. In the scenario template,
user opinions can also be included in the description. The world model of an MA
tracks the information of roles which are in other template instances.

Constructing bypasses in parallel

In a parallel paradigm, each surgeon builds a bypass and uses a separate instance of
the simulator to validate it. At run time, a surgeon is allowed to switch his vision to
the objects on which another surgeon is working. This scenario can be realised using
the ISS-Conductor architecture. A scenario template is defined as shown in Fig. 5.20.
It can be instantiated by two roles: Surgeon A and Surgeon B. A scenario instance
ends when the creator has the opinion to accept the simulation results or wants to
quit the execution.

5.8 Summarising discussion 97

��������	
���
	�

������������	
�

����������
���
	�

�����������������������

����������
���
	�

��������

� ��������
���
	�

	!��"��#��$�

�%������	
���
	�

��&"�'(�#��$�)����

�*������	
���
	�

)�'�+���,�'����'��#��$�

��-������	
���
	�

���������	
�

�.������	
���
	�

	��+��������������������

��

�/������	
���
	�

�0�1("����1��

�.

�2

�%

�/

�*

��
�2������	
���
	�

�������������������������

��

�

)�����33����	
���
	��������
���
	4�

�������������3��"��������5���6���������"��4�

�������������3��"�����5��5���6���������"�544�

��	�	
����������
����

��������������

�
��	����	�����	
��

��������

��������	�
	��	�
�������������
�

�������	�
	��	�
��������������������
����

Figure 5.20: A scenario template for collaboratively searching optimal bypasses. In the tem-
plate, SURGEON ROLE and SIMULATOR ROLE are two general role names, which have to
be replaced with concrete role names at run time.

Experimental results

At run time, a user can switch the mapping of the shared class from the interface of
the Conductor. Fig. 5.21 shows the GUI of switching class mapping. When a com-
ponent instance switches the mapping of its shared class, its ComA will first cancel
the declaration of publishing and subscribing of the original class, and then do the
declaration on the class it switched to. Using the services from the underlying RTI, it
will receive the latest value of the object of that class from its owner after the switch.
The overhead of the switch is about 0.05 seconds.

5.8 Summarising discussion
In this chapter, we have discussed the feasibility of deploying the ISS-Conductor com-
ponents to realise a pre-operative planning environment for vascular reconstruction.
First, we explain the primary steps for encapsulating standalone simulation or visu-
alisation systems as reusable and customisable components. A flow simulator and an
interactive visualisation tool are used as test cases. In the system construction, we

98 Rapid Prototyping of a surgical pre-operative planning environment

Figure 5.21: Switch shared classes between different instances of a scenario template.

highlight following issues:

1. We have demonstrated the description mechanism of scenario nets introduced
in chapter three. In the experiments, we have shown how the control conditions
can be described in a Scenario net using the states of component execution and
user activities.

2. In the experiments, we have shown the flexibility of controlling system be-
haviour. The interaction scenario between components can be adapted by ap-
plying different scenario nets, and in particular the agents can take the perfor-
mance constraints into account when interpreting the scenario net.

3. We have also discussed the support for collaborative interactions using ISS-
Conductor. Normal flow control systems provide a minimum support for collabo-
rative interaction: co-ordinated activities. ISS-Conductor allows human users to
determine the flow execution at run time. As we have mentioned, ISS-Conductor
does not aim at the WYSISWIS effects in the support of collaborative interac-
tions.

From the experiments, we see that hiding the low-level details of interconnection
improves the efficiency for prototyping an interactive simulation system. The exper-
imental results show that ISS-Conductor has acceptable performance for human in-
teraction. Since the main goal of ISS-Conductor is the scenario description and execu-
tion instead of the system performance, we have not discussed much about high-level
optimisation on system performance.

5.9 Conclusions
Simulation aided surgical planning is an important test bed for interactive simula-
tion systems. In order to allow such systems to be deployed in real situations, the
cost of system development must be strongly reduced. Component-based engineering

5.9 Conclusions 99

technologies are emerging as a promising solution. From the experiments, we can say
that ISS-Conductor is a suitable architecture for rapidly prototyping such systems. It
leads following conclusions:

1. Using the ISS-Conductor architecture, legacy simulation and visualisation pro-
grams can be encapsulated as reusable components, and can be used for rapidly
prototyping interactive simulation systems.

2. Separating application logic from the component functionality improves the flex-
ibility of controlling the overall system behaviour. The agent framework in the
ISS-Conductor architecture encapsulates the control intelligence for interaction
constraints between components and provides an explicit layer for adapting sys-
tem behaviour.

3. Dynamically tuning system performance is a necessary optimisation mechanism
to improve the service quality of a run-time system. It complements the activity
based scenario control with concerns of quality of service.

4. The ISS-Conductor architecture supports collaborative interactions at the sce-
nario level.

100 Rapid Prototyping of a surgical pre-operative planning environment

Chapter 6

Towards an intelligent planning
environment for interactive

simulations

In the previous chapters, we discussed the architecture of ISS-Conductor and its utili-
sation in constructing interactive simulation systems. The layered integration mech-
anism in ISS-Conductor improves the flexibility of controlling the application logic
of an ISS. Yet, the difficulties of describing Petri net based scenario nets may also
hamper the introduction of ISS-Conductor in Problem Solving Environments. In this
chapter, we discuss an approach to this problem in a proposed environment called
Interactive Simulation System Studio � .

6.1 Introduction
Problem Solving Environments integrate computing technologies and provide an ab-
stract environment for scientists to do research on various problem domains. Since
the 1980s, Problem Solving Environments have become an important subject in the
community of High Performance Computing [182–185]. Depending on the target do-
main of the system and the freedom that the scientists are allowed to customise the
system interaction, a PSE may have different guises, e.g. an Interactive Simulation
System with customisable configurations [186], or a library of solvers and its neces-
sary user interface as in [16]. But at an abstract level one can always distinguish
three main functional subsystems in a PSE: an environment for analysing problems
and designing experiments, a collection of necessary software resources for building
experiments and an environment for executing the experiments.
PSEs play a key role in the emergence of computer simulations, and in particular
interactive simulations, as an important experimental paradigm for problems that

�
Parts of this chapter have been published in Z. Zhao, G.D. van Albada, A. Tirado-Ramos, K.Z.

Zajac and P.M.A. Sloot. “ISS-Studio: a prototype for a user-friendly tool for designing interactive ex-
periments in Problem Solving Environments”, in the proceedings of ICCS 2003, Melbourne, Australia
and St. Petersburg, Russia, Part I, in series Lecture Notes in Computer Science, June, 2003.

102 Towards an intelligent planning environment for interactive simulations

are difficult to solve using conventional methodologies like experiments using normal
lab instruments. As we discussed in the earlier chapters, the complexity of imple-
menting an ISS lies in three main aspects: developing valid simulation or visualisa-
tion kernels, coupling distributed modules of the system, and controlling their run-
time activities. Employing the simulation or visualisation kernels from legacy sys-
tems can reduce both the risks and the costs of the development of an ISS. However,
the customised integration mechanism resulting from such construction paradigm in-
troduces a strong dependency between the constituent system modules and hinders
the further deployment of the system in PSEs. One of the solutions is to use soft-
ware component technologies: industrial components, e.g. Java beans and DCOM,
and scientific computing components, e.g. CCA, have been used to encapsulate the
simulation and visualisation systems and to facilitate the interoperability between
them [16,89,90,184]. Most of the available architectures provide a description mech-
anism to specify the functionality of the components, e.g. the SOM (Simulation Object
Model) in HLA and the SIDL (Scientific Interface Description Language) in the CCA,
and an integration mechanism for assembling the components and for realising their
run-time binding. In those architectures, the interface specifications are basically
used to promote the interoperability between components; an explicit layer for con-
trolling overall interactions is not defined. Using these architectures, complex activity
constraints, e.g. multi-user interactive simulation, are often difficult to describe at the
flow control level. Therefore low level component programming is needed, which still
hampers the further introduction of ISSs in PSEs. Hiding these low level assembling
and programming details from a scientist and allowing him to plan an experiment at
a high level is desirable. Since the planning procedure will be partly automated by
the system, we call this the intelligent planning of interactive simulations.

The intelligent planning is basically approached by mechanisms which support au-
tomatic (or semi-automatic) selection of components and derivation of the coupling
details between them. The research on this subject received a great deal of atten-
tion after significant progress was achieved on the reusability and interoperability
of the simulation components [187–189]. An efficient mechanism for selecting soft-
ware components has been considered as a necessary step to approach the intelligent
planning. A number of technologies were reviewed in [187], e.g. based on key words,
facets, signatures, behaviour and semantics. One of the conclusions drawn from the
paper is that semantic level component matching is essential to improve the searching
efficiency. A number of researchers studied the feasibility of automating the compat-
ibility check between the Simulation Object Model (SOM) and the Federation Object
Model (FOM) of an HLA application, but most of the matching mechanisms are lim-
ited to the syntactical level, e.g. in [188]. Using predefined templates, e.g. Process
Flow Templates [15], is a straightforward way to facilitate the composition of interac-
tions between components. But the templates are mostly composed manually by do-
main specialists. The burgeoning applications of Service Oriented Computing [190]
paradigms are an important force to push the research on automatic flow composi-
tion. One of the motivations is to compose the flow between intermediate services
and to provide a transparent binding interface for the service requester. A number of

6.2 A global picture 103

researchers have studied this problem in both architectures of web services and Grid
services [189,191,192]. The basic idea is to distinguish the dependencies between the
services according to their pre and post conditions on data, and describe them using
a workflow description language.
The ISS-Conductor architecture provides solutions for encapsulating legacy simula-
tion and visualisation tools, and for orchestrating their activities at run time. A Petri
net-based control mechanism for component activities supports the description of so-
phisticated interactive scenarios. Automatically planning of ISS-Conductor based ex-
periments exhibits a number of differences from the other related work. First, the ca-
pability descriptions of ISS-Conductor components are based on state machines; they
provide extended information for the simulation object models, and thus it becomes
feasible to include more sophisticated matching mechanisms than in [188]. Second,
the execution of an ISS-Conductor system is based on HLA, but the interaction sce-
narios between the components are based on Petri nets; they provide semantics to
complement the object model based composition with the activity constraints between
components. One of the aims in this chapter is to study the feasibility of composing
scenarios which support human-in-the-loop computing.
In this chapter, Interactive Simulation System Studio (ISS-Studio), a framework for
deploying ISS-Conductor components in constructing interactive simulation based ex-
periments will be proposed. First, we give an overview of ISS-Studio and enumerate
its desired functionality. ISS-Studio is proposed specifically for the ISS-Conductor
compliant software resources. It intends to work with existing generic PSE frame-
works to enhance their services for supporting interactive simulation based experi-
ments. We will discuss this issue using an example of Grid-based Virtual Laboratory
Amsterdam (VLAM-G) [15, 19], a general PSE framework developed at UvA. After
that we discuss the basic procedures to automate the story composition for an ISS-
Conductor based system. Finally, some experiments and earlier results will be pre-
sented.

6.2 A global picture

The main goals to propose ISS-Studio is to facilitate the development of ISS-Conductor
based components and to simplify the construction of interactive simulation systems.
In this section, we will first describe the desired functionality of ISS-Studio and then
discuss the design requirements for them.

6.2.1 Proposed functional subsystems

From the lifecycle of developing ISS-Conductor based components and interaction
stories for the integrated systems, the functionality of ISS-Studio is grouped into four
subsystems: component management, knowledge management, experiment planning
and run-time experiment management.

104 Towards an intelligent planning environment for interactive simulations

Component management

Incorporating existing standalone tools which are designed for a specific problem as
reusable and customisable solvers for a spectrum of other problems [92] is an im-
portant way to enrich the software resource of a PSE. The first subsystem will aid
component developers to incorporate legacy simulation or interactive visualisation
programs into the ISS-Conductor architecture. The component management subsys-
tem provides tools for component developers to construct and maintain components,
e.g. to define a component capability, to develop code and to debug. The component
products, including the capability specification, the source, the documentation and
the binary are stored in repositories with version control. Services for retrieving and
updating components from the repositories are also provided.

Knowledge management

An efficient reuse of the software components depends not only on the nature of the
components but also on the mechanisms for searching and retrieving them from the
repositories where they are stored. As we mentioned, conventional search techniques
do not capture the run-time semantics of the components. In ISS-Conductor compo-
nents, the actions are complemented with pre and post conditions: the requirements
and influences on the data objects, but they do not guarantee that the retrieved ac-
tions provide the semantics that the component searching process needs because of
the possible diverse meaning of the actions and data classes. One of the solutions is
to synchronise the meaning of the vocabularies used in different repositories using a
knowledge-based backbone; the concepts used for describing software resources, e.g.
components and experiments, are associated with certain ontologies. A knowledge
management subsystem is proposed for this function.

Experiment planning

The third subsystem is to plan ISS based experiments. It intends to aid a scientist
to develop an interactive simulation based experiment at each phase of the lifecycle.
The subsystem needs to provide a user-friendly environment and supports intelligent
planning of the experiments. In the next section, we will come back to this point.

Execution management

An interactive experiment is executed on computing resources, e.g. supercomput-
ers, clusters or high performance virtual reality environments. The fourth subsystem
processes the resource requirements of an experiment and generates suitable job de-
scription for different types of computation resources. The execution management
subsystem also provides an interface to interact with tools for execution monitoring
and job migration.

6.2 A global picture 105

6.2.2 Design requirements
The system must meet a number of requirements. The first one is the user-centred
design; the system needs to consider different types of users, e.g. component develop-
ers and scientists, and their special requirements on the system interactions. Second,
integrating commercial off-the-shelf (COTS) tools into the system is another impor-
tant requirement; using mature COTS tools e.g. for supporting UML or XML, avoids
unnecessary rebuilding of similar utilities. The third requirement is the portability of
the implementation. The constituent tools of the system are likely to be distributed.
Thus, a portable framework to glue these assets is needed, and in addition, diverse
interfaces to access these tools can also improve the usability of the environment.
The realisation of the system needs to benefit the existing platforms, such as the
management of distributed resources in Grid environments. Finally, the feasibility
to integrate with existing generic PSE frameworks also has to be taken into account.
Realising special purpose PSEs using a generic framework has emerged as an im-
portant development paradigm [16, 19]. Services provided by these frameworks, e.g.
for managing resources and run-time information, can simplify the development of
ISS-Studio.
In the next two sections, we will first discuss how available Grid middlewares can
contribute to the development, and then use VLAM-G as an example to discuss the
feasibility to deploy ISS-Studio in existing PSE frameworks.

6.2.3 ISS-Studio and Grid environments
A core idea of Grid environments is to organise heterogeneous resources, e.g. com-
puting elements, storage devices and software components, and share them among a
group of trusted users (Virtual Organisations)† [194, 195]. Resource management is
a central component in a Grid environment, it provides services for describing and
discovering resources, for scheduling and monitoring them at run time, and for fault
tolerance and security control. A number of resource management systems have been
developed, e.g. Condor [61], Globus toolkit [196] for computing resources, European
Data Grid [197] for data resources, and PUNCH [198] for services-based resources.
For instance, in the Globus toolkit, resources are described using an extensible re-
source specification language (RSL), the resource requests are handled by resource
brokers and processed through the information service provided by meta-computing
directory services (MDS). In the Globus toolkit, job schedules are organised in a dis-
tributed paradigm.
The rich set of protocols defined in available Grid environments provides a suitable
infrastructure for realising ISS-Studio, e.g. for component storing and discovery, and
for execution monitoring. There is also a large research body on flow control in Grid
environments [16,137,138]; most of them are based the Grid Service architecture and
describing the flow using data or task based dependencies, e.g. in GridAnt [138] and

†Grid environments are also classified as: computational, data and service Grids according to the
type of resources being managed and shared, e.g. computing elements, storage and software [193].

106 Towards an intelligent planning environment for interactive simulations

Taverna [137]. Compared to them, ISS-Conductor allows more sophisticated controls:
the states of human activity and the components execution are allowed to control the
flow branches, but the framework is currently based on HLA.

6.2.4 In the context of a PSE framework

VLAM-G is a generic PSE framework, which provides hierarchical solutions to man-
age different levels of resources, and encapsulates them as services in a middleware.
On top of the middleware, domain specific PSEs are supported. The middleware al-
lows users to work simultaneously and collaboratively at different levels of the frame-
work, e.g. as scientists, domain experts, tool developers and ICT‡ developers. It also
integrates the information management services with the lifecycle of a scientific ex-
periment [21]. An experiment is modelled using physical entities which are the instru-
ments to be used, activities to be performed by the scientists, and data elements which
are the input/output of the activities. An experiment is described as the flow between
these elements; in order to simplify the construction of an experiment, templates of
the flow are abstracted as Process Data Flow templates. A database infrastructure is
employed to manage both the static and run-time information.
Compared to VLAM-G, ISS-Studio uses the term experiments in a much narrower
sense. In ISS-Studio, experiments only refer to the interactive simulation based
paradigm, and they can be included as part of a VLAM-G experiment. ISS-Studio fo-
cuses on the mechanisms that can facilitate the composition of ISS-Conductor based
experiments. In the context of VLAM-G, ISS-Studio can be viewed as an upper level
PSE, where the subsystems can benefit from the services provided by VLAM-G mid-
dleware, e.g. for managing resources and experiment information.
In this chapter we will not discuss the detailed issues on using the Grid services to
realise ISS-Studio, but instead we focus on the intelligent planning of ISS-Conductor
based interaction scenarios.

6.3 Intelligent planning of ISS-Conductor based in-
teractive simulations

In this section, we will focus on the experiment planning subsystem and discuss the
feasibility of intelligent planning of ISS-Conductor based interactive simulations. The
goal of the subsystem is to allow a scientist to plan his interactive experiments from
the level of the problem domain instead of the details of scenario nets composition. We
will briefly discuss the phases: requirement description, component discovery, story
making and execution script generation.

‡Information and communication technologies.

6.3 Intelligent planning of ISS-Conductor based interactive simulations 107

6.3.1 Describing experiment requirements
The first phase aims to describe the requirements of the experiment. The description
will be the input to the experiment planning environment. It provides information
for the subsystem to determine the suitable components for the experiment and to
distinguish the interaction constraints between the components in a story. The goal
of employing interactive simulation in a scientific experiment is to use simulation
solvers to compute data properties of a model, and to allow the scientist to study
them by manipulating part of the data at run time. Therefore, we argue that the
experiment description should at least contain three main elements: data, activity
and the quality requirements.

1. Data. A scientist needs to specify the data for an experiment. It describes not
only the raw data that the user has but also the data he expects during the
experiment.

2. Activities indicate the action that the user will perform on the data. Some activ-
ities also indicate the transformations between data or causal relations between
the data.

3. Quality requirements on data and activities describe the performance constraints
of the experiment.

This model has a number of advantages. First, the activity flow of an experiment
by nature is a sequence of operations on the simulation data. Although the imple-
mentation information of the simulation and visualisation kernels is not explicitly
modelled, they can be included in the description as the quality requirements on the
data or the activity. Second, mature software modelling techniques, e.g. data flow
and control flow, can be directly used to describe the experiment. The description
can be intuitively represented using graphical primitives. Fig. 6.1 shows an example
of describing a bypass validation experiment. Finally, the description can be parsed
and described using a logic language, e.g. first order logic, which can be parsed and
reasoned on by agents for further searching and composition.

��������	
���������	���

������

��	��
�
� ���

���	�

��	�
�	��
�
�

����������������	����

�

��������
��	������������	

��	�

��
����
	�

� !�����	
�

�	��	��

� !���
����
������

!	
���

��������� !�����	
�

�������	������������

�
����������

�	���	���	����

�

� !�����	
�

��
����
	�

� !�����	
�

Figure 6.1: A graphical representation of the experiment requirement for a bypass-validation
experiment.

108 Towards an intelligent planning environment for interactive simulations

6.3.2 Component searching
The actual planning procedure starts when the user provides an experiment descrip-
tion. Component searching is the first step, it finds a set of suitable components which
can 1) produce all required data, 2) support all activities on them and 3) provide ser-
vices with the required quality. In ISS-Conductor, the capability of a component is
described based on a finite state machine model, in which data classes, activities, and
the dependencies between the data and activities are explicitly described. It provides
search agents basic information for match checking. Table 6.1 shows the details.

Table 6.1: Information source for evaluating experiment requirements.
Component capability Experiment requirement
Data classes (shared and internal) Data
Activity Activities
Pre-condition and post-condition of Activities dependencies between data
Quality attributes Quality requirements

As we mentioned above that the syntactical level matching does not guarantee the
semantic level consistency between components and the requirements because the
terminology used in the description of component capability and in the experiment
requirement might have different meanings. One of the solutions is to synchronise
the meaning of these concepts using a consistently defined Ontology.
Originally, the term of ontology refers to a philosophical discipline for dealing with
the nature and the organisation of being [199]. Recently, it is used in computer sci-
ence as a term for describing the semantic relations between the symbolic represen-
tations and the actual meaning of concepts; it normally consists of a vocabulary and
a set of explicit assumptions regarding the intended meaning of the vocabulary [200].
The assumptions are represented using logic theories, e.g. first order logic or de-
scription logic. Based on the level of generality, different types of ontology are often
distinguished as a hierarchical scheme, as shown in Fig. 6.2, [201]. According to
the classifications, we define four groups of ontologies. The ontologies in the top-level
group describe the most general concepts, e.g. ISS-Conductor components, component
instances and interactive experiments. The ontologies in a domain group describe
the concepts of different domains in software resources, which cover the terminol-
ogy used in defining data object models in components and interaction stories. The
ontologies in a task group describe the concepts of activities, services and their qual-
ity attributes, which are related to software resources. Finally the ontologies in an
application group describe the concepts bound to specific applications. Taking the
example in the previous chapter, the ontologies in the domain group describe the con-
cepts in defining data object models in components and interaction stories e.g. fluid
flow, blood, flow velocity and pressure. The ontologies in the task group include the
concepts for describing component activities, e.g. flow simulation, visualising MRI
images and designing bypass.

6.3 Intelligent planning of ISS-Conductor based interactive simulations 109

�����������	
�����

�����	��	
����� ������	
�����

�������
��	��	
�����

Figure 6.2: Different types of ontologies.

Using an ontology language, like OWL [202], concepts are described as classes, which
can have subclasses and be a subclass of another class. A class can have a number of
attributes, called properties or roles; the value restrictions on the properties are called
facets. The instances of a classes are called individuals of the class. An ontology
together with a set of individuals of classes constitutes a knowledge base. Fig. 6.3
shows a screen snapshot of top level ontologies (edited using Protégé [203]). The
terminology used in the resource descriptions, e.g. component actions, states and
data classes, are mapped as individuals or subclasses of the classes in the ontologies.
A resource description can be associated with more than one ontology.

Figure 6.3: Developing Ontologies using Protégé.

In the searching procedure, the similarity between the concepts is first checked using
ontology reasoning algorithms. Only the components which have equal or similar
meaning of the concepts as the experiment description will be checked for the further
matching.

110 Towards an intelligent planning environment for interactive simulations

6.3.3 Story generation
A story can be generated when the components have been found from the component
repositories. It is a procedure to assemble these components and make a story for
them to work together. It has a number of detailed steps.

1. The first step is to substitute the data and activities in the description of the ex-
periment requirement using the components found. During the substitution, the
roles of component instances and the common data interfaces between different
roles will be defined.

2. Second, according to the condition and dependencies between activities, an inter-
mediate activity diagram will be derived. In the activity diagram, the activities
will be associated with specific role. In this step, a user can refine the control
conditions between components in the loop.

3. Third, the control patterns of the activity diagram will be mapped onto Petri
net. The activities and its responsible roles will be mapped onto transitions, and
the conditions between activities are mapped onto places.

4. Finally, the Petri net is output as a story.

6.3.4 Generating execution scripts
The final step is to map a story onto the job description scripts of computing elements.
The story contains information about the computing requirements of each of the com-
ponents, e.g. requirements on the parallelisation libraries and hardware platforms,
which can be used to generate a job description script using the demanded syntax
provided by the description language of the computing elements.

6.4 Prototype and preliminary results
The implementation of ISS-Studio is still ongoing. In this section, we will describe
the basic techniques that are used in the prototype and discuss some experimental
results.

6.4.1 A multi-agent based experiment planning environment
ISS-Studio will be a distributed environment; when there are a large collection of
component repositories, using multiple agents can improve the efficiency for compo-
nent searching. A multi-agent environment is proposed for the experiment planning
subsystem. An experiment manager agent (EMA) provides a graphical interface for
users to describe the experiment requirements, and co-ordinates search agents to find

6.4 Prototype and preliminary results 111

suitable components for the experiment. Component search agents (CSA) scan com-
ponent repositories and search components according to the requirements sent by the
EMA. Finally the EMA also does the story making and execution script generation.
The agents are prototyped using the JADE, a Java-based agent development frame-
work for the FIPA standard [204]. In JADE, agents communicate using an Agent
Communication Language (ACL) and are managed by an agent container at each
host. The JADE framework provides services for managing the lifecycle of agents
including cloning and migrating them between hosts. In an agent, the reasoning ker-
nel of the agents is realised using Prolog. The ontology-reasoning module is realised
using Racer [205] which can be shared by different agents. Fig. 6.4 shows its basic
agent architecture.

���������	
�	���

����������	
����������	������

�����������������	�	��

������������	����

��	�����

�������

	���������

�����	�

Figure 6.4: The basic architecture of an agent.

6.4.2 Experimental results
Experiments for testing the feasibility of integrating the JADE framework, Racer and
the Prolog reasoning kernel have been performed. Because of the powerful support for
network-based programming, SWI Prolog [206] is used in the prototype. The JADE
framework is based on Java, and both SWI Prolog and Racer have a Java-based in-
terface. The descriptions of component capabilities and the experiment requirements
are parsed as Prolog terms; the Ontologies are in OWL and are processed by Racer.
The Prolog reasoning kernel communicates with the Racer server via sockets. The
JADE framework handles inter-agent communication. By gluing them using Java,
the basic control between the functional components of an agent can be realised.
The GUI of component management and experiment planning subsystems have been
prototyped using a Java based graphical library, JGraph [207]. Fig. 6.5 shows a
screen snapshot. The GUI allows a user to directly describe the activity-transition
graph (see Section 3.2.1) of the component and export as the ISS-Conductor required
format. Fig. 6.6 shows a screen snapshot, which shows the experiment requirement
described in Fig. 6.1: the rectangles and ellipses are respectively represent data and
activities. The requirements are described using a set of triples, which are trans-
formed into Prolog lists. From the planning menu, a user can start a CSA to discover
the suitable components.

112 Towards an intelligent planning environment for interactive simulations

Figure 6.5: A snapshot of the component management subsystem.

Figure 6.6: A snapshot of the experiment planning subsystem.

A reasoning kernel for a CSA has been prototyped. The prototype is able to find
components from a given collection using the matching rules discussed above: the set
of components can perform all the activities and process the data requested in the

6.5 Discussion and conclusions 113

requirement description. Since we do not have a large collection of ISS-Conductor
components yet, the components (in total five) we discussed in the previous chapters
are used as the basic collection. For the experiment purpose, we replicated them and
created a number of dummy components; in total the component collection contains
20 samples. The capabilities of these components are parsed into 700 Prolog terms.
In the experiment, the prototype can find components for each required activity, ex-
cept the first two, visualise and segment MRI images (see Fig. 6.1). To get the feel-
ing on search complexity, we run the experiment with different number of requested
activities. Fig. 6.7 shows the measurements for two situations: all the requested
activities and none of them can be found from the collection. For each requirement,
the search procedure stops when it finds the first suitable component. When there is
no component qualified for an activity, the search procedure takes more time, since it
has to scan the entire collection of components, which indicates the upper bound of
the searching time cost. Although the number of components is relative small, we can
observe that, the search cost increase linearly with the number of requested activities
in the requirement description.

�
�
�
�
�

��
��
��
��

� � �� �� ��1XPEHU�RI�DFWLYLWLHV�LQ�WKH�UHTXHVW

7LP
H��

VH
FR

QG
V�

$OO�FRPSRQHQWV�FDQ�QRW�EH�IRXQG $OO�FRPSRQHQWV�FDQ�EH�IRXQG

Figure 6.7: Searching different number of activities from the component collection.

6.5 Discussion and conclusions
In this chapter, we have reviewed the background of Problem Solving Environments
and their role in modern scientific research, and then discussed the feasibility of de-
veloping a framework for deploying ISS-Conductor based components to prototype
interactive experiments. ISS-Studio introduces a number of novel ideas in its design.
An agent based support environment performs resource discovery and the interaction
scenario composition, which intends to automate the procedures of experiment plan-
ning. In the other PSEs [114, 208, 209], the human guided assembly of components
and interaction descriptions are still the principal development activity. Ontology
based concept checking is highlighted in the component discovery.

This leads to the following conclusions.

114 Towards an intelligent planning environment for interactive simulations

1. Component technology is suitable to encapsulate the functionality of software
resources and to integrate them in a layered paradigm.

2. A semantic level searching mechanism is a key issue to automate the utilisation
of component resources. Using a knowledge based backbone to synchronise the
meaning of the concepts in the component specification enhances the traditional
searching mechanisms.

3. An agent-based framework is suitable for realising the experiment design en-
vironment for problem solving; employing agents to search for components and
to plan experiments distributes the computation onto available resources and
helps to achieve a better resource utilisation.

4. The rich set of services provided by the Grid environment constitute a suitable
infrastructure for ISS-Studio to manage the component resources. We have not
explicitly discussed the integration of ISS-Studio with Grid middleware. In our
opinion the Java based platform and the XML based information description of
ISS-Studio make the realisation possible.

Chapter 7

Summary and discussion

7.1 Summary

In scientific research, interactive simulations play an increasingly important role;
compared to conventional simulation systems, they allow parameter spaces to be ex-
plored more efficiently and computing processes to be controlled more accurately. In
this way they also help to optimise the resource utilisation for both computing and
storage, and to improve the efficiency of communication. However, the development
and integration of the simulation and visualisation kernels is expensive. Traditional
development methods often result in systems that have a limited adaptability due to
the strong dependency between the system functionality and application specific logic
control. The high costs and limited flexibility hamper the introduction of such sys-
tems. The available software architectures and middlewares for simulation systems
mostly focus on the interoperability between system components, but not explicitly
on the support for rapidly prototyping ISSs and for flexibly controlling the system
behaviour.

In this thesis, we state that the separation of application specific logic control from
system functionality constitutes a crucial step in an improved development process for
ISS. We developed an agent-based component architecture, called Interactive Simula-
tion System Conductor, implementing such a separation. It encapsulates the control
intelligence for the integrated system as different roles of agents, and allows to em-
ploy these agents to realise a layered interconnection between components. The proof
of concept implementation is based on High Level Architecture, a dedicated middle-
ware for distributed simulation systems.

In the second chapter, we introduce the basic architecture of ISS-Conductor. En-
capsulating the computing kernels and support structures of the principal modules
of an ISS, such as simulation, visualisation and interaction, it allows scientists to
assemble simulation experiments at a high level without concerning themselves with
the low level details of integration. In the architecture, Communication Agents re-
alise the basic interoperability between components; Module Agents orchestrate the

116 Summary and discussion

run-time system behaviour. The Run-Time Infrastructure of HLA is employed as the
software bus for binding the distributed components.

In the third chapter, we discuss the functional design of ISS-Conductor. In an ISS-
Conductor component, the MA controls the component behaviour using a reasoning
kernel; it has knowledge about both the capabilities of the components and the ap-
plication specific interaction constraints in its knowledge base. The component func-
tionality is modelled as a finite state machine (capability), which can be programmed
with the other components using a Petri net based mechanism (scenario net). At run
time, MAs collaboratively interpret the interaction constraints and realise the control
of the overall system behaviour.

The implementation details and performance characteristics of ISS-Conductor are
discussed in chapter four. The ComA interfaces with the basic RTI services for data
sharing and message passing. The reasoning kernel of the MA is realised using
Prolog. We measure the performance of the implementation, and conclude that the
Communication Agents add acceptable overheads to the RTI. ISS-Conductor based
applications can reach a network utilisation comparable to that of pure TCP sockets
for large size data objects. The logic control in the reasoning kernel also adds a small
overhead.

In the fifth chapter, we employ the ISS-Conductor architecture to prototype an in-
teractive simulation environment for planning vascular operations. We discuss the
detailed procedures for developing an ISS-Conductor component and for assembling
the components into an interactive simulation system. In various test cases, we dis-
cuss the scenario level activity control, automatic performance tuning in a run-time
system and collaborative interaction support. The experimental results show that
ISS-Conductor only adds a small overhead to the legacy computing kernels.

In the sixth chapter, we discuss the feasibility of including ISS-Conductor compli-
ant components as software resources in a Problem Solving Environment. One of the
crucial issues we investigate is the automatic composition of an interactive simula-
tion based experiment. ISS-Studio, a Java based environment has been prototyped in
this chapter.

7.2 Conclusions and discussion

In the thesis, we describe the layered architecture of ISS-Conductor and discussed
its implementation details. We demonstrated its capability to realise the separation
between the ISS functionality and the application logic control, and therefore to fulfil
the mission that we set out for in the beginning of this thesis: providing a layered
framework for rapid prototyping of interactive simulation systems. A proof of concept
implementation is based on HLA. In this final chapter of the thesis, we will not repeat

7.2 Conclusions and discussion 117

the conclusions drawn in the previous chapters, instead we discuss the architecture
from the perspective of the underlying middleware.

The continuous growth of computing power and the design of novel middleware offer
new possibilities for realising component integration and interoperability, but they
also introduce incompatibility between legacy implementations and the new plat-
forms. The heterogeneity of the computing platforms will be permanent. The solution
used in the software industry is to establish a steering group, e.g. the OMG [210],
from the main members of the community to formulate platform independent ar-
chitectures for the development. However, the software development in academia
can not always benefit from such mechanism. One of the reasons is that the effort
in developing novel simulation and visualisation systems mostly lies on studying
the domain problem rather than the engineering itself. The problem for integrating
legacy simulation and visualisation systems is thus going to remain and there will be
no single solution to all situations. In this thesis, we studied this problem from the
perspective of rapidly prototyping ISSs, and contributed an agent based architecture
to couple simulation and visualisation systems.

Considering a component based ISS as an analogue of an electronic circuit system,
an ISS-Conductor component is more like an intelligent card than a silicon chip; it
encapsulates the necessary intelligence for integrating a number of functional units
together with the control for their run-time behaviour. There are a number of reasons
for us to choose this vision. First, one of the missions for developing ISS-Conductor
is to support the rapid prototyping of interactive simulation system. Using ISS-
Conductor components, an ISS can be defined at the level of system interactions,
which is easy to map onto the description of the domain problem. The assembly of
small size units is considered to be a task for the component developer rather than for
the research scientists. Second, this mechanism also has weak requirements on the
underlying framework; ISS-Conductor only requires necessary services for distribut-
ing data objects and timestamp-ordered messages. The ComAs in the architecture
localise the dependencies on the software bus and a component can be equipped with
different implementations of the ComA to achieve the portability. Third, the run-time
activities are controlled by the components autonomously instead of by a separate
co-ordinator. It can have flexible paradigms for controlling the execution, both dis-
tributed and centralised.

HLA is a suitable architecture for distributed simulations, but it will not be the
final solution. In this thesis, we did not discuss the issues on integrating the ISS-
Conductor architecture with the Grid platforms. Actually, work along this line has
been initiated in a European project, CrossGrid. In [211], we proposed a layered ap-
proach to realise the run-time binding between HLA compliant components on Grid
environments. At the RTI level, the communication endpoint of the RTI execution
is wrapped as a service, which can be discovered by an HLA application to create
a federation. At the federation level, the basic services for managing HLA appli-
cations remain, only the data distribution between federates is handled using the

118 Summary and discussion

Grid enabled facilities, such as Grid FTP. At the federate level, the services originally
provided by the RTI will be wrapped as Grid services. The contribution from this
work can be applied to ISS-Conductor, since from the implementation point of view
ISS-Conductor components are HLA compliant federates. The migration will not
change the main design of ISS-Conductor but only the implementation of the ComAs.
Further progress is discussed in [212,213].

7.3 Future work
Based on the results of this thesis, a number of future research lines can be envisaged:

1. A lesson learned from VLAM-G project is that scientists will not choose a novel
architecture simply because it looks beautiful unless it can work with the exist-
ing ones and provide exciting new features [214]. An important future work is to
study the mapping schemes between existing architectures and ISS-Conductor
so that legacy architectures can get benefit of the layered integration from ISS-
Conductor in an easy and efficient way.

2. Looking at the underlying middleware, new integration paradigms provided in
Grid environments, such as service-oriented integration, will be considered as
new basis for ISS-Conductor.

3. The work described in chapter 6 is still on going. Including ISS components as
software resources and sharing them among different organisations and projects
is one of the core paradigms of combining ISSs and Grid environments. The
research issues for semantic based discovery and intelligent planning will form
another line of future work.

List of Figures

1.1 Functional components and the data flow in a simulator. The time stepping
routines define the actual behaviour of the simulator, and the control routines
define the experiment performed on the simulation. 2

1.2 Computing power increases in the past decade. The figure shows the fastest
(N=1) and the slowest (N=500) computer in the list, and the total performance
of all computers in the list. The original information is from the website
http://www.top500.org. 3

1.3 A general data flow diagram of visualisation systems. The procedures in a
visualisation pipeline constitute the core of the system. The generation of
intuitive primitives for rendering, and the user interaction that controls the
execution of pipeline can be performed in different machines. 4

1.4 A basic configuration of ISSs. Solid lines depict the simulation loop, and the
dash lines depict the visualisation loop. 6

1.5 Basic components in SPLICE: application processes, each with an agent and a
local data store. 9

1.6 Distributed federates and the Runtime infrastructure (RTI). 10
1.7 Summary of available architectures. 19

2.1 Basic architecture of an ISS-Conductor component. 25
2.2 A simple agent kernel. 26
2.3 An Actor and its ComA. 26
2.4 The basic architecture of MA. 26
2.5 A basic paradigm of assembling ISS-Conductor based components. 28

3.1 A logical view of the functional components in an MA. 32
3.2 A partial activity-transition graph of the example. In the description, actions:

Start, DoStep and Stop do not have dependencies on data objects, the action
InitSimulation requires a Setting object as its input, and the action Export-
Data has a Result object as its output. In the example, the action DoStep has
a transition with a condition guard: error � Setting.error, which means the
action will only be performed when the error is larger than a given bound. . 33

3.3 A simple model of human interaction involved systems. 34
3.4 Capability modelling of the components involved with human interactions. A

partial activity-transition graph of Fig. 3.3. The term InState describes the
state of user activities. 35

120 List of Figures

3.5 A PT net based model of data production-consumption relation. 37
3.6 A sample scenario for roles Producer A, Consumer A and Consumer B. More

examples will be discussed in the next chapter. 39
3.7 A belief-transition graph for deriving the states of neighbour roles. 41
3.8 The action control between an Actor and a conductor, and its reflection in the

world model. 42
3.9 The execution states of the actions. 43
3.10 A scenario fragment and its marking graph are shown on the left side. The

right side shows a possible execution sequence of role A and B, when they do
not apply any concurrency controls. The dashed arrows indicate the marking
changes that are perceived by the peer role; the markings in Italic font are
invalid. 44

3.11 Data structure for state synchronisation. 46

4.1 Routing spaces and their four default profiles defined for ComAs. Roles are
�
A,

B, C � , the ComAs at Conductor are
�
Ac, Bc, Cc � and the ComA at Actor are

�
Aa,

Ba, Ca � . The regions for the Conductors use solid lines; and for Actors use dash
lines. XMIN, YMIN, XMAX and YMAX are the boundary of the entire region. 53

4.2 A detailed lifecycle of a ComA. 54
4.3 The snapshot of the GUI of a Conductor. 55
4.4 Generating run-time configuration files. 56
4.5 Two components constructed for benchmarking ISS-Conductor. 57
4.6 Action reasoning and update of shared objects in between run-time roles. . . 57
4.7 The delays of the local update and reflection and for the remote update of a

shared object. The error bars indicate the standard deviation at each step. . 58
4.8 Remote update of shared objects and the throughput of pure TCP sockets. . 59
4.9 The basic architecture of DASII and the configurations of the experiment. The

RTI is executed in fs1, fs2, and nics. 59
4.10 Update delay with different RTI locations. The error bars indicate the stan-

dard deviations. 59
4.11 The comparison of the TR. 60
4.12 The remote update of all eight consumers. 61
4.13 Compare the remote update delay of the 8th consumer and 8 times delay of

the first consumer. 61
4.14 The remote update of the first Consumer in the federation in different config-

urations). 61
4.15 Passing messages to four receivers. The error bars indicate the standard devi-

ations. 62
4.16 A scenario of sending data objects and messages between three component

instances. 62
4.17 The influence between object distribution and message passing. The error bars

show the standard deviation at each time step. 63
4.18 Remote update delay of different number of attributes. The error bars show

the standard deviation at each time step. 63

List of Figures 121

4.19 Benchmark story. It has three nested scenario nets: T2 (scenario A), T3 (sce-
nario B) and T4 (scenario C). 64

4.20 Scenario A (involved roles: Producer A, Consumer A and Consumer B). Using
the publish and subscribe mechanism, a data object can be simultaneously
consumed by multiple consumers. 65

4.21 Scenario B (involved roles: Producer A, Producer B, Consumer A). SbT7 and
SbT8 are two critical transitions. 65

4.22 Scenario C (involved roles: Producer A, Consumer A, Producer C and Con-
sumer C). 66

4.23 Topologies of the routing spaces of the involved roles. The roles that are not
involved in the scenario set their routing spaces using the away from the others
profile. 66

4.24 The total number of events and the time cost for processing an event. 67
4.25 The time cost by Producer A for each scenario in different execution paradigms.

The error bars show the standard deviations. 69
4.26 The total number of state-update messages received by the Producer A in each

scenario. 70

5.1 A scenario of simulation based operation planning. 74
5.2 The basic functionality of Flow Simulator. 77
5.3 The basic functionality of Desktop VRE. 78
5.4 A partial activity-transition graph of the C Flow Simulator component. See

the definition of component capability in section 3.2. 79
5.5 Performance comparison between ISS-Conductor component and legacy imple-

mentation. The measurement shows the time cost for one iteration. The error
bars indicate the standard deviations. 79

5.6 A layered vision of the functionality of the Desktop VRE system. 80
5.7 A partial activity-transition of the C Desktop VRE component. The term In-

State describes the user activity state. 81
5.8 An activity diagram for Blood Flow Studying scenario. The term UserState

describes the activity state of a user. 82
5.9 A scenario net of the Blood Flow Studying scenario. 83
5.10 A screen snapshot of the Blood Flow Studying scenario. The left window

shows the interface of the Conductor and the right one is the interface of the
C Desktop VRE component. The flow boundary is a tube with 32 � 32 � 64 lat-
tices. The image in the window shows the velocity vectors of the calculated
flow field. 84

5.11 Remote update of shared objects when the simulation is executed on multiple
processes. The error bars indicate the standard deviations of 100 measurements. 85

5.12 Asynchronous data transmission between the Surgeon A and Blood Simulator
component instances. 86

5.13 A comparison of the time interval between two invocations of Compute actions. 86
5.14 Basic time costs for updating a Flow Data object. 88
5.15 The idle time between invoking Refresh Flow Data actions. 89

122 List of Figures

5.16 The total time for simulation to do 80 iterations computing. 89
5.17 Multiple users explore the Blood Flow object. The term UserOpinion describes

the opinion choice selected by a user. When both surgeons accept the simula-
tion results, or one of them does not accept, the simulation scenario ends. The
high level scenario decides whether to make a new scenario or to finish the
entire story. 94

5.18 User’s opinions and the chatting interface. 95
5.19 The delay for remotely updating Blood Flow object with one, two and four

Surgeons. The error bars indicate the standard deviations. The size of data
object is 2M bytes. 95

5.20 A scenario template for collaboratively searching optimal bypasses. In the
template, SURGEON ROLE and SIMULATOR ROLE are two general role
names, which have to be replaced with concrete role names at run time. . . . 97

5.21 Switch shared classes between different instances of a scenario template. . . 98

6.1 A graphical representation of the experiment requirement for a bypass-validation
experiment. 107

6.2 Different types of ontologies. 109
6.3 Developing Ontologies using Protégé. 109
6.4 The basic architecture of an agent. 111
6.5 A snapshot of the component management subsystem. 112
6.6 A snapshot of the experiment planning subsystem. 112
6.7 Searching different number of activities from the component collection. . . . 113

References

[1] Thomas J. Schaefer. A transistor-level logic-with-timing simulator for MOS cir-
cuits. In Proceedings of the 22nd ACM/IEEE conference on Design automation,
pages 762–765. ACM Press, 1985.

[2] Milind M. Datar. Enterprise simulation: framework for a strategic application.
In Proceedings of the 32nd conference on Winter simulation, pages 2010–2014.
Society for Computer Simulation International, 2000.

[3] Thomas L. Clarke, editor. Distributed Interactive Simulation Systems for Sim-
ulation and Training in the Aerospace Environment, volume CR58 of Critical
Reviews of Optical Science and Technology. SPIE, Bellingham, WA, 1995.

[4] Ernest H. Page and Roger Smith. Introduction to military training simulation:
a guide for discrete event simulationists. In Proceedings of the 30th conference
on Winter simulation, pages 53–60. IEEE Computer Society Press, 1998.

[5] J. F. de Ronde. Mapping in High Performance Computing - A Case Study in Fi-
nite Element Simulation. PhD thesis, University van Amsterdam, Amsterdam,
The Netherlands, (Promoter: Prof. Dr. P. M. A. Sloot), 1998.

[6] A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, P. MacNeice, K. Olson,
P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Turan, M. Zingale,
and G. Henry. High performance reactive fluid flow simulations using adap-
tive mesh refinement on thousands of processors. In Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM), page 56. IEEE Computer
Society, 2000.

[7] Anu Maria. Introduction to modelling and simulation. In Proceedings of the
29th conference on Winter simulation, pages 7–13. ACM Press, 1997.

[8] T. E. Tezduyar, R. Glowinski, J. Liou, T. Nguyen, and S. Poole. Block-iterative
finite element computations for incompressible flow problems. In Proceedings
of the 2nd international conference on Supercomputing, pages 284–294. ACM
Press, 1988.

[9] Dirk Bauer and Ronald Peikert. Vortex tracking in scale-space. In Proceed-
ings of the symposium on Data Visualisation 2002, pages 233–ff. Eurographics
Association, 2002.

124 References

[10] Kevin Roe, Duane Stevens, and Carol McCord. High resolution weather mod-
eling for improved fire management. In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), pages 48–48. ACM Press, 2001.

[11] Abdel Monim Artoli. Mesoscopic Computational Haemodynamics. PhD thesis,
Universiteit van Amsterdam, Amsterdam, NL, (Promoter: Prof. Dr. P. M. A.
Sloot), 2004.

[12] R. G. Belleman. Interactive Exploration in Virtual Environments. PhD thesis,
University of Amsterdam, Amsterdam, The Netherlands, (Promoter: Prof. Dr.
P. M. A. Sloot), April 2003.

[13] Elias Houstis, Efstratios Gallopoulos, Randall Bramley, and John Rice.
Problem-solving environments for computational science. IEEE Computational
Science & Engineering, 4(3):18–21, 1997.

[14] Efstratios Gallopoulos, Elias N. Houstis, and John R. Rice. Workshop on
problem-solving environments: findings and recommendations. ACM Comput-
ing Surveys (CSUR), 27(2):277–279, 1995.

[15] A.S.Z. Belloum, D.L. Groep, Z.W. Hendrikse, L.O. Hertzberger, V. Korkhov,
C.T.A.M. de Laat, and D. Vasunin. VLAM-G: A Grid-based virtual laboratory.
Future Generation Computer Systems, 19(2):209–217, 2003.

[16] C. Johnson, S. Parker, and D. Weinstein. Large-scale computational science
applications using the SCIRun problem solving environment. In Proceedings of
Supercomputer, 2000.

[17] Lemme Group. CtCoq: an environment for mathematical reasoning. SIGSAM
Bull., 33(3):21–22, 1999.

[18] Gregor von Laszewski and Ian Foster. Grid infrastructure to support science
portals for large scale instruments. In Proceedings of the Workshop Distributed
Computing on the Web (DCW). University of Rostock, Germany, June 1999.

[19] H. Afsarmanesh, R.G. Belleman, A.S.Z. Belloum, A. Benabdelkader, J.F.J.
van den Brand, G.B. Eijkel, A. Frenkel, C. Garita, D.L. Groep, R.M.A. Heeren,
Z.W. Hendrikse, L.O. Hertzberger, J.A. Kaandorp, E.C. Kaletas, V. Korkhov,
C.T.A.M. de Laat, P.M.A. Sloot, D. Vasunin, A. Visser, and H.H. Yakali. VLAM-
G: A Grid-based Virtual Laboratory. Scientific Programming: Special Issue on
Grid Computing, 10(2):173–181, 2002.

[20] Upul Obeysekare, Chas Williams, Jim Durbin, Larry Rosenblum, Robert
Rosenberg, Fernando Grinstein, Ravi Ramamurthi, Alexandra Landsberg, and
William Sandberg. Virtual workbench - a non-immersive virtual environment
for visualizing and interacting with 3d objects for scientific visualization. In
Proceedings of the 7th conference on Visualization ’96, pages 345–ff. IEEE Com-
puter Society Press, 1996.

References 125

[21] Ersin Cem Karletas. Scientific information management in collaborative exper-
imentation environments). PhD thesis, Universiteit van Amsterdam, Amster-
dam, NL, (Promoter, Prof. Dr. L. O. Hertzberger), 2004.

[22] Afsarmanesh H., Guevara-Masis V., and Hertzberger L.O. Management of fed-
erated information in tele-assistance environments. Journal on Information
Technology in Healthcare, 2(2):87–108, 2004.

[23] Suad Alagic. The ODMG object model: does it make sense? In Proceedings of
the 12th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 253–270. ACM Press, 1997.

[24] Jewel Ward. A quantitative analysis of unqualified dublin core metadata el-
ement set usage within data providers registered with the open archives ini-
tiative. In Proceedings of the third ACM/IEEE-CS joint conference on Digital
libraries, pages 315–317. IEEE Computer Society, 2003.

[25] Jim Smith, Paul Watson, Sandra de F. Mendes Sampaio, and Norman Paton.
Polar: an architecture for a parallel ODMG compliant object database. In Pro-
ceedings of the ninth international conference on Information and knowledge
management, pages 352–359. ACM Press, 2000.

[26] F. Tuijnman and H. Afsarmanesh. Management of shared data in federated
co-operative peer environment. International journal of intelligent and co-
operative information systems, 2(4), 1993.

[27] Ian Foster and Robert L. Grossman. Data integration in a bandwidth-rich
world. Commun. ACM, 46(11):50–57, 2003.

[28] J. Meng, A. Helal, and Stanley Su. An ad-hoc workflow architecture based on
mobile agent and rule-based processing. In Proceedings of the International
Conference on Parallel and Distributed Computing Techniques and Applica-
tions, 2000.

[29] Mor Peleg, Iwei Yeh, and Russ Altman. Modelling Biological Processes using
Workflow and Petri Net Models. Bioinformatics, 18(6):825–837, 2002.

[30] Candace L. Conwell, Rosemary Enright, and Marcia A. Stutzman. Capability
maturity models support of modeling and simulation verification, validation,
and accreditation. In Proceedings of the 32nd conference on Winter simulation,
pages 819–828. Society for Computer Simulation International, 2000.

[31] W. B. Noffsinger, Robert Niedbalski, Michael Blanks, and Niall Emmart.
Legacy object modelling speeds software integration. Commun. ACM,
41(12):80–89, 1998.

[32] Jeff S. Steinman. Incremental state saving in speedes using C++. In Proceed-
ings of the 25th conference on Winter simulation, pages 687–696. ACM Press,
1993.

126 References

[33] Philip R. Cohen. Integrated interfaces for decision-support with simulation.
In Proceedings of the 23rd conference on Winter simulation, pages 1066–1072.
IEEE Computer Society, 1991.

[34] Günter Knittel and Wolfgang Straβer. Vizardvisualisation accelerator for real-
time display. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, pages 139–146. ACM Press, 1997.

[35] Tim Pattison, Rudi Vernik, Daniel Goodburn, and Matthew Phillips. Rapid as-
sembly and deployment of domain visualisation solutions. In Australian sympo-
sium on Information visualisation, pages 19–26. Australian Computer Society,
Inc., 2001.

[36] G. Cheng, Y. Lu, G. Fox, K. Mills, and T. Haupt. An interactive remote visual-
isation environment for an electromagnetic scattering simulation on high per-
formance computing system. In Proceedings of the 1993 ACM/IEEE conference
on Supercomputing, pages 317–326. ACM Press, 1993.

[37] R. G. Belleman and R. Shulakov. High performance distributed simulation for
interactive simulated vascular reconstruction. In P. M. A. Sloot; C. J. K. Tan; J.
J. Dongarra and A. G. Hoekstra, editors, Computational Science - ICCS 2002,
Proceedings Part III, in series Lecture Notes in Computer Science, vol.2331,
pages 265–274. Springer Verlag, April 2002.

[38] Gabrielle Allen, Werner Benger, Tom Goodale, Hans-Christian Hege, Gerd Lan-
fermann, Andr Merzky, Thomas Radke, Edward Seidel, and John Shalf. The
Cactus code: A problem solving environment for the Grid. In Proceedings of the
Ninth IEEE International Symposium on High Performance Distributed Com-
puting (HPDC’00), page 253. IEEE Computer Society, 2000.

[39] K. S. Perumalla and R. M. Fujimoto. Interactive parallel simulations with the
Jane framework. Future Generation Computer Systems, 17:525, March 2001.

[40] Kyoung S. Park, Yong J. Cho, Naveen K. Krishnaprasad, Chris Scharver,
Michael J. Lewis, Jason Leigh, and Andrew E. Johnson. CAVERNsoft G2: a
toolkit for high performance tele-immersive collaboration. In Proceedings of
the ACM symposium on Virtual reality software and technology, pages 8–15.
ACM Press, 2000.

[41] Maarten Boasson. Control systems software. IEEE Transactions on automatic
control, 38(7):1094–1106, 1993.

[42] Paul Dechering, Rix Groenboom, Edwin de Join, and Jan Tijmen Udding. For-
malisation of a software architecture for embedded systems: a process algebra
for splice. In Proceedings of the 32nd Hawaii International Conference on sys-
tem sciences, volume 3. IEEE Computer Society, January 1999.

References 127

[43] Deborah A. Fullford. Distributed interactive simulation: its past, present, and
future. In Proceedings of the 28th conference on Winter simulation, pages 179–
185. ACM Press, 1996.

[44] K. M. Chandy and J. Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineer-
ing, SE-5(5):440–452, 1979.

[45] Richard M. Weatherly, Annette L. Wilson, and Sean P. Griffin. Alsp-theory, ex-
perience, and future directions. In Proceedings of the 25th conference on Winter
simulation, pages 1068–1072. ACM Press, 1993.

[46] Larry Mellon and Darrin West. Architectural optimizations to advanced dis-
tributed simulation. In Proceedings of the 27th conference on Winter simulation,
pages 634–641. ACM Press, 1995.

[47] Wentong Cai, Francis B. S. Lee, and L. Chen. An auto-adaptive dead reck-
oning algorithm for distributed interactive simulation. In Proceedings of the
thirteenth workshop on Parallel and distributed simulation, pages 82–89. IEEE
Computer Society Press, 1999.

[48] Judith S. Dahmann, Richard M. Fujimoto, and Richard M. Weatherly. The
department of defense high level architecture. In Proceedings of the 29th con-
ference on Winter simulation, pages 142–149. ACM Press, 1997.

[49] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the
TAO real-time object request broker. Computer Communications, 21(4):294–
324, 10 April 1998.

[50] S. Vinoski. CORBA: Integrating diverse applications within distributed hetero-
geneous environments. IEEE Communications Magazine, February, 1997.

[51] Defence Modelling and Simulation Office (DMSO). DMSO RTI commercialisa-
tion announcement. In https://sdc.dmso.mil/announcement.php, 2003.

[52] H. Zhao and N. D. Georganas. An Approach for Stream Transmission Over
HLA-RTI in Distributed Virtual Environments. In 3rd International Workshop
on Distributed Interactive Simulation and Real-Time Applications, pages 67–
74, College Park, Maryland, March 1999.

[53] Agostino G. Bruzzone, Roberto Mosca, and Roberto Revetria. Yachts: yet an-
other cooperative high level architecture training software. In Proceedings of
the 33rd conference on Winter simulation, pages 1619–1623. IEEE Computer
Society, 2001.

[54] Ulrich Kelin, Thomas Schulze, and Steffen Straβburger. Traffic simulation
based on the high level architecture. In Proceedings of the 30th conference on
Winter simulation, pages 1095–1104. IEEE Computer Society Press, 1998.

128 References

[55] Wentong Cai, Stephen J. Turner, and Boon Ping Gan. Hierarchical federations:
an architecture for information hiding. In Proceedings of the fifteenth workshop
on Parallel and distributed simulation, pages 67–74. IEEE Computer Society,
2001.

[56] Bu-Sung Lee, Wentong Cai, and Junlan Zhou. A causality based time man-
agement mechanism for federated simulation. In Proceedings of the fifteenth
workshop on Parallel and distributed simulation, pages 83–90. IEEE Computer
Society Press, 2001.

[57] Rassul Ayani, Farshad Moradi, and Gary Tan. Optimizing cell-size in grid-
based DDM. In Proceedings of the fourteenth workshop on Parallel and dis-
tributed simulation, pages 93–100. IEEE Computer Society, 2000.

[58] David Gelernter and Nicholas Carriero. Coordination languages and their sig-
nificance. Commun. ACM, 35(2):97–107, 1992.

[59] Nicholas Carriero and David Gelernter. Applications experience with linda. In
Proceedings of the ACM/SIGPLAN conference on Parallel programming: expe-
rience with applications, languages and systems, pages 173–187. ACM Press,
1988.

[60] Silva Filho R. S., Wainer J., E. R. M. Madeira, and C. Ellis. Corba based archi-
tecture for large scale workflow. IEICE Transation on communication, E83-B
No. 5:988–998, 2000.

[61] Francisco J. Gonzá lez Castaño, Javier Vales-Alonso, Miron Livny, Enrique
Costa-Montenegro, and Luis Anido-Rifón. Condor Grid computing from mo-
bile handheld devices. SIGMOBILE Mob. Comput. Commun. Rev., 6(2):18–27,
2002.

[62] John Durrett and Theron Stimmel. A production-system model of human-
computer interaction. In Proceedings of the 1982 conference on Human factors
in computing systems, pages 393–399. ACM Press, 1982.

[63] Ben Shneiderman. Designing the user interface (2nd ed.): strategies for effective
human-computer interaction. Addison-Wesley Longman Publishing Co., Inc.,
1992.

[64] Ben Shneiderman. Putting the human factor into systems development. In
Proceedings of the eighteenth annual computer personnel research conference,
pages 1–13. ACM Press, 1981.

[65] Hurrion R. D. and R. J. Secker. Visual interactive simulation: An aid to decision
making. In Omega 6, 5, pages 419–426, 1978.

[66] Constance Heitmeyer and Dino Mandrioli. Formal methods for real-time com-
puting: an overview. In Formal methods for real-time computing, pages 1–29,
West Sussex, England, 1996.

References 129

[67] Thom McLean, Richard Fujimoto, and Brad Fitzgibbons. Next Generation Real-
Time RTI. In ”Proc 5th IEEE DS-RT’ 2001 Fifth IEEE International Workshop
on Distributed Simulation and Real Time Applications”, Cincinnati, Ohio, Aug
2001.

[68] Mostafa A. Bassiouni, Ming-Hsing Chiu, Margaret Loper, Michael Garnsey, and
Jim Williams. Performance and reliability analysis of relevance filtering for
scalable distributed interactive simulation. ACM Transactions on Modelling
and Computer Simulation (TOMACS), 7(3):293–331, 1997.

[69] Robert Macredie, Simon J. E. Taylor, Xiaoning Yu, and Richard Keeble. Virtual
reality and simulation: an overview. In Proceedings of the 28th conference on
Winter simulation, pages 669–674. ACM Press, 1996.

[70] K. A. Iskra, R. G. Belleman, G. D. van Albada, J. Santoso, P. M. A. Sloot, H. E.
Bal, H. J. W. Spoelder, and M. Bubak. The Polder computing environment,
a system for interactive distributed simulation. Concurrency and Computa-
tion: Practice and Experience(Special Issue on Grid Computing Environments),
14(13–15):1313–1335, 2002.

[71] Richard M. Fujimoto. Parallel discrete event simulation. Communications of
the ACM, 33(10):30–53, 1990.

[72] Thomas Mastaglio. Developing a large-scale distributed interactive simulation
system. In Proceedings of the 26th conference on Winter simulation, pages 770–
774. Society for Computer Simulation International, 1994.

[73] Christopher D. Carothers, Richard M. Fujimoto, Richard M. Weatherly, and
Annette L. Wilson. Design and implementation of HLA time management in
the rti version f. 0. In Proceedings of the 29th conference on Winter simulation,
pages 373–380. ACM Press, 1997.

[74] Richard M. Fujimoto and Richard M. Weatherly. Time management in the DoD
high level architecture. In Proceedings of the tenth workshop on Parallel and
distributed simulation, pages 60–67. IEEE Computer Society Press, 1996.

[75] Nicholas R. Jennings. An agent-based approach for building complex software
systems. Communications of the ACM, 44(4):35–41, 2001.

[76] C. Szyperski and C. Pfister. Workshop on component oriented programming,
summary. In Special Issues in Object Oriented Programming ECOOP 96 work-
shop reader, 1997.

[77] C. Szyperski. Component technology: what, where, and how? In Proceedings
of the 25th international conference on Software engineering, pages 684–693,
2003.

130 References

[78] David C. Luckham, James Vera, and Sigurd Meldal. Key concepts in architec-
ture definition languages. In Gary T. Leavens and Murali Sitaraman, editors,
Foundations of Component-Based Systems, chapter 2, pages 23–45. Cambridge
University Press, 2000.

[79] Joseph A. Heim. Integrating distributed simulation objects. In Proceedings of
the 29th conference on Winter simulation, pages 532–538. ACM Press, 1997.

[80] S. Calderoni and J. C. Souliè. Jaafaar: A web-based multi-agent toolkit for
collective research. Annals of Software Engineering, 13(1-4):265–283, 2002.

[81] Gajanana Nadoli and John E. Biegel. Intelligent manufacturing-simulation
agents tool (IMSAT). ACM Transactions on Modelling and Computer Simula-
tion (TOMACS), 3(1):42–65, 1993.

[82] David Foulser. Iris explorer: a framework for investigation. SIGGRAPH Com-
puter Graphics, 29(2):13–16, 1995.

[83] R. Orfali, D. Harkey, and J Edwards. The essential distributed objects survival
guide. Wiley, 1996.

[84] John A. Miller, Youngfu Ge, and Junxin Tao. Component-based simulation en-
vironments: JSIM as a case study using java beans. In Proceedings of the 30th
conference on Winter simulation, pages 373–382. IEEE Computer Society Press,
1998.

[85] M. Li, O. F. Rana, M. S. Shields, and D. W. Walker. A wrapper generator
for wrapping high performance legacy codes as Java/CORBA components. In
Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM),
page 13, 2000.

[86] Scott M. Lewandowski. Frameworks for component-based client/server com-
puting. ACM Computing Surveys (CSUR), 30(1):3–27, 1998.

[87] Randall Bramley, Kenneth Chiu, Shridhar Diwan, Dennis Gannon, Madhusud-
han Govindaraju, Nirmal Mukhi, Benjamin Temko, and Madhuri Yechuri. A
component based services architecture for building distributed applications. In
Ninth IEEE International Symposium on High Performance Distributed Com-
puting (HPDC’00), page 51, August 2000.

[88] S. Parr, A. Radeski, R. Keith-Magee, and J. Wharington. Component-based
development extensions to hla. In Proceedings of Spring Simulation Interoper-
ability Workshop (SISO Spring 2002), 2002.

[89] Arjun Cholkar and Philip Koopman. A widely deployable web-based network
simulation framework using corba IDL-based APIs. In Proceedings of the 31st
conference on Winter simulation, pages 1587–1594. ACM Press, 1999.

References 131

[90] Michael Pidd, Noelia Oses, and Roger J. Brooks. Component-based simulation
on the web? In Proceedings of the 31st conference on Winter simulation, pages
1438–1444. ACM Press, 1999.

[91] M. Brasse. A component architecture for federate development description. In
Fall Simulation Interoperability Workshop, 1999.

[92] George Chin, Jr. , L. Ruby Leung, Karen Schuchardt, and Debbie Gracio. New
paradigms in problem solving environments for scientific computing. In Pro-
ceedings of the 7th international conference on Intelligent user interfaces, pages
39–46. ACM Press, 2002.

[93] John A. Miller, Amit P. Sheth, Krys J. Kochut, Xuzhong Wang, and Arun Mu-
rugan. Simulation modelling within workflow technology. In Proceedings of the
27th conference on Winter simulation, pages 612–619. ACM Press, 1995.

[94] Philippe Massonet, Yves Deville, and Cèdric Néve. From aose methodology to
agent implementation. In Proceedings of the first international joint conference
on Autonomous agents and multi agent systems, pages 27–34. ACM Press, 2002.

[95] A. Kay. Computer software. Scientific American, 251(3):53–59, 1984.

[96] Hyacinth S. Nwana. Software agents: An overview. Knowledge Engineering
Review, 11(3):1–40, 1996.

[97] M. Wooldridge and N. Jenings. Intelligent agents: Theory and practice. Knowl-
edge Engineering Review, 10(2):115–152, 1995.

[98] Lisa A. Schaefer. Transport applications: architecture using jini technology for
simulation of an agent-based transportation system. In Proceedings of the 33rd
conference on Winter simulation, pages 1079–1083. IEEE Computer Society,
2001.

[99] Seungman Lee, Amy Pritchett, and David Goldsman. Hybrid agent-based sim-
ulation for analyzing the national airspace system. In Proceedings of the 33rd
conference on Winter simulation, pages 1029–1036. IEEE Computer Society,
2001.

[100] Lamjed Ben Said, Thierry Bouron, and Alexis Drogoul. Agent-based interac-
tion analysis of consumer behaviour. In Proceedings of the first international
joint conference on Autonomous agents and multi agent systems, pages 184–190.
ACM Press, 2002.

[101] P. Terna. Simulation tools for social scientists: Building agent based models
with swarm. Journal of Artificial Societies and Social Simulation, 1(2), 1998.

[102] Robert Ghanea-Hercock. Assimilation and survival in cyberspace. In Proceed-
ings of the first international joint conference on Autonomous agents and multi
agent systems, pages 213–214. ACM Press, 2002.

132 References

[103] Miles T. Parker. What is Ascape and why should you care? Journal of Artificial
Societies and Social Simulation, 4(1), 2001.

[104] R. J. Gallimore, N. R. Jennings, H. S. Lamba, C. L. Mason, and B. J. Oren-
stein. Co-operating agents for 3d scientific data interpretation. IEEE Trans. on
Systems, Man and Cybernetics, Part C, 29(1):110–126, 2000.

[105] T. J. Norman and N. R. Jennings. Constructing a virtual training laboratory
using intelligent agents. Int. Journal of Continuous Engineering and Life-Long
Learning, 2000.

[106] Y. Yan and S. Ramaswamy. Interactive, agent based, modelling and simula-
tion of virtual manufacturing assemblies. In Proceedings of the 36th annual
conference on Southeast regional conference, pages 78–87, 1998.

[107] W. Shen, D. Xue, and D. H. Norrie. An agent-based manufacturing enterprise
infrastructure for distributed integrated intelligent manufacturing systems. In
Hyacinth S. Nwana and Divine T. Ndumu, editors, Proceedings of the 3rd In-
ternational Conference on the Practical Applications of Agents and Multi-Agent
Systems (PAAM-98), pages 533–548, London, UK, 1998.

[108] G. Tan, L. Xu, F. Moradi, and S. Taylor. An agent-based ddm for high level
architecture. In Proceedings of the 15th workshop on Parallel and distributed
simulation, pages 75–82, 2001.

[109] L Bölöni. The bond 3 agent system. White paper, http://bond.cs.ucf.edu, 2003.

[110] Steven J. DeRose. XML linking. ACM Comput. Surv., 31(4es):21, 1999.

[111] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML as an
agent communication language. In Proceedings of the third international confer-
ence on Information and knowledge management, pages 456–463. ACM Press,
1994.

[112] L. Bölöni, D. C. Marinescu, J. R. Rice, P. Tsompanopoulou, and E. A. Vavalis.
Agent based scientific simulation and modelling. Concurrency: practice and
experience, 12:845–861, 2000.

[113] J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson. Uin-
tah: A massively parallel problem solving environment. In Ninth IEEE Inter-
national Symposium on High Performance andDistributed Computing, 2000.

[114] R. McClatchey and G. Vossen. Workshop on workflow management in scientific
and engineering applicationsreport. SIGMOD Rec., 26(4):49–53, 1997.

[115] Jeanine Weissenfels, Michael Gillmann, Olivier Roth, German Shegalov, and
Wolfgang Wonner. The mentor-lite prototype: A light-weight workflow man-
agement system. In 16th International Conference on Data Engineering, pages
685–686, February 2000.

References 133

[116] Wim Huiskamp, Henk Janssen, and Hans Jense. An hla based flight simulation
architecture. In Proceedings of AIAA Modelling and Simulation Technologies
Conference, August 2000.

[117] Z. Zhao, R. G. Belleman, G. D. van Albada, and P. M. A. Sloot. State update and
scenario switch in an agent based solution to constructing interactive simula-
tion systems. In Proceedings of the Communication Networks and Distributed
Systems Model-ing and Simulation Conference, pages 3–10, San Antonio, US,
January 2002.

[118] Z. Zhao, R. G. Belleman, G. D. van Albada, and P. M. A. Sloot. AG-IVE an agent
based solution to constructing interactive simulation systems. In Proceedings
of the second International Conference of Computational Science (ICCS02), Am-
sterdam, NL, April 2002.

[119] Message Passing Interface Forum. MPI-2: A message-passing interface stan-
dard. The International Journal of Supercomputer Applications and High Per-
formance Computing, 12:1–2, 1998.

[120] V. S. Sunderam. PVM: A framework for parallel distributed computing. Con-
currency: Practice and Experience, 2(4):315–339, December 1990.

[121] Jon Siegel. OMG overview: CORBA and the OMA in enterprise computing.
Commun. ACM, 41(10):37–43, 1998.

[122] Shigeru Watanabe. 5-symbol 8-state and 5-symbol 6-state universal turing ma-
chines. J. ACM, 8(4):476–483, 1961.

[123] James J. Odell. Advanced Object-Oriented Analysis and Design Using UML.
1998.

[124] Kari Kuutti and Tuula Arvonen. Identifying potential CSCW applications by
means of activity theory concepts: a case example. In Proceedings of the 1992
ACM conference on Computer-supported cooperative work, pages 233–240. ACM
Press, 1992.

[125] Philip Barnard, Jon May, David Duke, and David Duce. Systems, interactions,
and macrotheory. ACM Transaction Computer-Human Interaction, 7(2):222–
262, 2000.

[126] R. Bastos, D. Dubugras, and A. Ruiz. Extending UML activity diagram for
workflow modelling in production systems. In Proceedings of the 35th An-
nual Hawaii International Conference on System Sciences (HICSS’02)-Volume
9, page 291. IEEE Computer Society, 2002.

[127] Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed work-
flow execution based on state charts. In ICDT, pages 230–246, 1997.

134 References

[128] W. M. P. van der Aalst. The Application of Petri nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[129] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.

[130] Ludwik Czaja. Place/transition Petri net evolutions: recording ways, analysis
and synthesis. Fundam. Inf., 51(1):43–58, 2002.

[131] James L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252, 1977.

[132] Alois Ferscha. Concurrent execution of timed Petri nets. In Proceedings of
the 26th conference on Winter simulation, pages 229–236. Society for Computer
Simulation International, 1994.

[133] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc.,
1985.

[134] Siegfried I. Mensch and Hans Martin Lipp. Fuzzy specification of finite state
machines. In Proceedings of the conference on European design automation,
pages 622–626. IEEE Computer Society Press, 1990.

[135] Zhigang Wen, Q.H. Mehdi, and N.E. Gough. A new animation approach for vi-
sualizing intelligent agent behaviours in a virtual environment. In Proceedings
of sixth International Conference on Information Visualisation (IV’02), pages
93–98, July 2002.

[136] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual exclu-
sion in computer networks. Commun. ACM, 24(1):9–17, 1981.

[137] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark
Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and
Peter Li. Taverna: A tool for the composition and enactment of bioinformatics
workflows. Bioinformatics Journal., online, June 16, 2004.

[138] Kaizar Amin and Gregor von Laszewski. GridAnt: a Grid workflow sys-
tem. In Manual at http://www-unix.globus.org/cog/projects/gridant/, Febru-
ary 2003.

[139] Amzi Inc. Amzi prolog homepage. In http://www.amzi.com/, 2002.

[140] (DAS-2). In The Distributed ASCI Supercomputer 2, Homepage:
http://www.cs.vu.nl/das2/, 2002.

[141] The SurfNet. The surfnet homepage. In http://www.surfnet.nl/, 2002.

[142] The MyriCom. The myricom homepage. In http://www.myri.com/, 2002.

[143] Kees Verstoep. Discussion on TCP sockets on the DAS II system. In Internal
discussion notes., 2004.

References 135

[144] Michael W. Vannier, Jeffrey L. Marsh, and James O. Warren. Three dimen-
sional computer graphics for craniofacial surgical planning and evaluation. In
Proceedings of the 10th annual conference on Computer graphics and interactive
techniques, pages 263–273. ACM Press, 1983.

[145] Steven Pieper, Joseph Rosen, and David Zeltzer. Interactive graphics for plastic
surgery: a task-level analysis and implementation. In Proceedings of the 1992
symposium on Interactive 3D graphics, pages 127–134. ACM Press, 1992.

[146] Kevin Montgomery, Michael Stephanides, Stephen Schendel, and Muriel Ross.
A case study using the virtual environment for reconstructive surgery. In Pro-
ceedings of the conference on Visualisation ’98, pages 431–434. IEEE Computer
Society Press, 1998.

[147] Carol Bick. Abdominal aortic aneurysm repair. Nursing Standard, 15(3):47–52,
2000.

[148] H. G. Burkitt, C. R. G. Quick, and D. Gatt. Essential Surgery. Churchill Living
Stone, ISBN: 0-443-04805-3, 1996.

[149] Adnan Kastrati, Julinda Mehilli, Stefan Nekolla, Hildegard Bollwein, Ste-
fan Martinoff, Jürgen Pache, Helmut Schühlen, Melchior Seyfarth, Meinrad
Gawaz, Franz-JosefNeumann, Josef Dirschinger, Markus Schwaiger, Albert
Schömig, , and STOPAMI-3 Study Investigators. A randomized trial comparing
myocardial salvage achieved by coronary stenting versus balloon angioplasty in
patients with acute myocardial infarction considered ineligible for reperfusion
therapy. Journal of the American College of Cardiology, 43(5):734–741, 2004.

[150] Daniel Bielser and Markus H. Gross. Interactive simulation of surgical cuts. In
Pacific Graphics 2000 (PG’00), page 16, October 2000.

[151] T. P. Grantcharov, V. B. Kristiansen, J. Bendix, L. Bardram, J. Rosenberg,
and P. Funch-Jensen. Randomised trial randomised clinical trial of virtual re-
ality simulation for laparoscopic skills training. British Journal of Surgery,
91(2):146–150, 2003.

[152] Frederic I. Parke and Mark Friedell. Interactive simulation of biomechanical
systems: The kinematics and stress of the human knee. In Proceedings of the
1978 annual conference, pages 759–764, 1978.

[153] Y. Zhu, J. X. Chen, S. Xiao, and E. B. MacMahon. 3d knee modelling and biome-
chanical simulation. IEEE Computing in Science and Engineering, 1:82–87,
July/August, No. 4, 1999.

[154] Burkhard C. Wünsche, Richard Lobb, and Alistair A. Young. The visualisation
of myocardial strain for the improved analysis of cardiac mechanics. In Proceed-
ings of the 2nd international conference on Computer graphics and interactive
techniques in Austalasia and Southe East Asia, pages 90–99. ACM Press, 2004.

136 References

[155] Artoli A. M., Hoekstra A. G., and Sloot P. M. A. Accelerated lattice BGK method
for unsteady flow simulations through mach number annealing. International
Journal of Modern Physics C, 14(6):835–847, 2003.

[156] University of Amsterdam Section Computational Science. Homepage. In
http://www.science.uva.nl/research/scs/, 2003.

[157] B. D. Kandhai. Large Scale Lattice-Boltzmann Simulations (Computational
Methods and Applications). PhD thesis, University van Amsterdam, Amster-
dam, The Netherlands, (Promoter: Prof. Dr. P. M. A. Sloot), 1999.

[158] R. G. Belleman and P. M. A. Sloot. The design of dynamic exploration environ-
ments for computational steering simulations. In Proceedings of the SGI Users’
Conference 2000, ISBN 83-902363-9-7, pages 57–74, Academic Computer Cen-
tre CYFRONET AGH, Krakow, Poland, 2000.

[159] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen projection-
based virtual reality: The design and implementation of the CAVE. In SIG-
GRAPH ’93 Computer Graphics Conference, pages 135–142, 1993.

[160] W. Schroeder, K. Martin, B. Lorensen, and Prentice Hall. The Visualisation
Toolkit; An Object-Oriented Approach to 3D Graphics, 2nd edition. 1997.

[161] The Open PBS homepage. Portable batch system. In http://www.openpbs.org/,
2004.

[162] Ulana Legedza and William E. Weihl. Reducing synchronization overhead in
parallel simulation. In Proceedings of the tenth workshop on Parallel and dis-
tributed simulation, pages 86–95. IEEE Computer Society, 1996.

[163] V. Pekar, D. Hempel, G. Kiefer, M. Busch, and J. Weese. Efficient visualisation
of large medical image datasets on standard pc hardware. In Proceedings of the
symposium on Data visualisation 2003, pages 135–140. Eurographics Associa-
tion, 2003.

[164] Hiromi T. Tanaka, Yasufumi Takama, and Hiroki Wakabayashi. Accuracy-
based sampling and reconstruction with adaptive grid for parallel hierarchical
tetrahedrization. In Proceedings of the 2003 Eurographics/IEEE TVCG Work-
shop on Volume graphics, pages 79–86. ACM Press, 2003.

[165] E.V. Zudilova, P.M.A. Sloot, and R.G. Belleman. A multi-modal interface for an
interactive simulated vascular reconstruction system. In Fourth IEEE ACMI’02
International Conference on Multimodal Interfaces, pages 313–318. IEEE Com-
puter Society, 14-16 October 2002.

[166] H.S.M. Cramer, V. Evers, E.V. Zudilova, and P.M.A. Sloot. Context analysis to
inform virtual reality application development. International Journal of Virtual
Reality, 7(3):177–186, 2004.

References 137

[167] Jakob Bardram. Designing for the dynamics of cooperative work activities.
In Proceedings of the 1998 ACM conference on Computer supported cooperative
work, pages 89–98. ACM Press, 1998.

[168] Richard Furuta and P. David Stotts. Interpreted collaboration protocols and
their use in groupware prototyping. In Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pages 121–131. ACM Press, 1994.

[169] Chengzheng Sun and David Chen. Consistency maintenance in real-time col-
laborative graphics editing systems. ACM Transaction Computer-Human Inter-
action, 9(1):1–41, 2002.

[170] Elizabeth A. Hinkelman. Evaluation of collaborative systems using communi-
cation actions. SIGGROUP Bull., 20(2):30–33, 1999.

[171] Albert M. Selvin and Maarten Sierhuis. Strategies for collaborative modelling
and simulation (workshop session)(abstract only). In Proceedings of the 1996
ACM conference on Computer supported cooperative work, page 2. ACM Press,
1996.

[172] Tom Rodden. A survey of CSCW systems. Interacting with Computers,
3(3):319–353, 1991.

[173] Jörn W. Janneck. Behavioural prediction of time Petri nets with applications to
distributed simulation. In Proceedings High Performance Computing ’98, pages
416–424, 1998.

[174] Sierhuis M and A. M. Selvin. Towards a framework for collaborative modelling
and simulation. In the Workshop on Strategies for Collaborative Modelling and
Simulation, CSCW’96 conference. ACM Press, 1996.

[175] Brad Myers, Jim Hollan, Isabel Cruz, Steve Bryson, Dick Bulterman, Tiziana
Catarci, Wayne Citrin, Ephraim Glinert, Jonathan Grudin, and Yannis Ioan-
nidis. Strategic directions in human-computer interaction. ACM Computing
Surveys, 28(4):794–809, 1996.

[176] Munir Mandviwalla and Lorne Olfman. What do groups need? a proposed
set of generic groupware requirements. ACM Transaction Computer-Human
Interaction, 1(3):245–268, 1994.

[177] Thomas A. Funkhouser. Ring: a client-server system for multi-user virtual en-
vironments. In Proceedings of the 1995 symposium on Interactive 3D graphics,
pages 85–ff. ACM Press, 1995.

[178] Jutta Willamowski, Francois Chevenet, and Francois Jean-Marie. A devel-
opment shell for cooperative problem-solving environments. Math. Comput.
Simul., 36(4-6):361–379, 1994.

138 References

[179] Pedro Garcia, Oriol Montalà, Carles Pairot, Robert Rallo, and Antonio Gömez
Skarmeta. MOVE: component groupware foundations for collaborative virtual
environments. In Proceedings of the 4th international conference on Collabora-
tive virtual environments, pages 55–62. ACM Press, 2002.

[180] Du Li and Richard Muntz. COCA: collaborative objects coordination architec-
ture. In Proceedings of the 1998 ACM conference on Computer supported coop-
erative work, pages 179–188. ACM Press, 1998.

[181] Yann Laurillau and Laurence Nigay. Clover architecture for groupware. In
Proceedings of the 2002 ACM conference on Computer supported cooperative
work, pages 236–245. ACM Press, 2002.

[182] Peraphon Sophatsathit and Joseph Urban. Integrating software tool commu-
nication within an environment. In Proceedings of the 1992 ACM/SIGAPP
symposium on Applied computing, pages 1070–1075. ACM Press, 1992.

[183] A. Sorgatz and S. Wehmeier. Towards high-performance symbolic computing:
using mupad as a problem solving environment. Mathematics and Computers
in Simulation, 49:235, August 1999.

[184] K. A. Hawick, H. A. James, and P. D. Coddington. A reconfigurable component-
based problem solving environment. In Proceedings of Hawaii International
Conference on System Sciences (HICSS-34), 2000.

[185] Mikel Lujn. Building an object oriented problem solving environment for the
parallel numerical solution of PDEs. In Addendum to the 2000 proceedings of
the conference on Object-oriented programming, systems, languages, and appli-
cations (Addendum), pages 149–150. ACM Press, 2000.

[186] R. M. H. Merks, A. G. Hoekstra, J. A. Kaandorp, and P. M. A. Sloot. Prob-
lem solving environment for modelling stony coral morphogenesis. In P. M. A.
Sloot; D. Abrahamson; A. V. Bogdanov; J. J. Dongarra; A. Y. Zomaya and Y. E.
Gorbachev, editors, Computational Science - ICCS 2003, Proceedings Part I, in
series Lecture Notes in Computer Science, vol.2657, pages 639–648. Springer-
Verlag, Heidelberg, June 2003.

[187] Vijayan Sugumaran and Veda C. Storey. A semantic-based approach to compo-
nent retrieval. SIGMIS Database, 34(3):8–24, 2003.

[188] Gary Tan, Yu Hu, and Farshad Moradi. Automatic som compatibility check
& fom development. In 7th International Workshop on Distributed Interactive
Simulation and Real-Time Applications, pages 60–67, Delft, the Netherlands,
October 2004.

[189] Munindar P. Singh. Distributed enactment of multiagent workflows: temporal
logic for web service composition. In Proceedings of the second international

References 139

joint conference on Autonomous agents and multiagent systems, pages 907–914.
ACM Press, 2003.

[190] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weer-
awarana. The next step in web services. Commun. ACM, 46(10):29–34, 2003.

[191] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and auto-
mated composition of web services. In Proceedings of the eleventh international
conference on World Wide Web, pages 77–88. ACM Press, 2002.

[192] M. Bubak, T. Gubala, M. Kapalka, M. Malawski, and K. Rycerz. Grid service
registry for workflow composition framework. In Proceedings of International
Conference on Computational Science, LNCS 3038, pages 34–41. Springer, June
2004.

[193] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy
and survey of Grid resource management systems for distributed computing.
International Journal of Software: Practice and Experience (SPE)., 22(2):135–
164, 2002.

[194] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann; 2nd edition, 2003.

[195] The European CrossGrid project. Homepage of the European CrossGrid project.
In http://www.eu-crossgrid.org/, 2004.

[196] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit
devices. Intl J. Supercomputer Applications, 11(2):115–128, 1997.

[197] Ken ichi Kurata, Christian Saguez, Gerard Dine, Hiroshi Nakamura, and Vin-
cent Breton. Evaluation of unique sequences on the european data grid. In
Proceedings of the First Asia-Pacific bioinformatics conference on Bioinformat-
ics 2003, pages 43–52. Australian Computer Society, Inc., 2003.

[198] Nirav H. Kapadia, José; A. B. Fortes, and Mark S. Lundstrom. The purdue
university network-computing hubs: running unmodified simulation tools via
the www. ACM Trans. Model. Comput. Simul., 10(1):39–57, 2000.

[199] Gloria L. Zũǹiga. Ontology: its transformation from philosophy to information
systems. In Proceedings of the international conference on Formal Ontology in
Information Systems, pages 187–197. ACM Press, 2001.

[200] Sergei Nirenburg and Victor Raskin. Ontological semantics, formal ontology,
and ambiguity. In Proceedings of the international conference on Formal Ontol-
ogy in Information Systems, pages 151–161. ACM Press, 2001.

[201] N Guarina. Formal ontology and information systems. In Proceedings of
FOIS’98 Formal ontology in information systems, June, 1998.

140 References

[202] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language
overview. In W3C Recommendation http://www.w3.org/TR/2004/REC-owl-
features-20040210/, 10 February 2004.

[203] Protégé 2000 project. Protégé home page. In http://protege.stanford.edu/,
2004.

[204] The Foundation for Intelligent Physical Agents. Homepage of FIPA. In
http://www.fipa.org/, 2004.

[205] Volker Haarslev and Ralf Möller. Description of the RACER system and its
applications. In Proceedings International Workshop on Description Logics (DL-
2001), August 2001.

[206] Jan Wielemaker. An overview of the SWI-Prolog programming environment.
In Fred Mesnard and Alexander Serebenik, editors, Proceedings of the 13th In-
ternational Workshop on Logic Programming Environments, pages 1–16, Hev-
erlee, Belgium, December 2003.

[207] The Jgraph Ltd. Professional open source of Java Graph Visualisation. In
Homepage of Jgraph: http://www.jgraph.com/, 2004.

[208] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois
McInnes, Steve Parker, and Brent Smolinski. Toward a common component ar-
chitecture for high-performance scientific computing. In The Eighth IEEE In-
ternational Symposium on High Performance Distributed Computing, page 13,
August 1999.

[209] T. Drashansky, A. Joshi, and J. Rice. SciAgents – an agent based environment
for distributed, co-operative scientific computing. In Proceedings of the 7th In-
ternational Conference of Tools with Artificial Intelligence (Los Alamitos, CA),
IEEE Computer Soc., pages 452–459., 1995.

[210] Christopher Stone. Software standardization: how the Object Management
Group changed the model. StandardView, 3(3):85–89, 1995.

[211] K. Z. Zajac, A. Tirado-Ramos, Z. Zhao, P. M. A. Sloot, and M. Bubak. Grid
services for HLA-based distributed simulation frameworks. In F. Fernández
Rivera; M. Bubak; A. Gómez Tato and R. Doallo, editors, First European Across
Grids Conference, pages 147–154. Springer-Verlag, Heidelberg, February 2003.

[212] K.Z. Zajac, M. Bubak, M. Malawski, and P.M.A. Sloot. Towards a grid man-
agement system for HLA-based interactive simulations. In S.J. Turner and
S.J.E. Taylor, editors, Proceedings Seventh IEEE International Symposium on
Distributed Simulation and Real Time Applications (DS-RT 2003), pages 4–11.
IEEE Computer Society, October 2003.

References 141

[213] Katarzyna Rycerz, Marian Bubak, Maciej Malawski, and Peter Sloot. A frame-
work for hla–based interactive simulations on the Grid. Simulation transac-
tion, Special Issue: Applications of Parallel and Distributed Simulation in In-
dustry., submitted.

[214] L. O. Hertzberger. Introduction of VLAM-G and VL-E. In Internal seminar,
2004.

142 References

Nederlandse Samenvatting

Interactieve simulaties spelen in toenemende mate een belangrijke rol in het weten-
schappelijk onderzoek: in vergelijking met conventionele simulaties maken zij het
mogelijk parameterruimten efficiënter te onderzoeken en de berekeningen nauwkeu-
riger aan te sturen. Op deze manier helpen ze ook om het gebruik van hulpbron-
nen, zowel voor verwerking als voor opslag te optimaliseren en de communicatie ef-
ficiënter te maken. Binnen een interactief simulatiesysteem (ISS) kunnen we meestal
de volgende componenten onderscheiden: een of meer simulatie-modules die de eigen-
lijke berekeningen uitvoeren, een of meer visualisatie-modules die de resultaten van
de simulatie meteen voor de gebruiker zichtbaar maken, en een of meer interactie-
modules waarmee de gebruiker het simulatie- en visualisatie-proces kan sturen. De
visualisatie- en interactie-modules worden veelal gecombineerd. De ontwikkeling en
integratie van simulatie- en visualisatiekernels is echter kostbaar. Traditionele ont-
wikkelingsmethoden resulteren in het algemeen in systemen met een sterke koppe-
ling tussen de systeemfunctionaliteit en de applicatieafhankelijke logische besturing
en zijn hierdoor moeilijk aan te passen voor andere problemen. Deze hoge kosten en
geringe flexibiliteit hinderen de invoering van dergelijke systemen. Bestaande soft-
warearchitecturen en middleware richten zich met name op de laag-niveau koppeling
van systeemcomponenten, en niet expliciet op “rapid prototyping” van ISS of op een
flexibele aansturing van het systeemgedrag.
In dit proefschrift stellen we dat de scheiding van de applicatieafhankelijke logische
aansturing en de systeemfunctionaliteit een cruciale stap is naar een verbeterd ont-
wikkelingsproces voor ISS. We hebben “Interactive Simulation System Conductor”
ontwikkeld, een architectuur voor de samenbouw van componenten met behulp van
’agents’ (agenten), die een dergelijke scheiding realiseert. Deze architectuur vangt de
intelligentie voor de besturing van het geı̈ntegreerde systeem in verschillende rollen
voor agenten en maakt het mogelijke met deze agenten een gelaagde verbindings-
structuur op te zetten tussen de componenten. Er is een “proof of concept” implemen-
tatie gebouwd op basis van de “High Level Architecture” (HLA), een specifiek voor
gedistribueerde simulatie-systemen ontworpen middleware.
De basisarchitectuur van ISS-Conductor wordt in het tweede hoofdstuk gepresen-
teerd. Door de reken-kernels en ondersteunende structuren van de hoofdmodules
van een ISS, zoals simulatie, visualisatie en interactie in te kapselen, staat het we-
tenschappers toe op een hoog niveau simulatie-experimenten op te zetten zonder zich
bezig te hoeven houden met de laag-niveau systeemintegratie. Binnen de architec-
tuur leggen “Communicatieagenten” (ComA) de basis voor de interoperabiliteit van

144 Nederlandse Samenvatting

componenten; “Moduleagenten” (MA) orkestreren het gedrag van het systeem tijdens
de uitvoering. De “Run-Time Infrastructure” (RTI) van HLA wordt gebruikt als de
“software bus” waarmee alle componenten worden samengebouwd.
In het derde hoofdstuk bespreken we het functionele ontwerp van ISS-Conductor. In
een ISS-Conductor component stuurt de MA het gedrag van die component, gebruik
makend van een redeneer-systeem; dit systeem heeft in zijn “knowledge base” kennis
van zowel de functionaliteit van de diverse componenten, als van de voor de appli-
catie specifieke constraints op de interacties. De functionaliteit van een component
(“capability”) wordt gemodelleerd met een eindige automaat die samen met die van de
andere componenten kan worden geprogrammeerd, gebruik makend van een mecha-
nisme gebaseerd op een Petri net (“scenario net”). Tijdens de uitvoering interpreteren
de MA’s van de verschillende componenten gezamenlijk de constraints op de interac-
tie en besturen op deze manier het gedrag van het systeem als geheel.
Hoofdstuk vier is gewijd aan de details van de implementatie en de performance ka-
rakteristieken van ISS-Conductor. De ComA koppelt naar de diensten van de HLA
RTI die verantwoordelijk zijn voor het delen van gegevens en het versturen van bood-
schappen. Het redeneer-systeem van de MA is in Prolog geschreven. Op basis van
onze metingen aan de prestaties van onze implementatie kunnen we concluderen dat
de Communicatieagenten een acceptabele overhead toevoegen aan de RTI. Applica-
ties gebaseerd op ISS-Conductor kunnen voor grote dataobjecten een netwerkutilisa-
tie behalen, vergelijkbaar aan die van zuivere TCP sockets. De logische besturing van
het redeneersysteem veroorzaakt ook slechts een kleine overhead.
In het vijfde hoofdstuk gebruiken we de ISS-Conductor architectuur om een prototype
te maken voor een interactieve simulatieomgeving voor het plannen van vasculaire
operaties. We bespreken de procedures voor de ontwikkeling van een ISS-Conductor
component in detail, evenals die waarmee de componenten worden samengebouwd
tot een interactief systeem. Voor een aantal testcases bespreken we de aansturing op
het scenario-niveau, automatische tuning van de prestaties in een lopend systeem en
de ondersteuning voor interactieve samenwerking. De experimentele resultaten to-
nen aan dat ISS-Conductor slechts een kleine overhead toevoegt aan reeds bestaande
reken-kernels.
In het zesde hoofdstuk bespreken we de mogelijkheid componenten die aan het ISS-
Conductor model voldoen te gebruiken als software binnen een zogenaamd “Problem
Solving Environment”. Een van de cruciale problemen die we daarbij onderzoeken is
hoe de componenten voor een interactief simulatie-experiment automatisch gevonden
en samengevoegd kunnen worden. In dit hoofdstuk wordt ISS-Studio beschreven, een
op Java gebaseerd prototype voor een dergelijke omgeving.
In het zevende en laatste hoofdstuk wordt een samenvatting gegeven van het proef-
schrift en worden de resultaten geplaatst in het licht van de verwachte toekomstige
ontwikkelingen op het gebied van interactieve simulatiesystemen.

Publications

[1] P. Kommers and Z. Zhao. Conceptual support with virtual reality in web-based
learning. International Journal of Continuing Engineering Education and Life-
Long Learning, 8(1), 1998.

[2] R. G. Belleman, Z. Zhao, G. D. van Albada, and P. M. A. Sloot. Design conside-
rations for the construction of immersive dynamic exploration environments. In
L. J. van Vliet; J. W. J. Heijnsdijk; T. Kielmann and P. M. W. Knijnenburg, editors,
ASCI 2000, Proceedings of the sixth annual conference of the Advanced School for
Computing and Imaging, pages 195–201, the Netherlands, June 2000.

[3] Z. Zhao, R. G. Belleman, G. D. van Albada, and P. M. A. Sloot. System integration
for interactive simulation systems using intelligent agents. In R. L. Lagendijk; J.
W. J. Heijnsdijk; A. D. Pimentel and M. H. F. Wilkinson, editors, Proceedings of the
7th annual conference of the Advanced School for Computing and Imaging, pages
399–406, the Netherlands, May 2001.

[4] Z. Zhao, R. G. Belleman, G. D. van Albada, and P. M. A. Sloot. State update and
scenario switch in an agent based solution to constructing interactive simulation
systems. In Proceedings of the Communication Networks and Distributed Systems
Model-ing and Simulation Conference, pages 3–10, San Antonio, US, January 2002.

[5] Z. Zhao, R. G. Belleman, G. D. van Albada, and P. M. A. Sloot. AG-IVE an agent
based solution to constructing interactive simulation systems. In Proceedings of the
second International Conference of Computational Science (ICCS02), Amsterdam,
NL, April 2002.

[6] Z. Zhao, R. G. Belleman, G. D. van Albada, and P. M. A. Sloot. Reusability and
efficiency in constructing interactive simulation systems. In E.F. Deprettere; A.S.Z.
Belloum; J.W.J. Heijnsdijk and F. van der Stappen, editors, ASCI 2002, Proceedings
of the eighth annual conference of the Advanced School for Computing and Imaging,
Delft, pages 268–275, June 2002.

[7] Z. Zhao, G. D. van Albada and P. M. A. Sloot. Interaction scenario: Orchestra-
ting agents in a multi-agent system. In J. -P. Muller and M. -M. Seidel, editors,
Proceedings of the 4th workshop on Agent-Based Simulation, ISBN 3-936-150-25-7,
pages 155–160, Montpellier, France, April 2003.

146 Publications

[8] A. Tirado-Ramos, K.Z. Zajac, Z. Zhao, P.M.A. Sloot, G.D. van Albada, and M. Bu-
bak. Experimental Grid access for dynamic discovery and data transfer in dis-
tributed interactive simulation systems. In P.M.A. Sloot; D. Abrahamson; A.V.
Bogdanov; J.J. Dongarra; A.Y. Zomaya and Y.E. Gorbachev, editors, Computational
Science - ICCS 2003, Melbourne, Australia and St. Petersburg, Russia, Proceedings
Part I, in series Lecture Notes in Computer Science, pages 284–292. Springer Ver-
lag, June, 2003.

[9] Z. Zhao, A. Tirado-Ramos, K.Z. Zajac, G.D. van Albada, P.M.A. Sloot. ISS-Studio:
a prototype for a user-friendly tool for designing interactive experiments in Pro-
blem Solving Environments. In P.M.A. Sloot; D. Abrahamson; A.V. Bogdanov; J.J.
Dongarra; A.Y. Zomaya and Y.E. Gorbachev, editors, Computational Science - ICCS
2003, Melbourne, Australia and St. Petersburg, Russia, Proceedings Part I, in se-
ries Lecture Notes in Computer Science, vol. 2657, pages. 679-688. Springer Verlag,
June 2003.

[10] K.Z. Zajac, A. Tirado-Ramos, Z. Zhao, P.M.A. Sloot, and M. Bubak. Grid services
for HLA-based distributed simulation frameworks. In F. Fernández Rivera; M. Bu-
bak; A. Gómez Tato and R. Doallo, editors, First European Across Grids Conference,
Santiago de Compostela, Spain., pages 147–154. Springer Verlag, February 2003.

[11] Z. Zhao, G. D. van Albada, P.M.A. Sloot. A Layered framework for construc-
ting interactive simulation systems. ICECCS 2005, Int’l Conf. on Eng. of Complex
Compute Systems. (Submitted.)

[12] Z. Zhao, G. D. van Albada, P.M.A. Sloot. ISS-Conductor: an agent based archi-
tecture for interactive simulation systems. Concurrency: Practice and Experience.
(Submitted.)

[13] Z. Zhao, G. D. van Albada, P.M.A. Sloot. Agent based flow control for HLA com-
ponents. Simulation transaction, Special Issue: Agent directed simulation. (Ac-
cepted.)

Index

Common Component Architecture(CCA),
16

SIDL, 16, 102
Common Object Request Broker Archi-

tecture(CORBA), 10, 57
CCM, 28
TAO, 10

Grid
Computational Grid, 3
OGSA, 6
VO, 3

High Level Architecture(HLA), 45, 53,
75, 102

ALSP, 10
DARPA, 10
DIS, 10
DoD, 9
Federate, 10
FOM, 10, 102
LBTS, 14
libRTI, 10
OMT, 76
RTI, 10, 53, 75
SIMNET, 10
SOM, 10, 102
SSA, 16, 29, 91

Interactive Simulation System(ISS), 1
Computer Simulation, 1

PDES, 3
HPC, 3

MPI, 16, 77
PVM, 16

PSE, 1, 5, 101
ODMG, 5
VLAM-G, 5, 103

Scientific Visualisation, 4
DEE, 4
Virtual Reality, 4

ISS-Conductor, 20, 23, 31, 51, 74, 101
Actor, 25
Capability, 27, 32
ComA, 25, 42, 51, 77
Conductor, 25
Critical Transition, 44
FSM, 32
ISS-Studio, 21, 101
MA, 25, 31, 52, 88
Petri net, 35, 91, 101
Role, 28
Scenario net, 37, 83
Story, 27, 31, 53, 77, 103

148 Index

Acknowledgments

I would like to take this opportunity to thank everybody I have worked with and met
during the period of my Ph.D. journey. Without the help from them, this thesis would
not come true.

First, I want to thank my promoter, professor Peter Sloot, for bringing me into the
exciting field of interactive simulation and high performance computing, and for offe-
ring me opportunity to work in his group. Not only the knowledge in modelling and
simulation, but also the open mind and critical attitude in science, Peter taught me
many things, which I think will be invaluable wealth for my future life. Thanks Peter
for all your support.

Without the enormous amount of help from my co-promoter, dr. Dick van Albada,
the thesis would not look like this and at least I would have spent much longer time
in wandering around the subject. Thanks Dick, for the patience you always had for
me during the discussions, and also for the time you spent checking my thesis and
preparing a Dutch summary.

Of course I will not forget how my life started in Amsterdam, that was in a cold rai-
ning evening, the airplane was delayed, and my luggage was lost. It was Alfons who
picked me up in that middle night from the airport and settled me down. Thanks
Alfons, also for the help you gave me during my first year in the SCS group.

I want to acknowledge many people for their help when I was working on the subject
of Virtual Reality and Scientific Visualisation, although I have latterly shifted a lot
from there. Piet Kommers, my former supervisor in University of Twente, invited
me as a visiting scholar to work with him for the project of Virtual Reality and dis-
tance education. This opportunity turns a new page of my life in the Netherlands.
Thanks Piet for all your help. In SCS group, I learned a lot from dr. Jaap Kaandorp
about Scientific Visualisation and enjoyed in assisting him for giving courses. I am
grateful to Robert Belleman for all the help of VR related techniques and for valu-
able suggestions on my research. More importantly, without him, I would not get
chance to access some nice software (you knows what I mean, Rob). Thanks Elena for
nice discussions on human computer interaction. Thanks Dmitry, Vladimir and other
Russian colleagues helped me in some experiments in CAVE for studying human be-
haviour. In particular, I would like to thank Dennis for customising his desktop VRE

150 Acknowledgments

program for my thesis experiments and Roman for measuring the performance of his
NT software and for allowing me to use it in my paper.

I am grateful to all co-authors of my publication and their pleasant co-operation, in
particular Alfredo and Katarzyna.

I would like to thank other members (past and present) of the SCS group as well. As
the most stable user of room 219, I have sit in that office for more than 5 years. I
really enjoyed the atmosphere of multi culture from all present and former officema-
tes: Artoli is from Sudan, Judhi is from Indonesia, David is from Holland, Tomasz is
from Poland, Jordi is from Spain, Yves is from Cameroon and Maxim is from Russia.
SCS is a group whose members often work on substantially different subjects, for
instance, Michael, Alessia, Evghenii and Mark work on Astronomy, Michael works on
medical applications, Kamil works on discrete event simulation, Lilit works on flow
simulation and Jiangjun works on biological simulation; however, we can always be
perfectly glued by the cosy air of lunch chatting. Although Roeland, Piero, Martin,
Benno, Arjen and Edwin left this group, and Lera does not physically work here so
often, I will certainly not forget them. Specially, thanks Zeger for helping me to move.
Thanks other colleagues Breanndán, Walter, Simon, Drona, Berry and Bas for help. I
wish you all the best, and good luck with your work and research.

I also received help from friends from the other groups. I am grateful to Huang
Zhisheng, an expert in artificial intelligence, for giving me critical and very helpful
comments on my Prolog programming and on my understanding on agent technolo-
gies. And I appreciate all types of help received from Alban, Ersin and Frank.

I want to express my sincerely appreciation to the members of my reading committee
for their invaluable comments and help on improving the quality of the manuscript:
Maarten Boasson, Frances Brazier, Chengzheng Sun, Zhiwei Xu, Hamideh Afsarma-
nesh and Marian Bubak.

Of course, I will not forget the help from the people at the secretariat, system support
group, personnel and financial department and the library: Erik, Coco, Marianne,
Virginie, Saskia, Jacqueline, Frans, Heleen and many others.

The Chinese community constitutes an important part of my social life. I am grateful
to Mrs Xue Hanqing, I always learn lots of educational things from her about how to
live and work abroad. I get appreciated support from Mr. Tong Guangwu, Mr. Dong
Huiqing and Mr. Wu Liansheng for organising the social events for Chinese students.
Dai Jiapei, Mang Rui, Yang Xiaoxian, Ni Yongfeng, Wang Chao, Wu Wenhua, Hu
Xiaofeng, He Qiong, Huo Ran, Zhou Yinwei, Li Ting, Wang Jing, Pang Jun, Qiu Hua-
ning, Qing Fang, Qiu Guangzhong, Wang Jinhua, Cui Jiajia and many others friends
gave me great support when I run the Chinese student association. Thanks all of you!

151

I am grateful to Renate and Petra for their help during my stay in their house, thanks
for giving me the feeling of a family. Thanks Zilei for designing the cover of the thesis.
And thanks Emmy, Angélique and Pauline for the help when receiving Chinese CCTV
crew, and Fris and Rena for helping the photo competition of the student community.

When in hard time of my life, my parents Zhao Jun and He Fengbao, and my parents
in law Xu Fukang and Zhang Hongping always support and encourage me and let
me feel I am the best. My wife, Yan, quitted her job and joined my life in Holland;
without her help, I will not possibly manage all the things of the thesis. I appreciate
all the support from Gu Jingliang, Zhao Chunlan, Xuan Xiaofeng and Zhao Zhihua. I
really miss Xuan Yi and Gu Xian.

Thanks many other friends who have not been listed.

Zhiming Zhao
Amsterdam, October 23, 2004

