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Abstract

The complex nature of blood flow in the human arterial system is still gaining more attention, as it has become clear that

cardiovascular diseases localize in regions of complex geometry and complex flow fields. In this article, we demonstrate that the

lattice Boltzmann method can serve as a mesoscopic computational hemodynamic solver. We argue that it may have benefits over

the traditional Navier–Stokes techniques. The accuracy of the method is tested by studying time-dependent systolic flow in a 3D

straight rigid tube at typical hemodynamic Reynolds and Womersley numbers as an unsteady flow benchmark. Simulation results of

steady and unsteady flow in a model of the human aortic bifurcation reconstructed from magnetic resonance angiography, are

presented as a typical hemodynamic application.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow characteristics near branches and bifurcations
are quite important in hemodynamics: Cardiovascular
diseases are considered as a leading cause of death in the
developed world and are now becoming more prevalent
in developing countries (World Health Organization,
2002). Most of these diseases localize in regions of
complex geometry of the arterial tree. The flow fields
and shear stress play important roles in understanding,
diagnosis and treatment of such diseases. Although
being studied by many authors (e.g. Womersley, 1955;
McDonald, 1974; Caro et al., 1978; Ku et al., 1985;
Moore et al., 1994a, b; Moore and Ku, 1994a; Reneman
e front matter r 2005 Elsevier Ltd. All rights reserved.
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et al., 1993; Taylor et al., 1996; Gijsen et al., 1997; Vorp
et al., 1998; Wootton and Ku, 1999), the relation
between flow fields and cardiovascular diseases is still
not fully understood, and is currently receiving more
and more attention (Botnar et al., 2000; Berthier et al.,
2002; Cheng et al., 2002).

There have been many reports relating low and
oscillatory shear stress to atherosclerosis in large
arteries. For a recent review, we refer to Shaaban and
Duerinckx (2000). Frequently, the treatment of an
arterial disease involves implanting a new host artery
as an additional or a replacement to the diseased one, or
design of a cardiovascular device. These are quite
difficult to plan and have to be tailor made for each
specific patient.

Recently, two major developments in the field of
vascular surgery planning have made it possible to
better and faster plan risk reduced implantation: Firstly,
magnetic resonance imaging angiography (MRA) has
been significantly enhanced to provide excellent images
of the arterial tree and non-invasive dynamic data
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acquisition is made possible (Goyen et al., 2001).
Secondly, the development of cheap computing power
and interactive simulation environments have made near
real time simulations come within reach (Taylor et al.,
1999; Belleman and Sloot, 2000; Zhao et al., 2002). With
these in hand, an efficient and robust flow solver can be
used as an interactive modeling environment. There are
various successful computational fluid dynamics (CFD)
methods commonly used here, such as the finite-element
methods, the finite difference methods and the finite
volume methods. All these techniques are well estab-
lished, but they yield three major difficulties (Taylor et
al., 1998): the non-trivial and time consuming grid
generation, the necessity to solve the Poisson equation
for the pressure field, and the approximations involved
in computing the shear stress from computed velocity
fields.

On the other hand, the conventional flow solvers such
as the finite-element methods and the finite difference
methods are accurate and efficient. However, their
applicability to problems involving complex and moving
geometry is complicated, due to their strong dependence
on time consuming mesh generation. The Navier–Stokes
(NS) equations can now be solved with mesh-free
algorithms (Batina, 1993) which are unfortunately
not flexible enough due to errors attributed to
numerical viscosity and to difficulty in improving the
space and time accuracy. Dynamic mesh generating
techniques have been reported recently (Taylor et al.,
1998).

New particle-based methods such as dissipative
particle dynamics, lattice gases and lattice Boltzmann
methods have been developed and matured (Mcnamara
and Zanetti, 1988; Higuera and Succi, 1989; Qian et al.,
1992; Aharonov and Rothman, 1993; Behrend, 1995).
These mesoscopic techniques may be quite useful for
hemodynamic research, as, among other features, they
are more flexible in dealing with multicomponent fluid
flow problems, require simple regular meshes, and are
less sensitive to computational complexity in compli-
cated geometry. In this study, we use the lattice
Boltzmann BGK method, shortly described in the next
section.

Since the shear rate in the aorta is higher than 0:1 s�1;
we consider blood to be Newtonian. We also ignore the
elastic behavior of the aortic walls for its minor effects
on the flow fields in the aorta. It is well known that due
to the pulsatile behavior of blood flow and the elasticity
of the arteries, the diameter of the larger arteries may
vary 5–10% during a systolic cycle (e.g. Taylor et al.,
1998). However, in typical hemodynamic simulations
the computational mesh is obtained from magnetic
resonance imaging of real arteries. Such images typically
have errors in the position of the artery lumen of 1–8%
(Moore et al., 1998). Therefore, given this accuracy, the
influence of elasticity of the wall can be considered a
secondary effect, which we did not include in our
simulations. However, we have been working on elastic
walls in our simulations, and first results, validating
lattice Boltzmann BGK method with including wall
elasticity were obtained (Hoekstra et al., 2004).
2. Numerical method

The numerical method used in this study is based on
the lattice Boltzmann method, a newly adapted meso-
scopic Eulerian solver. It is a discretization of the
Boltzmann equation that describes the evolution of
particles in kinetic theory. Due to its simple implemen-
tation, straightforward parallelization and easy grid
generation, the capability of the lattice Boltzmann
method has been demonstrated in various complex
applications including Newtonian blood flow simula-
tions (Krafczyk et al., 1998; Artoli et al., 2002), non-
Newtonian and suspension flows (e.g. Ladd, 1994), and
complex geometry (e.g. Kandhai et al., 1999). As time-
dependent flow simulations are known to be computa-
tionally expensive, a need for an efficient flow solver is
crucial. Traditional NS solvers frequently use artificial
compressibility and pressure projection methods to
accelerate convergence. In this study, we present the
capability of the lattice Boltzmann BGK method as a
robust technique for systolic Newtonian flow in a 3D
rigid tube and in a complex model of the human
abdominal aorta reconstructed from MRA images of a
volunteer.

Different from the traditional CFD methods which
obtain the velocity and pressure by solving the NS
equations and compute the shear stress from the velocity
profiles, the lattice Boltzmann BGK method utilizes a
special finite difference equation of the simplified
Boltzmann BGK equation which describes transport
phenomena at the mesoscopic level. It is useful to
shortly introduce the method and highlight its capabil-
ities to encourage researchers in hemodynamics to
consider it as an alternative approach for complex flow
problems. Detailed descriptions of the method and
demonstrations of its capability have been presented in
literature as cited above.

The dynamics of the fluid is modeled by the transport
of simple fictitious particles on the nodes of a Cartesian
grid and is based on two steps; streaming to the
neighboring nodes and colliding with local node
populations represented by the probability f i of a
particle moving with a velocity ei per unit time-step dt:
Populations are relaxed towards their equilibrium states
during a collision process. The equilibrium distribution
function

f
ð0Þ
i ¼ wir 1þ

3

v2
ei � uþ

9

2v4
ðei � uÞ

2
�

3

2v2
u � u

� �
(1)
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is a low Mach number approximation to the expansion
of the Maxwellian distribution. Here, wi is a weighting
factor, v ¼ dx=dt is the lattice speed, and dx and dt are
the lattice spacing and the time-step, respectively. The
values of the weighting factor and the discrete velocities
depend on the used lattice Boltzmann model and can be
found in literature (e.g. Chopard and Droz, 1998; Succi,
2001). The lattice Boltzmann BGK equation

f iðxþ eidt; ei; tþ dtÞ � f iðx; ei; tÞ ¼ O (2)

can be obtained by discretizing the evolution equation
of the distribution functions in the velocity space using a
finite set of velocities ei: In this equation, O ¼
�ð1=tÞ½f iðx; ei; tÞ � f

ð0Þ
i ðx; ei; tÞ� is the so-called BGK

collision term and t is a dimensionless relaxation time.
The hydrodynamic density, r; and the macroscopic
velocity, u; are determined in terms of particle distribu-
tion functions using the laws of conservation of mass
and momentum:

r ¼
X

i

f i ¼
X

i

f
ðeqÞ
i and

ru ¼
X

i

eif i ¼
X

i

eif
ðeqÞ
i .

By Taylor expansion of the lattice Boltzmann BGK
equation up to Oðdt2Þ and application of the multi-scale
Chapman–Enskog technique through expansion of f i

about f
ð0Þ
i ; we can derive the NS equations and the

momentum flux tensor up to second order in the
Knudsen number. The pressure is simply given by p ¼

rc2s and the kinematic viscosity is n ¼ c2sdtðt� 1
2
Þ; where

cs is the speed of sound. Different lattice BGK models
differ in the choice of the distribution functions, the
number of moving particles and the speed of sound
inside the system. In our study, we use the three-
dimensional 19 particles (D3Q19) model which has a
rest particle, six particles along the principal directions
and 12 particles along the diagonals.

Within the lattice Boltzmann community, it has been
acknowledged that solving the lattice Boltzmann equa-
tion has three main advantages over solving the NS
equations: First, it works with fast and easy to generate
Cartesian grids while still yield accurate results of
second order in space and time. Secondly, the pressure
is simply a linear function in the speed of sound
(p ¼ rc2s ) while the NS solvers need to solve the Poisson
equation. Finally and most important for the field of
hemodynamics, is that the stress tensor can be directly
obtained from the non-equilibrium parts of the dis-
tribution functions f

ð1Þ
i through the following relation

(Ladd, 1994; Artoli et al., 2002)

sab ¼ �rc2sdab � 1�
1

2t

� �X
i¼0

f
ð1Þ
i eiaeib (3)

which gives ab-component of the stress tensor. Here, dab
denotes the unit tensor, eia and eib are the relevant lattice
speeds. Eq. (3) gives the stress tensor independent of the
velocity fields, whereas a need to get the derivative of
obtained velocity profiles is not avoidable when NS
solvers are used. The non-equilibrium parts of the
distribution functions are computed during collision
steps to relax the system towards equilibrium. There-
fore, Eq. (3) does not involve considerable computa-
tional cost. All these advantages make the lattice
Boltzmann method a promising candidate for simulat-
ing time-dependent blood flow in arteries.

The lattice Boltzmann method can easily be adapted
to simulate time-dependent flows such as the flow driven
by a cardiac pressure cycle in a tube (Artoli et al., 2002).
Since it is a linear function in the pressure, time-
dependent density gradients can easily be implemented
to represent a systolic flow rate. A range of values of the
Womersley parameter can be simulated without affect-
ing the stability of the model. All kinds of inlet and
outlet boundary conditions, usually applied in computa-
tional hemodynamics, can equivalently be implemented.
The robustness of the method appears in the straight-
forward parallelization of the easy to generate Cartesian
grid. On the other hand, since it is implemented on a
Cartesian grid, very fine grids need to be generated to
simulate flow in complex geometry. Filippova and
Hänel (1998) have overcome this problem by consider-
ing local grid refinement.
3. Simulations

3.1. Systolic flow in a tube

The aim of this benchmark is to investigate the
accuracy of the lattice Boltzmann BGK method in
modeling applications related to hemodynamics and
biomedical Engineering.

We have conducted a number of 3D simulations of a
systolic flow in a rigid tube. The diameter of the tube D

is represented by 40 lattice nodes and the tube length is
L ¼ 80 lattice nodes. Oscillatory components of the
pressure gradient derived from the pressure wave
(shown at the bottom of Fig. 1) are used to drive the
flow. The Reynolds number is defined in terms of the
maximum velocity U as Re ¼ UD=n and the Womersley
number is defined as a ¼ nR

ffiffiffiffiffiffiffiffi
o=n

p
; where o ¼ 2p=T is

the angular frequency, T being the time for one
complete heart pulse (the period).

Simulation parameters are tuned to have a Womersley
number equal to 16 and an average Reynolds number of
590, typical values in the abdominal aorta during resting
conditions (Moore and Ku, 1994a). Simulations were
performed on 4 nodes of a parallel computer (a Beowulf
cluster containing 750MHz AMD Athlon nodes with
512MB RAM memory). The time per iteration is about
0.2 s and the total simulation time is 24min.
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Fig. 1. Oscillatory components of velocity profiles (upper row) and shear stress (middle row) in lattice units at different incidents of the cardiac cycle

(bottom): near the end of the isovolumetric contraction (left column), during rapid ejection (middle) and reduced ejection (right) for the 3D tube

benchmark. The Reynolds number is 590 and the Womersley parameter is 16. The dots are simulation results and the solid lines are the Womersley

solutions.
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The data show excellent agreement with the analytical
solutions for the velocity and the shear stress through-
out the whole cardiac cycle. Fig. 1 shows some examples
of the obtained oscillatory components of velocity and
shear stress profiles near the end of the isovolumetric
contraction and during rapid ejection. Similar agree-
ment has been observed throughout the cycle. The
maximum error in velocity and shear stress is less than
1% and can even be reduced if the grid is refined and the
Mach number is reduced. However, for engineering
purposes, this error is quite acceptable, since the
anatomy of the arteries already has a comparable
uncertainty in the wall positions (Moore et al., 1998).
All values are presented in lattice units. To convert to
physical dimensions, the time-step and the lattice
spacing have to be computed for a given geometry and
the viscosity of the blood. The velocity has to be
multiplied by dx=dt and the stress has to be converted to
the used pressure units.

We have conducted several experiments in a range of
Womersley and Reynolds numbers commonly observed
in the human carotid, coronary arteries and arterioles,
and obtained similar agreements as those shown in Fig.
1. Therefore, the lattice Boltzmann method is accurate
enough to reproduce the analytical Womersley solution.
This motivates us towards having a more realistic model
from the arterial tree.

3.2. Flow in the abdominal aorta

Atherosclerosis mainly occurs in focused locations of
large and medium arteries such as the carotid bifurca-
tion, the coronary arteries, the abdominal aorta and the
iliac and femoral arteries at regions of low and
oscillating shear stress, independent of other risk factors
(Shaaban and Duerinckx, 2000). In the human abdom-
inal aorta, the lateral and posterior walls of the aorta
distal to the inferior mesentric artery (IMA) are highly
susceptible to atherosclerosis. These regions are known
to have low and oscillating shear stress (Gibson et al.,
1993; Oshinski et al., 1995; Taylor et al., 1998).

From the arguments raised above and the conducted
benchmark experiments, we are further encouraged to
explore the capability of the lattice Boltzmann method
in simulating a more realistic geometry of interest to
Biomechanics. We choose to study flow in a model of
the human abdominal aorta as an example. The model is
reconstructed from magnetic resonance angiography of
a volunteer. The pressure gradient at the entrance of the
aorta is averaged from flow rate obtained from literature
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(Moore et al., 1994a; Taylor et al., 1999). The
computational model under study involves only the
bifurcation region, directly after the IMA, and includes
parts of the left and right iliac arteries (see Fig. 2). The
complete model of the abdominal aorta, including the
celiac, mesenteric and renal branches, and the femoral
artery, is currently under study.

Many studies on the flow in the abdominal aorta have
been reported, all relating the cause of the disease
mainly to the complex nature of the shear stress profiles
in these regions. Moore et al. (1994a) computed the
shear stress in a model of the human abdominal aorta
under resting and exercise conditions from MRA
measured velocity data and extracted six shear stress
indices that induce atherosclerosis: mean (over the
cardiac cycle), maximum and minimum, pulse
ðmaximum�minimumÞ; negative index, NEG (frac-
tional time during which the shear stress stays negative)
and oscillatory shear stress index (OSI). Reneman et al.
(1993) used experimental and computational models to
study flow in bifurcation regions. Gijsen et al. (1997)
suggested a new experimental technique to determine
the wall shear stress in vivo. Vorp et al. (1998) used a
coupled fluid structure interaction model to combine the
influence of mechanical stress and wall shear stress and
concluded that the arterial diseases are most probably
localized in regions of high mechanical stress and low
wall shear stress. However, the mechanical stress within
the wall cannot easily be extracted unless further
development in imaging techniques and image segmen-
tation algorithms are achieved. In this study, we use
Fig. 2. An MRA reconstructed model of the aortic bifurcation with

left and right iliacs. The right iliac is more bended than the left one.

The computational grid size is 164,761 nodes.
Eq. (3) to compute the nine components of the
symmetric stress tensor, i.e. sab which represents the
stress component in the b-direction acting on the
element with outward normal in the a-direction. Since
the components of any second-order tensor can be
reduced to an eigenvalue problem, it is possible to
transform the second-order stress tensor into an
eigenvalue problem and extract the principal stresses
l1; l2 and l3 with their eigenvectors. These can be
visualized as a quadric surface (elliptical glyphs), but in
biomechanics, the traction forces, shear stress and the
von Mises effective stress are commonly used. The
traction forces are orientation dependent and need the
surface normals. However, the von Mises effective
stress, usually available in visualization packages, is
computed from the second invariant of the stress tensor
(see the next section) and is more suitable for Cartesian
grids than the surface tractions, as the Cartesian grids
introduce additional approximations when computing
surface normals. The von Mises stress is commonly used
in biomechanics to determine the effective stress (e.g..
Raghavan and Vorp, 2000). In this study, we will focus
on the time-behavior of the effective von Mises stress.

For our simulations, a smoothed MRA image was
provided by Charles Taylor, Stanford University, USA,
with original resolution of 512� 512� 64 voxels, each
voxel occupies 1 byte. The spacing between each two
successive recorded cut planes is 0.9375mm. An image
segmentation algorithm is applied to the original data
set to extract the aorta and the segmented aorta is then
cropped and filtered to end up with the simulation
model shown in Fig. 2.

It is worth noting that there is a limitation on
obtaining high-resolution images for the arterial system.
To have a stable solution in the lattice Boltzmann
method, the relaxation time t must be larger than 0:5 in
order to have a positive fluid viscosity. Having a
Reynolds number Re within a diameter nD; n being
the spatial resolution of the image, for a fluid of blood
viscosity, will result in a relaxation time of 0:5þ
0:3nD=Re: Therefore, the stability scales linearly with
the spatial resolution.

We have conducted a number of steady and unsteady
flow simulations for the aorta model. As the cross
section of each slice is irregular, the Reynolds number is
redefined as Re ¼ 4mU=n ¼ 4Q=nP and the Womersley
number is defined as a ¼ 2m

ffiffiffiffiffiffiffiffi
o=n

p
; where m is the mean

hydraulic depth which is the ratio between the vascular
bed A and the perimeter P. Fig. 3 shows changes in the
Reynolds and the Womersley numbers downstream of
the aortic model under resting and exercise conditions,
assuming a flow rate of 0.8 l/min with 65 beats/min
under resting and 5.36 l/min with 130 beats/min for
exercise conditions (Moore and Ku, 1994b).

The steady flow simulations are performed to assess
the steady flow behavior and to check the validity of the
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Fig. 3. Change in Womersley parameter (left) and Reynolds number (right) along the segmented aorta during resting and exercise conditions.

Fig. 4. Steady flow in the aortic bifurcation. The maximum Reynolds

number is 1500.
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used inlet and outlet conditions. We have used the
bounce-back rule as a wall boundary condition. For the
inlet, we use an assigned inlet pressure to compute the
inlet velocity (Zou and He, 1997) and assign equilibrium
values for unknown distributions. The outlet conditions
are assigned accordingly with an outlet pressure. The
maximum Reynolds number is 1500. A velocity snap-
shot of steady flow is shown in Fig. 4, from which we
observe that the bended branch of the aorta (the right
iliac in this case) has less entrance velocity than the less
curved one (the left iliac). The velocity gradients before
the bifurcation are smaller near to the right lateral wall
than those on the left lateral wall and the shear stress is
expected to be smaller. Also, the posterior wall receives
less velocity than the anterior wall and a similar
conclusion may be drawn. However, the unsteady
nature of the locality of low shear stress may be
different as will be explained later.

For the unsteady flow simulations, an aortic pressure
waveform is applied at the entrance of the aortic model.
Velocities are then computed from the distribution
functions coming from downstream, and the unknown
distributions are set to their equilibriums. At the two
outlets, constant pressure is applied. The total simula-
tion time is 2 h on a single processor and reduces to
40min when using 4 nodes. We assume that the system
has converged after the change in conserved quantities
(mass and momentum) is less than 2� 10�5%: This
results in an error that is less than 1% when simulating
rigid circular tubes, as claimed in the previous section.
At least 40 complete periods are needed to converge to
the simulation criterion. Although it seems longer than
the required periods when using a finite element solver,
the total simulation time per period is far less (Taylor et
al., 1998). On a single processor, a period represented by
240 time-steps takes approximately 3min. Flow fields
and shear stress are recorded during the last cycle as
separate frames for each time-step. The phase of the full
cardiac cycle (360�) is split into a number of frames
(vertical lines in Fig. 5) and each frame is named after
the corresponding phase angle. Vector magnitudes of
velocity profiles at 10 frames are visualized in Fig. 5.

At the beginning of systole (frame 0), the flow through
the bifurcation is relatively simple, except for a very
small velocity of maximum magnitude 5.0 cm/s near to
the walls of the main branch (see Fig. 6). As the flow is
increased (frames 36 and 72), the velocity increases
rapidly in the main branch and slowly in the iliacs. The
left iliac receives more flow than the right one (see the
change in the red dot on top of the branch).
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The flow then relaxes towards the end of systole
(frame 108). After that, it becomes more complex,
especially in the main branch (see frames 144 and 180),
involving two conjugate vortices and flow mixing. This
is clearly illustrated by streamlines shown in Fig. 7. It is
worth noting that, although the flow reverses in the
main branch during this period, the flow at the exits is
forward on average. This demonstrates the function of
the aorta as a reservoir that provides blood to the
organs when the flow reverses. The second half of the
cardiac cycle represents the diastole (frames 216–324)
during which the flow oscillates till it reaches the
beginning of systole where frame 0 is repeated.

Velocity magnitudes near the posterior wall are
approximately the same as those close to the anterior
wall, as shown by the symmetry in color. Throughout
most of the cardiac cycle, the flow is slightly skewed
toward the anterior wall (Fig. 5).

Close to the bifurcation, the flow becomes quite
complex. At about 15mm proximal to the bifurcation,
the flow reverses near the walls during most of the
cardiac cycle. It was reported that the walls proximal to
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Fig. 6. Negative velocity profiles during the systole are frequently

observed close to the aortic bifurcation. The figure shows two

snapshots of the velocity, 2.0 cm proximal to the bifurcation.

Fig. 7. Velocity streamlines showing: (a) vortex formation during the

diastole (at t ¼ 0:4T) and (b) flow mixing (at t ¼ 0:5T).
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the aorta are frequently subjected to occlusive
atherosclerosis, although this region does not involve
bifurcation or area expansion which are two major
factors that complicate the flow pattern (Moore and Ku,
1994a). The locality of atherosclerosis in this straight
segment is attributed to the low and oscillatory near wall
velocity profiles, which may result in mass transfer from
blood to the walls (Moore and Ku, 1994a; Taylor et al.,
1996).

After the bifurcation, the flow is laminar. The left iliac
receives more flow during the systole. In order to have a
clearer picture about the flow, streamlines are plotted
for the whole cardiac cycle. Except for periods of back
flow, the streamlines are in general uniform and show
forward direction of the flow (data not shown). Vortex
rings set up during flow reversal at the end of systole (see
Fig. 7), but they progressively damp out when the flow is
re-established. These vortices form a trap for fluid
elements and disturb the flow across the whole vessel.
The reason for formation of vortices may be attributed
to the rapid flow reversal and the damp-out may be
forced by the inherent stability of the flow. Some of
these observations have been previously reported by
Moore and Ku (1994a) in their extensive experimental
MRA velocity measurements of a glass blown idealized
model of the abdominal aorta and by Taylor et al.
(1996) who observed large vortex development along the
wall of the abdominal aorta. They claimed that this
vortex shrinks considerably under moderate exercise
condition. It is worth noting that although the models
investigated by Moore and Ku (1994a) and by Taylor et
al. (1996) are idealized, similar qualitative results could
be observed.

3.3. Shear stress

Shear stress for a Newtonian fluid is conventionally
estimated from gradients of measured or simulated
velocity components, and the fluid viscosity. This
process involves some approximations which may lead
to underestimation on the order of 10–45% (Luo et al.,
1993) when the lumen is not circular. This large error is
due to the nonlinear velocity profile at the wall and
ignorance of the radial derivatives. Enhancement was
recently reported by Cheng et al. (2002) by introducing
piecewise Lagrangian basis functions and segmenting
the vessel lumen with a level set method.

With the LBM, the nine Cartesian components
of the local stress tensor are directly obtained using
Eq. (3), as stated above without any further approxima-
tion than the Cartesian geometry. The stress at any
given point is completely determined by this stress
tensor. A real benefit of the lattice Boltzmann
solver is that these components are computed indepen-
dent from velocity gradients. In this study, we compute
and visualize the von Mises effective stress (Geiringer,
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Fig. 8. Effective stress on the walls of the aortic bifurcation computed at every 36� of the cardiac cycle. The posterior wall has low values throughout

the whole systolic cycle, while relatively high values of the stress near the curved exits are observed.
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1953), defined as

seff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 6B

2

r
, (4)

where

A ¼ ðsxx � syyÞ
2
þ ðsyy � szzÞ

2
þ ðszz � sxxÞ

2 (5)

and

B ¼ s2xy þ s2yz þ s2zx. (6)

This quantity is one of the three invariants of the
stress tensor and therefore, is orientation independent.
In addition, it includes the effect of small directional
variations in the octahedral normal stress (the mean
pressure) on the walls. The quantity B vanishes in the
principal coordinate system.

The effective stress in dynes=cm2 is shown in Fig. 8,
from which we observe that the effective stress at the
posterior and lateral walls is always small (less than
40 dynes=cm2) throughout the cardiac cycle. The stress
is uniformly distributed along the lateral walls. The
minimum stress values are observed during the flow
reversal where the stress is very small through the whole
vessel. The stress is also oscillating in magnitude and the
stress vector oscillates rapidly. The high stress values
near the exits of the left iliac are attributed to the fact
that this branch is subject to a small curvature at these
locations. Effects of outlet conditions are minor and are
hardly seen. The stress behavior during the systole is
described below. Let us first describe the stress behavior
in the main branch. At the beginning of systole (frame
0), the shear stress is small (less than 20 dynes=cm2) and
is least around the walls, with the posterior and right
lateral walls having minimum values close to zero. The
lateral walls of the left iliac have higher shear stress than
the lateral walls for the right iliac, as predicted by the
steady flow simulations. The shear stress increases close
to the walls as the systolic pressure is increased (frame
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36) a strip-like island of zero shear stress splits the
region just before the bifurcation into a left and right
regions, with the left region having higher stress than the
right one. The left anterior walls receive more stress
(frame 72) of magnitude greater than 60 dynes=cm2:
Then the walls around the main are released from
regions of minimum stress (frame 108), with the
posterior walls released first while the anterior walls
are not (frame 144). When the systole ends and the
diastole begins (frame 180), the shear stress becomes
again very small at regions far from the bifurcation, with
small islands in the center with minimum shear stress.
The stress on the anterior lateral walls then increases,
except for a small island in the middle of posterior wall,
just before the bifurcation (frame 216). The shear stress
comes again to its minimum on the centers and at the
distal posterior walls (frame 252), with maximum
shear stress (40 dynes=cm2) on the walls. Then it gets
smaller again, except near the left anterior walls
(frame 288). Near the end of the cardiac cycle (frame
324), the shear stress is low around the walls and on
islands close to the bifurcation, spreading from left
posterior to right anterior and covering the right
anterior sides. The left anterior walls has clearly larger
shear stress than the right side. At the end of the cycle,
frame 0 is repeated. In summary, the posterior wall
receives stresses greater than 60 dynes=cm2 during one-
third of the cycle, less than 5 dynes=cm2 during another
third and between 20 and 40 dynes=cm2 during the rest
of the cycle. The shear stress after the bifurcation is
higher in magnitude than the main branch, except for
some islands and edges.

At the beginning of systole (frame 0), the regions
directly after the bifurcation have minimum shear stress
in an island on the right iliac spreading toward the right
lateral and posterior walls, while the left iliac has higher
magnitudes on the outer walls and minimum values on
the inner walls. The bend near the exit makes the shear
stress highest at these locations (4150 dynes=cm2). The
stress is also maximum in the center of the exit of left
iliac artery and one-third from the exit of the right iliac.
The inner walls of the right iliac receives minimum shear
stress. The near-end (after the bend) outer walls receive
minimum shear stress. In summary, at the beginning of
systole, the inner walls have less stress than the outer
ones and the right iliac artery has less shear stress than
the left one.

As the systole develops, the stress first goes higher
towards the bifurcation (frame 36), but remains
minimum for some islands on the right iliac: close to
the bifurcation and near the inner posterior walls
(frame 72). Near the exits, the stress at the
anterior walls of the left iliac becomes minimum
at the bend (frame 108), and gets less for the
inner walls. The islands in the right iliac are
shifted towards the posterior inner walls (frames 144
and 180) till they are accompanied by high stress
islands spreading toward the outer and anterior
walls of both iliacs (frame 216). The stress reaches its
maximum directly after the beginning of diastole (frame
252) and oscillates around lesser values (frames 288 and
324) till the systole begins again (frame 0).

From this description, we see that the effective von
Mises stress is minimum close to the lateral and
posterior walls of the abdominal aorta segment before
the bifurcation, at the inner walls of the iliacs, and at
islands in the right iliac artery, and is maximum at
anterior walls, outer walls of the iliacs and at islands on
both iliacs. Comparable results have been obtained in
the literature (e.g. Raghavan and Vorp, 2000; Moore
et al., 1994b; Taylor et al., 1996) leading to similar
conclusions about the relationship between localization
of cardiovascular diseases and the complex nature of
stress. In this study, we did not measure the oscillatory
shear index, although it is known to have an influence
on the locality of cardiovascular diseases. This will be
addressed in future work where the full abdominal aorta
will be studied.
4. Summary

We have demonstrated that the lattice Boltzmann
method is a successful mesoscopic solver to time-
dependent blood flow in an arterial system. Simulated
results of systolic flow in a 3D rigid tube at hemody-
namic Reynolds and Womersley parameters have
recovered the analytic Womersley solutions within
acceptable accuracy. Steady and unsteady flow fields in
a realistic aorta geometry, reconstructed from magnetic
resonance angiography have been successfully obtained
and compared to the available literature, showing
qualitative agreements. As the shear stress plays a
crucial role in cardiovascular diseases and since it is
directly and independently computed in the lattice
Boltzmann solver, we strongly encourage researchers
from hemodynamics to consider this method as an
alternative blood flow solver. More benefits are seen
from easy grid generation and straightforward paralle-
lism, easy and feasible adaptation to changing geometry.
Further investigation of the complete aorta model and
experimental validations are under development in our
group.
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