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Table 1. Comparison of etfecliveness of the load balance algorithms, WB — without balancing,
CAVL - centralised algorithm with virtual layers, DA - diffusive algorithm

Nof PE | 2PE 3PE 4PE SPE 6PE 7PE 8PE 20PE
WB 121768 | 107878 | 6880 | 63481 | 65332 | 47470 | 46716 | 24687
CAVL 122264 | 81900 61902 | 49453 | 41223 | 35826 | 30744 | 13227
DA 122048 | 83191 62606 | 50083 | 41465 | 34451 | 31508 | 13353

7. Conclusion

The described algorithms of the PIC method realization provide high performance of
the assembled program execution, its high flexibility in reconstruction of the code and
dynamic tunability to available resources of a multicomputer.

High performance of the program execution provides the modelling of big size
problems such as the swudy of a cloud plasma explosion in magnetised background,
modelling of interaction of a laser impulse with plasma. For the first problem with a
non-uniform magnetic field, the 60x60x100 grid and 14 million particles were used
for modelling. Process of modelling made more than 2000 time steps.

Flexibility of program construction with the assembly technology provides
assembling a certain program for solution of a certain problem, but not a general
program. This also improves the performance of an assembled program.

We apply the assembly technology to realisation of different numerical methods
and hope to create the general tool to support realisation of mathematical
approximating models.
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Abstract. We present computational aspects of a paraliel implemen-
tation of a multi-species thermal lattice gas. This model, which can be
used to simulate reaction-diffusion phenomena in a mixture of different
fluids, is analyzed for a fluid system at global equilibrium. Large system
sizes combined with long-time simulation makes parallelization a neces-
sity. We show that the model can be easily parallelized, and possesses
good scalability. Profiling information shows the random number gener-
ator has become a bottleneck. The model can be statistically analyzed
by calculating the dynamic structure factor S(k,w). As an illustration,
we measure S(k,w) for a one-component system, and extract the values
of transport coefficients from the spectra. Finally, S{k,w} is shown for a
two-component thermal model, where the central peak is more compli-
cated, due to the coupled entropy-concentration fluctuations.

1 Introduction

Lattice-gas automnata (LG A) are a relative novel method to simulate the EEW.?
dynamics of incompressible fluids [1]. The flow is modeled by particles which
reside on nodes of a regular lattice. The extremely simplified dynamics consists
of a streaming step where all particles move to a neighboring lattice site in the
direction of its velocity, followed by a collision step, where different particles
arriving at the same node interact and possibly change their velocity according
to collision rules. The main features of the model are exact conservation laws,
unconditiona} stability, a large number of degrees of freedom, *ﬁw.:pmpn sponta-
neous fluctuations, low memory consumption, and the inherent spatial locality
of the update rules, making it ideal for parallel processing.

Different LGA models exist, both in two and three dimensions, where the
models differ in the number of used velocities and the exact definition of the
collision rules (see [2-4]). The basic LGA model proposed by Frisch, Hasslacher,
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and Pomeau (the FHP I model) is a two dimensional model, based on a triangular
grid, where up to six particles (hexagonal symetry} may reside at any of the
sites [5). The model was extended with rest-particles (FHP II model) and the
maximization of the number of collision rules (FHP I model), resulting in a
higher maximum Reynolds number. The model of Grosfills, Boon, and Lallemand
{GBL-model) introduced non-trivial energy conservation to the LGA’s, allowing
the simulation of temperature, temperature gradients, and heat conduction [6, 7].

The models can be extended with multiple species, where each species is
tagged with a different color, but differs in no other way {1]. In this paper we
focus on such an extended LGA model, which can be used to simulate reaction-
diffusion phenomena in a mixture of different fluids. The only four properties
that are conserved in this model are mass, moinentum, energy, and color, in case
there is only diffusion and no reaction.

The Boolean microscopic nature, combined with stochastic micro-dynamics,
results in intrinsic spontaneous fluctuations in LGA [6-8]. Such fluctuations can
be described by the dynamic structure factor S(k,«), the space and time Fourier
transform of the density autocorrelation function [9]. The fluctuations extend
over a broad range of wavenumbers k and frequencies w. S(k,w) of real fluids
can be measured by light-scattering experiments, where the measured quantity
is the power spectrum of density fluctuations. In the hydrodynamic limit, one
observes two Doppler-shifted Brillouin peaks and a central Rayleigh peak. Such
spectra are also observed in GBL [6, 7]. A measured spectrum from a GBL stinu-
lation contains transport coefficient information. The Brillouin peaks correspond
to the sound modes, the Rayleigh peak corresponds to energy density fluctua-
tions and diffusion. We are interested in fluctuations in two-species GBL models,
and therefore have extended our multiple-species GBI with routines to measure
S(k,w}. The main goal in the present work is to discuss the computational as-
pects of this model.

2 The GBL model

The two dimensional GBL lattice gas model is based on a triangular lattice with
hexagonal symmetry for isotropy reasons. The particles have unitary mass with
no spatial extension. The model evolves according to the following dynamical
rule:

ni(x +ci, t + 1) = ni(x,t) + A(n(x, 1)) i=1,...,19 (1)

where the n; are Boolean variables representing the presence/absence of a par-
ticle at site z at time ¢, and A(n(x,1)) is the collision operator, and ¢; is the
velocity vector. The exclusion principle {no more than one particle is allowed
at a given time in a certain channel) garantues the convenient specification of a
state of a node as a 19-bits integer. ’

The introduction of temperature requires a multiple-speed model (ideally a
velocity distribution). The GBL-model has four different speeds, 0,1, /3, and

2, which corresponds to a kinetic energy of wiem =0, wn w_ and 2, respectively.
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The model has one rest particle, 6 velacities of speed 1, 6 velocities of speed /3,
and 6 velocities of speed 2. The mapping of these velocities to bits are as shown
in figure 1(a). As an example, in the streaming step bit 7 will be propagated two
lattice nodes to the right.

The collisions redistribute mass, momentum, and energy among the 19 chan-
nels of each node at every time step such that mass, momentum, and energy are
conserved. The collision outcome is chosen randomly among all states helong-
ing to the same class as the input state (including the input state itself). This
procedure is equivalent to the random algorithm [10]

Our implementation of the GBL mode! is such that it contains all other
known models based on a triangular grid, FHP I (bit 0, ... ,5), FHP II/III (bit
0, ... ,6) etc. Hence, to simulate another lattice gas model we stream only a
subset of the 19 bits, and we use a different collision lookup-table. To simulate
a square grid, the streaming has to be slightly adjusted.

3 Implementation Aspects

The triangular grid To denote each node in a set of integer coordinates (z,y) we
multiply the coordinates by the factor (2, anV Thus, each node of a triangular

lattice can be uniquely mapped to a node of a square lattice (figure 1). Note
that when working with rectangular space, the lengths along the vertical axes
should be multiplied by umlm. To avoid an awkward diamond shaped grid, the
streaming step is different for even and odd parity of the lattice (see figure 1(b)
and 1(c}). The conversion of a rectangular shaped triangular lattice now remains
rectangular.

o o o e’ of of
o' o &' gu e e @' o
ve o> e° ¢ @’ e e e° e e
¢ o o oo ve e e "
o' gt gl e o'
(a) channel labeling {b) even line {c) odd line

Fig. 1. In (a) the channel labeling per lattice node is shown. The conversion from the
triangular lattice to the square lattice is based on a the parity of the lattice. On even
lines we propagate using (b}, for odd lines we propagate using (c).
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Parallelization Parallelization of grid based algorithms like the lattice-gas au-
tomata is done by means of a data decomposition strategy, where the computa-
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in order to resolve dependencies. For that purpose we use a ghost-boundary of
two lattice nodes (the GBL model has a highest velocity of 2, i.e. each lattice site
streams its particles of velocity 2 to its next-nearest neighbors). The Fast Fourier
Transform (FFT) used to measure the $(k,w) is a parallel version of FFTW (11}
for in-place, multi-dimensional transforms on machines with MPI (12]. It has the
requirement that the decomposition is a slice-decomposition (equal sub-volumes

one ot paper-weTe ourselfs to the dynamical stricture
mm...ac_,moaﬁ::Emwmmewﬁm_orm._mnizg.._::_.<<m~_w<m .cm_.mam?-o_.so...

boundary conditions and no obstacles in the fluid, Hence, we have near-optimal
load-balancing. If the lattice grid is not rectangular and/or contains obstacles in
the fluid the decomposition can be done with the ORB-method (13,14). In this
case, the parallel FFT routine needs to be adjusted.
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Initialization The GBL model can be shown to be free of known spurious invari-
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ants, which have plagued other LGA’s, These models must be correctly initialized
to avoid such invariants. The best known spurious invariant is the conservation
of total transverse momentum on even and odd lines every two time steps. This
spurious invariant can be eliminated by choosing initial conditions such that the
total transverse momentum is zero {8]. We accomplish this by initializing the
density only pairs-wise with opposite velacities.

1
size of class

(a) Collision table structure. () equivalence classes

Fig. 2. Collision table. The first 2'® indices are divided into 12 and 20 bits. The left 12
bits denotes the number of collision outcomes, the right most 20 bits denotes a index-

Data structures The GBL model uses 19 velacities and can be conveniently
represented as a 19-bit integer. The complete lattice is allocated as a single array
of a structure containing n + 1 lougs (a long is 4 bytes), where n is the number
of species (colors). One state denotes the presence/absence of the particle, and
the n longs denotes the presence/absence of the particular colors. This generic
approach allows a variable number of species (decided at compile-time) at the
cost of using more memory. An index to a lattice node can be found in the array
by the relation:

lattice(z,y) = 2 + y x lattice width (2)
i.c. the local data is expected to be stored in row-major order (C order).

The streaming-step The streaming step is accomplished by using two different
lattice grids, named current and new. The new lattice is used to calculate the
new state at the next time-step from the values of the current lattice. After
updating the lattice, we swap the pointers to the lattices and the new lattice
becomes the current lattice. If memory size is a problem it would be possible to
do the streaming step in-place, at the cost of accessing each lattice point several
times instead of just once. Since our models are all two-dimensional and using
domain decomposition, memory should not be a real problem here.

number from where the collision outcomes are stored in the table. These collision
outcomes start from index 2'?. The figure shows an example for an equivalence class of
size 3. The three configurations are shown in (b),{c), and (d); (e) shows the histogram
of the 29925 equivalence classes of the GBL model (largest class 257).

Collision tables The collision step consists of updating the lattice node with its
collision outcome. In the 6 and 7 bits models, we use a collision table of words
(16 bits) of size 2% and 27 respectively. In these models we have at most two
collision outcomes, hence we store two 8 bits outcomes in each table entry and
choose one randomly. If there is only one outcome, both values are equal.

The models which use more than 7 bits are implemented as equivalence
classes. An equivalence class is formed by all states having the same mass, mo-
mentum, and (for thermal models) energy. For the 19-bits model this means a
collision table of 2'? indices, followed by the equivalence classes, see figure 2(a).
Every index of an element in a class points to the start of the class (138, 273
and 41024 all point to 2'® + X). The left 12 bits are used to indicate the number
of collision outcomes. If the number is zero, the outcome is equal to the input
state. Otherwise the value of the right 20 bits is an index pointing to the first
outcome possibility, followed by the other possible outcomes, of which we choose
one at random. It is clear that the input state is also among them (meaning
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figure 2(e)). .
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Color redistribution (diffusion) The problem at hand is how to distribute several
color particles random over the collision outcome. We start with the collision
outcome in which we find 1 ones, denoting the presence of the particles. This
valie is being used for the distribution of the colors. Now we have the first m
particles of a certain color. We start from right to left, look for a one in the
collision outcome, and set the particle at this color if a random number between
0 and 1 is smaller than in divided by n. If this is indeed the case we set the bit
from 1 to 0 (the original collision outcome was stored for further use), and we
continue with 7 — 1 and m ~ 1 (we now have to distribute m — 1 over n — 1).
If the random number was larger than or equal to m divided by n we do not
set the particle color and continue with n — 1 and m (we now have to distribute
m over n — 1). Note that the procedure is correct for m > n, since than the
particles will always be set to the color. The other colors are treated similarly,
with one change: we now have to distribute r color particles over n — m ones.
Note that the number of random generated numbers depends on the number of
ones in the collision outcome, i.e. the density.

Calculuting S(k,w) The dynamic structure factor S(k,w) is treated as a spectral
function (a function of w at fixed values of the wave number k). Calculation of
S(k,w) first requires a spatial two dimensional Fourier transform of the den-
sity, which is done at simulation time, followed by a one-dimensional Fourier
transform in time of the spatial Fourier transformed data, done after simulation
time.

The spatial transform is performed every time step, and the wave numbers we
are interested in are stored. The spatial transform results in a two-dimensional
array, scattered over the processors. The first row of the array of the first process
contains the wavenumbers k, = index x m, the first column of the array (scat-
tered over the processors) represents the wave numnbers k, = index x WW % me“
where L, is the lattice size in z-direction, and Ly is the lattice size in the y-
direction.

After the simulation we Fast Fourier Transform the stored wave numbers in
time. To reduce the initially large variance we apply the technique discussed
in {15]. We partition the data into K segments each of 16384 consecutive data
points. Each segment is separately FFT'd to produce an estimate. We let the
segments overlap by one half their length. Finally, the K estimates are averaged
at each frequency, reducing the initial variance by VK. Data windowing is used
to reduce "leakage”. The S(k,w) is scaled as I7. S(k,w) dw = 27S(k) [9]). Thus,
the area under S(k,w)/S(k)} is 27 and the spectra shown in the next section are
scaled accordingly.

4.1 Profile analysis

A (sequential) profile of the code can be used to provide inside in the ?mmnmo:
of the execution time spent in a function, divided in four categories: collision
step (13%), streaming step (6%), the Fast Fourier Transform (18%), and color
redistribution (63%) (for a simulation of the GBL model at lattice size 512 x 512,
reduced density 0.3, periodic boundary conditions in both directions, 50% red
particles, 50% blue particles). We note the large fraction of the execution time
spent in the color redistribution step, which consists almost entirely of random
number generation.

The random number generator used is the ran2 recommended in Numerical
Recepices [15]. During this particular simulation we generate more than 1013
random numbers. This means that to prevent correlations we have to use a
random number generator with a large period (the cycle of ran2 is 10'8).

A solution for the low b-bit two-species LGA models is to construct one
collision table of size 2%* where the configuration consists of both place and
color information. However, for multipte species and/or the GBL model this
would result in a much too large collision table. Further improvements in speed
should thus focus on a faster random number generator. A first optimization is
the use of antithetic variables, i.e. if w is a random number (uniform [0,...,1])
then so is 1 — u [16].

4.2 Scalability results

To reduce the initially large variance in a spectral measurement, a large number
of time steps is needed. For measurements at small values of _n we rwﬁw to
use large lattice sizes. Parallel computing is exploited here to facilitate efficient
simulation. The two factors controlling the efficiency of parallelization are the
ratic between the communication time and calculation time, and the balance
of workload among the processors. Since we have near-optimal load-balancing
(square lattice grid and absence of obstacles in the fluid) only the first factor
applies here. To measure scalability we have performed measurements of .prm
execution time per iteration for a different number of lattice sizes at various
number of processors. The LGA simulation data is a two-species GBL m:::_.m.ro:
of a fluid at global equilibrium, reduced density 0.3, periodic boundary no:nr:o.:m
in both directions, 50% red particles, 50% blue particles. A spatial Fast Fourier
Transformation is performed every time-step.

The results of the scalability measurements are shown in figure 3. For small
lattice size the scalability is bad, due to the large communication overheads.
However, for a more realistic choice of lattice size we see an almost perfect

scaling.
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5 Case study

5.1 Transport coefficient measurements

The dynamic structure factor S(k i
dyna ;,w) for real fluids in t -
proximation (small values of k and w) reads {9]: e in the Landau-Placelcap

S(k,w) _ (-1 2xk? 1 Ik?
S(K) ( ~ )2 E JM (w £ k)2 + (TR

M k gk (3)
+Lﬁ+3|:x_MM?wn +w

K+ (Th2)2

w 0 1< o3 H 3

ww.\m.ﬂmﬁ\w@—wy ﬂﬁﬂw MH“M ﬂpwznfum factor. m.m,nm xis i_.m nr.m:nm_. diffusivity, I' =
bl . miping, where v is the longitudinal viscesity; c, is the
adial m:n.mo:s& velocity; and «y is the ratio of specific heats. A typical m m t

as mmwgaw F.::_.mm.H m:M.&m consists of three spectral lines, a central vﬁmwx AMNM_MM”
peak), which arises from fluctuations at constan

thermal &m:mmiq mode, and two shifted vmm_vamemMﬂMmcwM waﬂﬁmwﬂﬂwﬂ&o ﬁ.rm
from fluctuations at constant eutropy and correspond to the Wnocmrn nummmwzwm
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Fig. 4. Figure (a) plots Aw of the Brillouin peaks (with error bars) as a function of
&*. This provides an experimental measurement of I'D.288 + 0.001 (value of the slope}
at a reduced density of 0.3, Figure (b} shows the measurements (with error bars) of x
and I for different reduced densities.

Equation (3) for S(k,w) is known as the Landau-Placzek approximation and
also holds for the GBL model in the limit for small k and small w [6,7). A
measured spectrum from a GBL simulation contains transport coefficient infor-
mation. We can extract the sound damping I as the half-width of the Brillouin
peaks: Aw = I'k®. We accomplish this by plotting Aw as a function of k2 A
least-square fit provides the value of the slope, which is an experimental value
of I". Figure 4(a) shows we find I = 0.288 £ 0.001 for a reduced density of 0.3,
The thermal diffusivity coefficient x is obtained as the half-width of the central
peak: Aw = xk*. The experimental determination of the position of the Bril-
lovin peaks is a measurement of the adiabatic sound velocity ¢,. The ratio of
the specific heats - is obtained as the ratio of the integrated intensity of the
Rayleigh peak to those of the Brillouin peaks. Our experimental measurements
of the transport coefficients from a GBL simulation are in agreement with other
results [7]: ¢, = 1.275 £ 0.001, and v = 1.32 £+ 0.02, and the dependence of I, x
on the reduced density is shown in figure 4(h).

5.2 The spectra of a two component thermal lattice gas

The S{k,w) for a two-component system has a spectrum structure where it
is difficult to separate the contributions from concentration fluctuations and
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Fig. 5. The spectral function S(k,w) for a (a) 100% and {b) 50% red GBL lattice gas
{k: = B x 3%, reduced density 0.3), data obtained from 1000000 timesteps.

entropy fluctuations [9]. The two contributions are independent if one of the two
components is in trace amounts, but in general the two are not decoupled.

Figure 5(a) shows S(k,w) for the standard GBL model. The simulation data
obtained from the lattice gas simulation is fitted with the analytical solution,
providing the transport coefficients in lattice units. Figure 5(b) shows S(k,w)
for the two-species GBL model. We notice a significant contribution from con-
centrations fluctuations to the amplitude of the Rayleigh peak.

6 Concluding comments

The parallel implementation of a lattice gas automata is straight forward, due
to the inherent spatial locality. The GBI, model uses velocities of two lattice
spacing, hence we now have to use ghost-layers consisting of two lattice nodes
for the implementation of the boundary conditions. The implementation of the
collision step can simply be done using a collision table, where we obtain the
collision outcome in at most two memory references and one random number
generation.

Our extension of the model with multi-species, where the nunber of species
is decided at compile time, requires a large amount of random numbers. The
most widely used generators (like random and drand{8) are not adequate. We
recommend the use of the random number generator ran? as found in numerical
recipes. A profile shows the random generator has become a large bottleneck. A
first optimization is the use of antithetic variables.
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The computation of the dynamic structure factor S(k,w) requires a spa-
tial Fourier transform at every time step. The parallel FFT expects a slice-
decomposition of the lattice grid, but has otherwise no restrictions to the im-
plementation. As an illustration we have shown how to calculate two transport
coefficients, I' (sound damping) and x (thermal diffusivity), from the Rayleigh-
Brillouin spectrum. These measurements were performed for different reduced
densities. Finally, we presented a new result, namely the spectrum of a two-
species GBL LGA. The spectrum clearly shows the added contribution of con-
centration fluctuations to the Rayleigh peak. It is in general not easily possible
to derive the independent values of x and D (the diffusion coefficient) from this
spectrum.
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