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Abstract
This paper considers elimination methods to solve dense linear systems, in particular a variant due to Huard of
Gaussian elimination [13]. This variant reduces the system to an equivalent diagonal system just as Gauss-
Jordan elimination, but does not require more floating-point operations than Gaussian elimination. Huard's
method may be advantageous for use in computers with hierarchical memory, such as cache, and in distributed-
memory systems.

An error analysis is given showing that Huard's elimination method is as stable as Gauss-Jordan elimination
with appropriate pivoting strategy. This result was announced in [5] and is proven in a similar way as the proof
of stability for Gauss-Jordan given in [4].

Keywords
Gaussian elimination, Gauss-Jordan, Linear systems, LU factorization, pivoting strategies, parallel algorithms,
vector computing.

1. Introduction

Gaussian elimination still seems to be the most popular method to solve dense linear systems. It requires
roughly 2/3 n3 floating-point operations  and can be organized such that it performs well on vector processors
and parallel systems [9] [12] [16].

Two other elimination algorithms which reduce the given matrix not to triangular but to diagonal form (or the
identity matrix) are the following. Gauss-Jordan elimination requires about n3 floating-point operations, which
is 50 % more than Gaussian elimination. It is however very suitable for vector processors, because it operates
on full n-vectors (not decreasing in length at each elimination step) and it requires the same total number of
vector operations as Gaussian elimination. Thus only for very large systems Gaussian elimination is faster on
vector computers [9]. Moreover, Gauss-Jordan with an appropriate pivoting strategy is fairly stable [4].
Another variant due to Huard [13], also treated by Cosnard et al. [2], also reduces the given matrix to diagonal
form, as Gauss-Jordan does, but surprisingly requires only about 2/3 n3 floating-point operations, the same as
for Gaussian elimination. Implementation of this variant on a vector computer yielded fully satisfactory results.
The method appears to be numerically stable and to be competitive in speed with Gaussian elimination; in
particular, Huard's variant may, for large n, be faster on a shared-memory system, because it requires less
cache memory on average. This appears from experiments by Hoffmann [11] and Potma [15]. Further research
is continued on the performance of these algorithms on various parallel systems.

In this paper we show that Huard's method is as stable as Gauss-Jordan with the same appropriate pivoting
strategy, which result we have announced in [5].

In the next section we briefly describe Gaussian elimination and (known) results of its error analysis. In section
3 we similarly describe Gauss-Jordan and results of error analysis. In section 4 we describe Gauss-Huard and
give a proof of our new result on error analysis.

Notations and preliminaries.
We consider given n-th order matrix A and given right-hand side vector b, for which we want to find vector x
solving the linear system

(1.1) A x = b.

Elimination algorithms are mostly performed with pivoting, which in its most general form may entail both row
and column interchanges. Let P denote the permutation matrix of the row interchanges and Q the permutation
matrix of the column interchanges. Accordingly, we define
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(1.2) A' := PAQ, b' := Pb, x' := Q-1x.

Thus, system (1.1) is equivalent with the system

(1.3) A' x' = b'

and any algorithm with pivoting can be viewed as applying the corresponding basic algorithm without
interchanges to this equivalent system.

In the theorems and proofs on error analysis given below we use the following notations. Absolute values
and comparisons of vectors and matrices are to be understood elementwise. O(n) denotes some appropriate
small multiple of n, and ε is  the machine precison.
We assume that, with this machine precision, the arithmetic satisfies Wilkinson's axioms for floating-point
arithmetic [19] [8], and that no arithmetic exceptions, such as overflow and underflow occur in the
calculations considered. Moreover, as usual, we assume n ε < 1. Thus, ε is small enough to ensure that the
higher order terms in the error analysis, O(n2ε2) and higher, can be subsumed in the main terms given.
Therefore, we always omit the higher order terms.

2. Gaussian Elimination

Gaussian elimination consists of three parts, namely LU factorization and forward and back substitution.

LU factorization with pivoting can be described as: find lower triangular L, upper triangular U and suitable
permutation matrices P and Q such that

(2.1) PAQ = LU.

Thus the LU factorization can be considered as starting from matrix A' = PAQ, i.e. we may describe the
process as if the row and/or column permutations have been performed beforehand, and the pivot in each
elimination step is in the proper diagonal position. Matrix A' is then reduced to an upper triangular matrix, U,
by means of n-1 successive elimination steps.

In fact the diagonals of L and U can here be chosen in different ways. The most general form of the
decomposition is LDU, where D is an appropriate diagonal matrix [9]. For simplicity, we have taken D = I (i.e.
the identity matrix) and have chosen L (as usual) unit lower triangular, i.e. the main diagonal elements of L are
equal to one.

Thus, LU factorization reduces the given system to the equivalent system

(2.2) LU x' = b',

which is subsequently solved by forward and back substitution.
Forward substitution solves the lower triangular system

(2.3) L y = b'

and back substitution solves the upper triangular system

(2.4) Ux' = y.

Pivot selection strategies
Gaussian elimination is mostly performed with pivoting, i.e. selecting a matrix element of sufficiently large
magnitude as pivot of the elimination process, and correspondingly interchanging rows and/or columns of the
matrix to bring the pivot in proper position. Partial pivoting can be either with row interchanges only (then Q =
I) or with column interchanges only (then P = I). Complete pivoting requires both row and column
interchanges.

The pivoting is practically always needed to ensure numerical stability. In direct methods for sparse matrices, it
is also used to reduce fill-in in the factor matrices L and U, see Duff et al. [9]. Mostly, partial pivoting is
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performed, and complete pivoting is seldom used. For large systems, however, numerical stability can only be
guaranteed with complete pivoting, as shown by Wilkinson [18].
Complete pivoting requires about 50 % more operations (namely comparisons) than partial pivoting. Moreover,
it requires a substantial communication overhead on distributed parallel systems. It is possible, however, to
combine partial and complete pivoting as follows. Partial pivoting is performed with monitoring the pivot
growth, i.e. in each elimination step an upper bound of the pivot growth is calculated and compared with a
certain threshold. When this threshold is exceeded, complete pivoting is used in the remaining elimination steps.
A careful choice of the threshold parameter ensures that the algorithm practically is as economic as Gaussian
elimination with partial pivoting and as reliable as Gaussian elimination with complete pivoting [1] [9].
Moreover, the partial pivoting with monitoring requires only little extra overhead on a distributed-memory
system, as appears from experiments by Hoffmann & Potma [12].

Error analysis
The results of error analysis of Gaussian elimination, established by Wilkinson, is well known [18] [19]. We
briefly mention these results in a form suitable for our subsequent analysis of Gauss-Huard, similar to the
formulation of Golub & Van Loan [8].

Gaussian elimination to solve system (2.1) satisfies the following theorem. Note that we use the notations
mentioned in section 1.

2.5. Theorem. Gaussian elimination with (partial or complete) pivoting, calculating in floating-point
arithmetic with machine precision ε, assuming that no arithmetic exceptions occur,  exactly satisfies the
following relations,where E1, E2, E3 are appropriate matrices:

(2.5.1) A' + E1 = LU, |E1| < ε O(n) (|A'| + |L| |U|), (LU factorization);

(2.5.2) (L + E2) y = b', |E2| < ε O(n) |L|, (forward substitution);

(2.5.3) (U + E3) x' = y, |E3| < ε O(n) |U|, (back substitution).

Hence, the total result for Gaussian elimination is as follows:

(2.5.4) (A' + δA') x' = (L + E2) (U + E3) x' = b',

(2.5.5) |δA'| = | E1 + E2 U + L E3 + E2 E3 | < ε O(n) (|A'| + |L| |U|),

or in terms of matrix norms:

(2.5.6) ||δA|| = ||δA'|| < ε O(n) (||A|| + ||L|| ||U||).

Remark. Wilkinson formulated his error analysis in terms of the growth, g, i.e. the largest magnitude of the
elements obtained in the Gaussian elimination process. We then have

|L| |U| < n g,

and we obtain, for any matrix norm:

||δA|| = ||δA'|| < ε O(n3)g ||A||.

For (different forms of) proof of this theorem we refer to [8] [18] [19].

3. Gauss-Jordan elimination

The algorithm of Gauss-Jordan transforms matrix A by means of elementary transformations into a diagonal
matrix (or into the identity matrix), and performs similar transformations to the right-hand side vector b in order
to find the solution vector x. We first consider the basic elimination algorithm  and then the algorithm with
pivoting and the pivoting strategy.
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Basic Gauss - Jordan algorithm
The transformation of A is achieved in n successive elimination steps. Starting from  A(0) = A' = PAQ, the k-th
elimination step, k = 1, ... , n, transforms A(k-1) into A(k) such that the off-diagonal elements in the k-th
column, not only below but also above the main diagonal, become zero. Thus, after n steps the diagonal matrix
D =  A(n)  is obtained.
The k-th elimination step can be formulated as follows.
The pivot of the k-th elimination step is δk = A(k-1)

k,k, as in Gaussian elimination. Let gk be the column vector
given by

(3.1) gk = A(k-1) ek - δk ek ,

i.e. the vector obtained from the k-th column of A(k-1) by replacing its diagonal element by zero.
Then the k-th elimination step, to introduce the required zeros in the k-th column of the matrix, consists of
premultiplying A(k-1) by the matrix

(3.2) Tk =  I -  δk
-1 gk ek

T.

In other words, A(k) is obtained from A(k-1) as follows

(3.3) A(k)  = Tk A(k-1)
  = A(k-1) -  δk

-1 gk A(k-1)
k,• .

The corresponding transformation of right-hand side vector b proceeds as follows.  Starting from  b(0) = b' =
Pb, the k-th elimination step, k = 1, ... , n, transforms b(k-1) into b(k) according to

(3.4) b(k)  = Tk b(k-1) = b(k-1) -  δk
-1 b(k-1)

k gk.

Thus, the given linear system is transformed into the equivalent system DQ-1x = y, which is easily solved by
calculating

(3.5) x = QD-1 y .

Gauss - Jordan with pivoting
The selection of pivots and the corresponding interchanges take place in a similar way as in Gaussian
elimination. In the k-th elimination step, k=1, ..., n, the k-th pivot is selected in the lower right (n-k+1)-th order
submatrix of A(k-1),  where in principle the same pivoting strategies can be chosen as for Gaussian elimination.

Mostly, partial pivoting is performed, which, as explained above in section 2, can use either row interchanges
or column interchanges. The numerical behaviour of the Gauss-Jordan algorithm is quite different, however,
for these two strategies, in contrast to the behaviour of Gaussian elimination. The accuracy of the calculated
solution is of the same order of magnitude in all cases. The difference manifests itself in the size of the residual,
r = b - A x, of a calculated approximate solution x.
Gauss-Jordan using partial pivoting with row interchanges often yields a much larger residual corresponding to
the calculated solution than Gaussian elimination does, as has been shown by Peters & Wilkinson [14]. On the
other hand, Gauss-Jordan using partial pivoting with column interchanges yields a residual which is mostly not
larger than the residual obtained by Gaussian elimination of the same system. This follows from an error
analysis by Dekker & Hoffmann [4] which we present below in a slightly modified form.

Error analysis
The main difference between Gaussian elimination and Gauss-Jordan is that the latter algorithm calculates the
LU factorization of the matrix and the explicit inverse of matrix U during the reduction of the matrix to diagonal
form. The result of the whole algorithm can be described as follows. Let  V denote the calculated inverse of U.
Then Gauss-Jordan to solve system (1.1) satisfies the following theorem (note that we use notation (1.2) but
assume P = I here).
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3.6. Theorem. Gauss-Jordan using partial pivoting with column interchanges, calculating in floating-point
arithmetic with machine precision ε, assuming that no arithmetic exceptions occur, exactly satisfies the
following relations, where Ei, for = 1, ..., 4, are appropriate matrices:

(3.6.1) A' + E1 = LU, |E1| < ε O(n) (|A'| + |L| |U|), (LU factorization);

(3.6.2) (L + E2) y = b, |E2| < ε O(n) |L|, (forward substitution);

(3.6.3) VU = I + E3, |E3| < ε O(n) |V| |U|, (inversion of U);

(3.6.4) (V + E4) y = x', | E4 | < ε O(n) |V|, (calculate solution).

Hence, the calculated solution vector x = Qx' satisfies the exact relation:

(3.6.5) (A' + E1 +  E2U) (I + E3 + E4U)-1 x' = b.

Defining

 E5 := E1 + E2 U, E6 := E3 + E4 U,

we obtain

|E5| < ε O(n) (|A'| + |L| |U|), |E6| < ε O(n) |V| |U|,

(A' + δA') x' = (A' + E5) ( I + E6)-1x' = b,

δA' = (E5 - A' E6) (I + E6)-1.

Hence, for any vector norm and associated matrix norm, ||δA|| and residual r := b - A x = δA x satisfy,
provided ||E6| < 1:

||δA|| < (||E5|| + ||A|| ||E6||) / (1 - ||E6||),

||r|| < ||dA|| ||x|| < ||x|| (||E5|| + ||A|| ||E6||) / (1 - ||E6||).

The first two relations, (3.6.1) and (3.6.2), are the same as for Gaussian elimination; relations (3.6.3) and
(3.6.4) are different and reflect the calculation of U-1 in the Gauss-Jordan algorithm described. Note that E2 is
lower triangular (as in Gaussian elimination) and that E3 and E4 are upper triangular matrices.
A proof of a slightly different theorem, formulated in terms of bounds for the norms of the error matrices Ei,
i=1, ..., 4,  is given in [4]. That proof is easily adapted to establish the theorem as formulation above. (See also
the proof of our theorem in the next section.)

Gauss-Jordan can also be performed with complete pivoting or with monitoring the pivot growth, in order to
obtain a more reliable algorithm for very large systems. Obviously, theorem (3.6) also holds for these variants
of Gauss-Jordan.

The results of experiments on numerical stability and timing of this algorithm and a similar algorithm for matrix
inversion have been published elsewhere [3] [4]. These results show that Gauss-Jordan can be rather efficiently
implemented on a supercomputer. Although it requires more work, it is competitive with Gaussian elimination
for order n up to nearly 50.

Gauss-Jordan elimination is particularly suitable for calculating the inverse of a matrix. Matrix inversion, by
means of Gauss-Jordan or Gaussian elimination, requires about 2n3 floating-point operations. Gauss-Jordan
matrix inversion can, however, be arranged such that only n2 vector operations are needed [3]. This cannot be
achieved using Gaussian elimination.

4. Gauss-Huard algorithm "méthode des paramètres"
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A variant of Gauss-Jordan algorithm introduced by Huard [13], also treated by Cosnard et al. [2], reduces a
given matrix to the identity matrix, i.e. yields the same result as Gauss-Jordan, possibly apart from a different
diagonal scaling.
Huard's algorithm requires only about 2/3 n3 floating-point operations, the same as needed for Gaussian
elimination. The algorithm proceeds in n steps, numbered k = 1, ..., n. Only partial pivoting with column
interchanges is possible. Thus, as earlier, we define A(0) = A' = AQ and b(0) = b' = b.

As an illustration we display matrix and right-hand
side vector at the start of the fourth step. Here a and b
denote original elements, and x denotes elements
which have been modified in previous steps.

A(3) =  

 




 


1 0 0 x . . x

0 1 0 x . . x
0 0 1 x . . x
a a a a . . a
: : : : : : :
a a a a . . a

 ,   b(3) =  

 




 


x

x
x
b
:
b

 .

At the start of the k-th step, the first k-1 rows have been transformed such that the upper left submatrix of order
k-1 is transformed into the identity matrix. The remaining n-k+1 rows are, however, unchanged at this moment,
contrary to what happens in Gaussian elimination and Gauss-Jordan. The k-th elimination step consists of the
following three parts.

A) Row elimination. The first k-1 elements of the k-th row are eliminated using the first k-1 rows. This
requires k-1 vector updates of vectors of length n-k+1, or equivalently, one row vector times matrix subtraction
from the k-th row. Hence, 2 (k-1) (n-k+1) floating-point operations are needed.

B) Pivoting and row scaling. The k-th pivot is selected in the k-th row obtained in the previous step and
columns are interchanged accordingly. Subsequently, the k-th row is scaled such that its diagonal element
becomes one; this takes one division and n-k multiplications.

C) Column elimination. The elements in the k-th column above the main diagonal are eliminated, where
the k-th diagonal element is used as pivot; this final part is quite similar as in Gauss-Jordan elimination; it can be
viewed as a rank-one update of the upper-right (k-1) by (n-k) submatrix, which requires 2 (k-1) (n-k) floating-
point operations.

Thus, the amount of floating-point operations in the k-th step  equals

2 (k-1) (n-k+1) + (n-k+1) + 2 (k-1) * (n-k) =  4 (k-1) (n-k) + n+k-1,

so that the total amount of floating-point operations equals

2/3 n3 - 1/2 n2 + 5/6 n.

This is precisely the same as for Gaussian elimination.

Note that the calculated results of Gauss-Jordan and Gauss-Huard, although mathematically the same, mostly
are numerically different. The main difference is that in Gauss-Huard matrix L is not explicitly calculated, but
only implicitly in product form. This explains the saving in number of operations.

Pivot selection and strategies
In Gauss-Huard algorithm only partial pivoting with column interchanges is possible, i.e. in the k-th step after
performing part A of the eliminations, the pivot is selected in the k-th row and, if needed, a corresponding
interchange of columns is performed. Gauss-Huard with this pivoting strategy has about the same numerical
behaviour and stability as Gauss-Jordan using partial pivoting with column interchanges, explained above. This
follows from the following new result.

4.1. Theorem. Gauss-Huard using partial pivoting with column interchanges, calculating in floating-point
arithmetic with machine precision ε, assuming that no arithmetic exceptions occur, exactly satisfies the
following relations, where Ei, for = 1, ..., 4, are appropriate matrices:

(4.1.1) A' + E1 = LU, |E1| < ε O(n) |A'| |V| |U|;
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(4.1.2) (L + E2) y = b, |E2| < ε O(n) |A'| |V|;

(4.1.3) VU = I + E3, |E3| < ε O(n) |V| |U|;

(4.1.4) (V + E4) y = x', |E4| < ε O(n) |V|.

Hence, the calculated solution vector x = Qx' satisfies an exact relation of the form:

(4.1.5) (A' + E1 +  E2U) (I + E3 + E4U)-1 x' = b.

Note that (4.1.1) and (4.1.2) reflect the effects of row elimination and row scaling of the matrix and the
right-hand side vector, and (4.1.3) and (4.1.4) the effects of the column eliminations.

Putting E5 = E1 + E2 U, E6 = E3 + E4 U, we obtain:

|E5| < ε O(n) |A'| |V| |U|, |E6| < ε O(n) |V| |U|,

(A' + δA') x' = (A' + E5) ( I + E6)-1 x' = b, 

δA' = (E5 - A' E6) (I + E6)-1.

Hence, for any vector norm and associated matrix norm, ||E6|| and residual r := b - A x = δA x satisfy,
provided ||E6|| < 1:

||δA|| < (||E5|| + ||A|| ||E6||) / (1 - ||E6||),

||r|| < ||dA|| ||x|| < ||x|| (||E5|| + ||A|| ||E6||)/(1 - ||E6||).

Proof.
We first analyse Huard's method. The pivoting is performed with column interchanges only. Hence, P = I
and we write

A(0) = A' = AQ, b(0) = b.

As indicated above, the k-th elimination step consists of the following parts:

A) Elimination in k-th row, reducing first k-1 elements to 0, i.e. A(k-1) and similarly b(k-1) are premultiplied
by the matrix I - ek hk

T, where

hk
T = (A'k,1 , ..., A'k,k-1 , 0, ..., 0).

This yields

wk
T := ek

T(I - ek hk
T) A(k-1) = ek

T A' - hk
T A(k-1),

ck := ek
T(I - ek hk

T) b(k-1) = bk - hk
T b(k-1).

B) Pivoting, followed by scaling of k-th row, reducing its k-th element to 1. The row scaling is performed
by multiplying the k-th row by the inverse of the k-th pivot δk = wk,k.
In other words the whole matrix and the righ-hand side vector are premultiplied by the inverse of

Dk := diag (1, ..., 1, δk, 1, ..., 1).

This yields the new k-th row of the matrix and the new k-th element of the right-hand side vector

ek
T A(k) = ek

T U = δk
-1 wk

T b(k)
k = yk = δk

-1 ck.
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C) Elimination in k-th column, reducing k-1 elements to 0, i.e. the k-th column, and similarly the updated
right-hand side vector b(k-1), is premultiplied by the matrix I - vk ek

T, where

vk = (A(k-1)
1,k , ..., A

(k-1)
k-1,k , 0, ..., 0)T.

This latter part is quite similar as in Gauss-Jordan.
Summarizing, the k-th step of Huard's method can be written in the form:

(A(k) , b(k)) = (I - vk ek
T) Dk

-1 (I - ek hk
T) (A(k-1), b(k-1)).

Let V(k) be the unit  upper triangular matrix and M(k) the lower triangular matrix defined by

V(1) := I, V(k) := (I - vk ek
T) V(k-1), k > 1,

M(1) := D1
-1, M(k) := Dk

-1 (I - ek mk
T) M(k-1), k > 1,

where

(4.2) mk := hk
T V(k-1).

Then we have

Dk
-1 (I - ek hk

T) V(k-1) = V(k-1) Dk
-1 (I - ek mk

T).

Hence, after k steps we obtain

A(k) = V(k) M(k) A', b(k) = V(k) M(k) b.

So, the first k rows of A(k) are equal to those of V(k) U, and, similarly, the first k elements of b(k) are equal
to those of V(k) y, in formula:

(4.3) ei
T A(k) = ei

T (V(k)U), i < k,

(4.4) b(k)i = (V(k)y)i, i < k. 

Finally we obtain a product form of the matrix

L = (M(n))-1 = D1 ( I + e2 m2
T) D2 ... Dn-1 ( I + en (mn

T) Dn

and, moreover, V = V(n) as an approximation of U-1 and b(n)  = Vy as an approximation of x'.

We now are ready to prove the error analysis results stated. We use backward analysis to prove formulas
(4.1.1) and (4.1.2) and forward analysis to prove (4.1.3 and (4.1.4).

Proof of (4.1.1).
The row elimination (part A) in the k-th step yields a new k-th row wk

T whose elements wk,j are bounded by
the quantities sk,j as follows:

|wk,j | < sk,j := |A'k,j| + (|hk
T| |A(k-1)|)j, j > k.

Hence, using well known results of error analysis of inner products [19], the rounding errors in these
elements are bounded by ε k sk,j.
Similarly, the subsequent row scaling in part B yields an additional contribution to the error in these elements
bounded by ε sk,j .
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Hence, the total error of row elimination and row scaling in the k-th step is bounded by

ε (k+1) sk,j < ε O(k) (|A'k,j| + (|hk
T| |A(k-1)|)j), j > k.

Adding these contributions together for all elimination steps, and using formula (4.3), we obtain

|E1| < ε O(n) (|A'up| + |A'low| |V(k)U|) < ε O(n) |A'| |V| |U|,

where A'up denotes the upper triangular part and A'low the  lower triangular part of A'.
This proves (4.1.1).

Proof of (4.1.2).
We consider parts A and B of the k-th step operating on the right-hand side vector. Part A calculates the k-th
element ck of (I - ek hk

T) b(k-1) and part B divides this by the k-th pivot δk. The exact calculated value can
therefore be written in the form

yk = b(k)
k = δk-1(bk (1 + εk)  - ∑i=1k-1 (1 + ε O(k)) (hk

T b(k-1) )i),

where |εk| < ε O(k). In order to obtain an error formula without error in bk, we throw the error factor (1 +
εk) back to the element Lk,k = δk, according to backward error analysis, so that we obtain, using (4.4) and
(4.2):

 ∑i=1k-1 (1 + ε O(k)) (mk
T y)i) + (1 + εk)-1 δk yk  = bk.

Hence,

 |bk - (mk
T y + yk δk)| <  ε O(k) (|mk

T| + |δk| ek
T) |y|) = ε O(k) ek

T |L| |y|.

Adding these contributions together for all elimination steps, we obtain (4.1.2).

Proof of (4.1.3).
We consider part C (column elimination) of the k-th step. This is a rank-one update yielding a contribution to
the error bounded by

ε (|A(k-1)i,j| + 2 |Vi,k| |Uk,j|), i < k, j > k.

Adding this for all elemination steps yields, using (4.3):

|E3| < ε O(n) (|A(k-1)| + |V| |U|) < ε O(n) |V| |U|,

which proves (4.1.3).

Proof of (4.1.4)
We consider part C of the k-th step applied to the right-hand side vector. This is a vector update operation
yielding a contribution to the error bounded by

ε (|b(k-1)i| + 2 |Vi,k| |yk|), i < k.

Adding this for all elimination steps and using (4.4), we obtain (4.1.4).
This completes the proof of Theorem 4.1.      []
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