
COMMISSION OF THE EUROPEAN COMMUNITIES

****************

ESPRIT III

PROJECT NB 6756

****************

CAMAS
COMPUTER AIDED MIGRATION OF APPLICATIONS

SYSTEM

****************

CAMAS-TR-2.1.2.1

BLAS Progress Report

****************

Date : SEPTEMBER 1993

Rev. 1.0

ACE - U. of AMSTERDAM - ESI SA -  ESI GmbH  - FEGS - PARSYTEC
-

 U. of SOUTHAMPTON.



Technical Report CAMAS TR 2.1.2.1

BLAS

M. Bergman and P.M.A. Sloot
University of Amsterdam

September 1993

1. Introduction

Finite Element (FE) methods can be employed for a large range of applications; many prob-
lems in fields like material science, aerodynamics, high energy physics and engineering are
solved with FE methods. CAMAS concentrates on one class of applications: structural mechan-
ics. In particular the PAMCRASH program, a simulation of the crashworthiness of vehicles,
plays an important part within CAMAS. The program is an example of an application within the
structural mechanics that exploits a FE method.

FE methods can be divided into explicit and implicit methods [1, 2]. The type used in the
PAMCRASH code is an explicit method. With this type the time steps in the program should be
small in order to get reliable results. In each time step new results are obtained based on the
results of the previous time step. For this reason there is no need for a factorisation of a
stiffness matrix. Inherent to explicit methods is the fact that all intermediate results are
calculated. Obviously, this will affect efficiency as a large number of steps have to be
calculated. Implicit FE methods, on the other hand, allow larger time steps, so reducing the
number of steps to run a simulation. However, in each time step the stiffness matrix is involved
in the computation of intermediate results. In order to compute the intermediate results a system
of equations of the form Ax = b, with A the stiffness matrix, has to be solved. It is this kind of
additional numerical problems that is addressed by the Basic Linear Algebra Subprograms
(BLAS). In this particular application an implicit FE method benefits the efficiency of the
program. For many other applications in steady state physics there is no need for small time
steps. For these, implicit FE methods will be preferable to explicit methods.

One of the goals of the CAMAS project is to give a prediction of the performance of a
program that is to be parallelised for various platforms. The workbench that is under
development in the project comprises a set of tools that can be used to predict the performance
of a program on an existing or virtual parallel machine. Two of these tools are SAD and
PARASOL. The SAD tool gives an abstract time complexity description of the program. In
general this description will contain elements that can be expressed in terms of a number of
(system) parameters and elements that cannot be determined a priori. In SAD the latter are
formulated in terms of probabilities and stochastic variables. The aim of PARASOL is to isolate
a number of machine parameters, such as communication, processor and cache parameters, that
can be used in combination with the results of SAD. Depending on the input parameters a
prediction for the performance of the program will be given.

In this paper the time complexity of the algorithm, that will be used for the parallel solver of



the system of equations, will be the central issue. This solver will turn out to be the most critical
part of implicit FE methods. As the time complexity of the solver will be completely
determinable, it is well-suited for validating the results as obtained from SAD and PARASOL.
This design strategy of comparing predicted results with results that are obtained from a
complex but completely determined problem can also be found in [3].

The rest of this paper is organised as follows. In the next section a brief description of FE
methods will be given, followed by an inventory of linear solvers that can be exploited for these
methods. After the selection of a linear solver the chosen solver will be explained in detail in
section 3. In section 4 parallelisation methods for the solver will be discussed and an initial
description of the time complexity of the algorithm wil be formulated.

2. FE methods and linear solvers

Typical FE programs consist of four independent modules [4]: 1) a pre-processing step
including the generation of the element stiffness matrices and force vectors; 2) Assembly of the
global system of equations given as Ax = b, where A is the stiffness matrix, b is the known
force vector and x is the unknown vector of displacements; 3) solution of the global system for
the nodal point displacements; 4) a post-processing step which generally includes the
calculation of stress and strain quantities within each element.

The overall performance of a FE program is determined by the costs associated with each of
the steps. To illustrate that the most critical step is the third one, consider a general and regular
n x n mesh. When the nodal points are numbered from left to right starting at the lower left
corner, each point in the mesh can be uniquely identified with a number in the range from 1 to
n2. The stiffness matrix consists of the interactions between all points, i.e. the matrix element
kij describes the interaction of points i and j. In general, only the neighbouring nodal points are
of interest to determine the displacement of a particular point. With the above described
numbering the stiffness matrix will then be symmetrical and banded with a bandwidth n. The
order of the matrix equals the total number of mesh points n2. In figure 1 the upper triangle of
the stiffness matrix is shown, where N = n2 is the order of the matrix.
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Figure 1: stiffness matrix for a general n x n mesh

The computational costs for the generation of the stiffness matrix, the assembly of the global
system and the calculation of the element strains and stresses are all directly proportional to the
number of elements. Thus, for each of these steps the computational costs will be of order N.

The general system of linear equations Ax = b can be solved in many ways. When for
example Gaussian elimination is used, the cost for the factorisation of the matrix is proportional
to N2 and for the forward and backward substitution proportional to N N . Other linear solvers
will need in general even more computing effort to come to a solution. For these the cost of the



solution of the system might even be proportional to N3. This is also the case when the
numbering of the nodal points is not optimal and the stiffness matrix is not banded.

From the above it is clear that for an increasing number of grid points the cost of the solution
of the system of equations will dominate, even if the nodal points are numbered optimally. It is
for this reason that the choice and implementation of a linear solver is crucial.

To solve linear systems either direct or iterative methods can be employed. Direct methods,
such as Gaussian elimination, require in general O(N3) floating point operations to find a solu-
tion for a N x N matrix. Only for some special linear systems the number of floating point op-
erations can be reduced somehow. Another drawback of direct methods is that the complete
(factorised) matrix should be kept in memory. Iterative methods, on the other hand, require
only N2 floating point operations per iteration and do not need keeping the whole matrix in
memory. In figure 2 a number of properties of a direct method and several iterative methods are
listed [5].
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Figure 2: properties of several linear solvers

The stability of Gaussian elimination and Jacobi iteration is not very good. Round off errors
may have a great impact on the solution and will lead to incorrect results. Gauss-Seidel iteration
and the Conjugate Gradient method, on the other hand, are much more stable. The parallelisa-
tion of Jacobi and Gauss-Seidel iteration is straightforward and can be easily accomplished. For
the other two methods parallelisation is not trivial. The best convergence of the four listed linear
solvers is attained by the Conjugate Gradient method. For this method it can be proved that the
number of iterations to come to a solution is at most N. However, if the spectral radius and the
condition number of the system matrix satisfy some special criteria, the number of steps to find
an acceptable solution (i.e. a solution satisfying some accuracy criterion) will be much smaller
than N.

For many problems that are solved by means of FE methods the stiffness matrix will be very
large: values of N of order 104 or 105 are no exceptions. When the problem size is this large di-
rect methods to solve the linear system will fail for the above mentioned reasons. Therefore
iterative methods should be used instead. The reliability and the speed of convergence of the
Conjugate Gradient method are factors making this iterative method preferable to the others. In
the next section the Conjugate Gradient method will be discussed extensively.

3. The Conjugate Gradient method

The Conjugate Gradient method is a very powerful method for solving large systems of linear



equations. Usually the method is applied to systems with large sparse matrices, like the ones
arising from discretisations of partial differential equations. Formally spoken it is not correct to
speak of the  Conjugate Gradient method. Instead, a number of iterative solvers based on a
common principle are referred to as Conjugate Gradient methods. The original Conjugate
Gradient method of Hestenes and Stiefel [6] (the CGHS method in the taxonomy of Ashby [7])
is only valid for Hermitian positive definite (hpd) matrices. Although this method can be
applied directly to solve the system of linear equations it will not be adopted here. Instead we
will use the Preconditioned Conjugate Gradient (the PCG method in the taxonomy of Ashby)
method. This method is very similar to the original Conjugate Gradient method, except that it
uses preconditioning. The algorithm for the PCG method is shown below:

The PCG algorithm

Initialise: Choose a start vector x0 and put

k = 0
r0 = (b - Ax0) calculate the residual vector

p0 = s0 = C-1r0 the first direction vector
Iterate: while |rk| ≥ ε |b | iterate until the norm of the residual

vector is small enough

    
αk =

(rk,sk)

(Apk,pk)

xk+1 = xk + αkpk calculate new iterate

rk+1 = rk - αkApk update residual vector

sk+1 = C-1rk+1

    
βk =

(rk+1,sk+1)

(rk,sk)

pk+1 = sK+1 + βkpk calculate new direction vector

k = k + 1

stop xk is the solution of Ax = b

The number ε is the stopping criterion.The vector rk is the residual vector of the k-th iteration,
the vector pk is the direction vector, and C is the preconditioning matrix. The iterations stops if
the norm of rk is smaller than the norm of b multiplied by ε.

The purpose of preconditioning is to transform ill-conditioned system matrices to a well
conditioned form, thus increasing the convergence rate of the Conjugate Gradient method. The
preconditioning matrix C must approximate the system matrix A as closely as possible but still
allow a relative easy calculation of the vector sk . A good preconditioner decreases the total exe-
cution time of the Conjugate Gradient process. This means that a good parallel preconditioner
not only decreases the total number of floating point operations, but also possesses a high
degree of parallelism. A good preconditioner depends both on the system matrix and the parallel
computer. For instance, the incomplete Cholesky factorisation preconditioner is very successful
on sequential computers, but performs not as good on vector- and parallel computers.

Polynomial preconditioners [8] are very well suited for parallel computers [9], and
experiments have shown that, implemented on a distributed memory computer, they can be
much more effective than incomplete factorisation preconditioners [10]. Therefore the concept
of polynomial preconditioning is adapted and we put



C−1 = γ iA
i

i=0

m

∑

The choice of m and γi is topic of active research, but is beyond the scope of the CAMAS
project. Here we concentrate on parallelisation of the PCG method and the time complexity of
the algorithm. We take the von Neumann series as the polynomial preconditioners.

C−1 = Ni

i=0

m

∑ ,

where N = I - A.

4. Parallelisation of the PCG method

4.1. Formal aspects of parallelisation

Parallelisation of a program can be achieved in two ways: by task decomposition or by data
decomposition. For task composition the problem is divided into a number of subtasks that can
be executed in parallel. Data composition implies dividing the data into groups (grains) and exe-
cuting the work on these grains in parallel. For both decompositions parallel parts of the prob-
lem are assigned to processing elements. In general it is necessary to exchange information
between the parallel parts. This can only be accomplished when the processing elements are in-
terconnected in some way. Basically, parallelising a problem boils down to the following ques-
tions: what is the best decomposition for the problem and what is the best processor intercon-
nection scheme.

For the PCG method task decomposition cannot be employed. The core of the algorithm
consists of a big loop. Most intermediate results in a loop cycle depend on previously calculated
results. This makes it impossible to execute the loop in parallel. Hence, parallelisation of the
algorithm can only be realised through data decomposition.

The choice of decomposition and processor interconnection scheme depends on the kind of
problem. In order to measure the quality of a specific decomposition and interconnection
scheme a metric is needed. The metric that will be adopted here is the total execution time of the
parallel program Tpar. With this metric, the decomposition and interconnection scheme must be
chosen in such a way that Tpar  is minimised. In the case of data decomposition Tpar  depends
on the following parameters:

Tpar ≡ Tpar(p, n;τcalc,τstartup,τcomm,topology).

In this dependency p denotes the number of processing elements; n is a measure of the data
size; τcalc denotes the time to perform one floating point operation; τstartup is the startup time in
a communication step and τcomm the time to send one byte. The topology parameter expresses
the fact that total execution time depends on the selected interconnection scheme.
Tpar can be expressed in the following terms:



Tpar =
Tseq

p
+ Tcalc.np + Tcomm , (4.1)

with
Tseq ≡ Tpar(p=1, n);
Tnp ≡ Tnp(p, n;τcalc, topology);
Tcomm ≡ Tcomm(p, n;τstartup, τcomm, topology).

Tseq, the execution time of the sequential algorithm, is to be defined as the execution time of the
parallel algorithm on one processor, and not as the execution time of the fastest known sequen-
tial implementation. Tnp describes all computations that cannot be executed completely in
parallel. For example load imbalance will become visible in this term. Tcomm is the total com-
munication time of all cycles of the parallel program. This term will include both startup times
and actual communication times.

4.2 Decomposition of the PCG method

In one step of the PCG algorithm there are three vector updates (xk+1, rk+1, pk+1), three
vector inner products ((rk, sk), (Apk, pk) and (rk, rk)) and m + 1 matrix vector
products (Apk and m for the polynomial preconditioning). Table 1 gives the execution times on
a single processor for these operations:

Operation Tseq

vector update (vu) Tseq
vu (n) = 2 n τcalc

vector inner product (vi) Tseq
vi (n) = (2 n− 1)τcalc

matrix vector product (mv) Tseq
mv (n) = (2 n2 − n)τcalc

Table 1: Execution times of the three basic operations

The vectors in the table are of length n, whereas the matrix is of size n x n. All numbers are
real. The total execution time for one iteration step is:

Tseq (n) = 2(m+ 1)n2 + (11 − m)n− 3( )τcalc ,

where m is the degree of the polynomial preconditioner and n the degree of the matrix. Here the
times to calculate the square root (norm for rk) and the divisions for αk and βk have been left
out of consideration.

Examining the PCG algorithm two observations can be made. In the first place there are
three different types of data in the algorithm: scalars, vectors and matrices. In the second place,
the only data types on which operations are performed are scalars and vectors. Thus, the
matrices A and C remain unchanged. For this reason both matrices can be decomposed stat-
ically. The advantage of a static decomposition may be clear: now it is not necessary to send
large portions of a matrix to other processing elements. Later in this chapter three different
matrix decompositions will be discussed: the row-block decomposition, the column-block



decomposition and the grid decomposition.
It is also possible to decompose the vectors in the algorithm. However, unlike the matrix de-

composition, the vector decomposition cannot be static. For example the vector decomposition
does not always have to match the matrix decomposition. As a consequence, parts of the vector
will have to be sent to other processors during execution of the parallel PCG. Another dis-
tinction from the matrix decomposition is the fact that there is only one possible decomposition
for vectors: the division of the vector in equal parts.

4.2.1 The parallel vector update

For a scalar that is known to every processor the vector update operation can be performed
completely in parallel. The result of the operation will be a vector that is evenly distributed over
the processors. The new vector can either be used as input for a matrix vector product (in case
of rk+1 and pk+1) or is further processed after the algorithm has terminated (in case of xk+1).
Figure 3 shows the parallel vector update.
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Figure 3: the parallel vector update

The computing time for this operation is

Tpar
vu (p,n) = 2

n
p









τcalc =

Tseq
vu (n)

p
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n
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τcalc ,

with x the ceiling function of x. The computing time for the parallel vector update is of the
form of equation 1. When this operation is implemented as shown in figure 3 there is no need
for communication between the processors. In this case Tcomm = 0. The non-parallel part is a
pure load balancing effect:

Tnp
vu(p,n) = 2

n
p









 − n

p







τcalc .

If the vector length n is not a multiple of the number of processing elements p the length of the
vector parts will not be the same for all processors. Now some processors will handle parts of
size n/p and others parts of size n/p - 1. In this way a load imbalance is introduced in the
system the effect of which is described by the Tnp term.

4.2.2 The parallel inner product

The parallel inner product is a two step operation. In the first step a partial inner product is
calculated in every processor. The result of this step is a partial sum decomposition of scalars.
The second step consists of accumulating and summing the partial sums in every processor.



The sum of the distributed partial sums will be the outcome of the parallel inner product and
will be known to every processor. Notice that the second step cannot be omitted: the result of a
parallel inner product (the scalars αk or βk) needs to be known to every processor to perform a
parallel vector update. Figure 4 depicts the parallel inner product.
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Figure 4: the parallel inner product

The total time for the parallel inner product is

Tpar
vi (p,n) = 2
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=
Tseq

vi (n)

p
+ tsa.calc − 1 − 1
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τcalc + tsa ,

where tsa is the total communication time to send the partial inner products resident on each
processor to all other processors. The tsa.calc is the computing time introduced by summing the
partial inner products after (or during) the scalar accumulation. For this parallel vector inner
product Tcomm and Tnp can be expressed as

Tcomm
vi (p,n) = tsa ,

and

Tnp
vi (p,n) = tsa.calc − 1 − 1

p







τcalc






+ 2
n
p









 − n

p







τcalc ,

It follows that the non-parallel part consists of two terms. The second term is, as in the parallel
vector update, the load imbalance term. The first term comprises the summation of the partial
results that cannot be performed completely in parallel. The exact form of this term depends on
the topology of the processor network. This can also be said for Tcomm.

4.2.3 The parallel matrix vector product

As mentioned before, there are three different matrix decompositions that will be discussed
here. Each of the decompositions prescribe how the input vector and the result vector have to be
decomposed to perform the parallel matrix vector product. As the vector decomposition often
will not match the matrix decomposition this operation requires pre- and post-processing of the
vectors involved.

The row-block decomposition



For row-block decomposition the matrix is divided in blocks of rows. Every block contains
n/p or (n/p - 1) consecutive rows of the matrix. In order to perform the matrix vector
product the complete input vector should be present in every processor. As this vector is always
the result of a vector update or a prior matrix vector operation it is distributed over the
processors. Consequently the first step of this operation consists of gathering the argument
vector for every processor. Once the complete argument vector is assembled the matrix vector
operation can be performed. The operation does not need any post-processing. The result of the
matrix vector product will already be distributed among the processors for further calculations.
Figure 5 shows the matrix vector product for a row-block decomposed matrix.
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Figure 5: the parallel matrix vector product for a row-block decomposed matrix

The total execution time for the row-block decomposed matrix vector operation is

Tpar
mv;rb(p,n) = n

p









 2 n− 1( )τcalc + tvg

=
Tseq

mv (n)

p
+ (2 n− 1)

n
p









 − n

p







τcalc + tvg .

In this expression tvg is the time needed for the vector gather operation. The non-parallel time
Tnp  only consists of a load imbalance term, and Tcomm is completely determined by the vector
gather operation tvg.

The column-block decomposition

For column-block decomposition the matrix is divided into blocks of columns. Every block
contains n/p or (n/p - 1) consecutive columns of the matrix. In contrast with the matrix
vector operation for row-block matrices, there is no need for pre-processing. The distributed
argument vector matches the decomposition of the matrix, so the matrix vector operation can be
performed immediately. However, the result of this operation will be a partial sum
decomposition that needs to be accumulated and scattered over all the other processors. As the
result vector will serve as input for another matrix vector operation or a vector operation the
vector must be evenly distributed among the processors. This implies that post-processing is
required which includes communication and some floating point operations to evaluate the
partial sums. Figure 6 shows the matrix vector product for a column-block decomposed matrix.
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Figure 6: the parallel matrix vector product for a column-block decomposition

The total time for this operation is
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where tva is the time to accumulate and scatter the resulting vector, and tva.calc the time to
evaluate the partial sums. Tnp consists of two parts: a term for the summations in the partial
vector gather operation (the 2nd term) and a load imbalance term (the 3rd term). The sole
contribution to Tcomm is the communication time for the partial vector accumulate operation tva.

The grid decomposition

Both decompositions described above are combined in the grid decomposition. Now the
matrix is decomposed in p square blocks that are distributed over the processors. The argument
vector in the product is divided into p  equal parts which are assigned to p  processing
elements. To perform the matrix vector product the input vector is scattered among the
processors containing a row of blocks of the matrix. The result vector is scattered among the
processors in the block column direction, partially sum decomposed among the processors in
block row direction. As easily can be seen both the argument vector and the result vector do not
have the format that can be used for further vector or matrix vector operations. Therefore the
matrix vector operation for grid decomposed matrices needs both pre-processing and post-
processing that both require communication. Figure 7 illustrates the matrix vector product for
grid decomposed matrices.
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Figure 7: the parallel matrix vector product for a grid decomposed matrix

The execution time for this operation is
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where tpvg is the time for the partial vector gather operation, tpva the time for the partial vector
accumulate, and tpva.calc the time to evaluate the partial sums after or during the vector
accumulation.

Once more Tnp consists of a load imbalance term and a term enclosing floating point
operations that are not performed completely in parallel. Tcomm is determined by the time
needed in the communication of the pre- and post-processing steps, i.e. the sum of tpvg  and
tpva.

Future work

The time complexity expressions that were derived in the previous section are still not
completely determined. They contain terms that still need to be refined. For example, the
communication parts are not fully specified as they will depend on the processor topology.
Thus, the next step is to give the time complexity of the PCG method for various processor
topologies. Besides, an evaluation of the three decompositions that were derived in the previous
section, should be made. This should lead to the selection of a specific decomposition.

When the time complexity of the PCG method is fully specified it will be possible to see if
the results as predicted by SAD agree with what is suggested by the time complexity the PCG
method.
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