
Interactive Visualization

of

Biomedical Data

Daniela Gavidia Simonetti

B.S., Universidad Peruana de Ciencias Aplicadas, 2000

Supervisor: dr. Elena Zudilova

Mentor: dr. G.D. van Albada

Professor: prof. dr. P.M.A. Sloot

A thesis submitted to the Section Computational

Science (SCS) at Universiteit van Amsterdam

in partial fulfillment of the

requirements for the degree

Master of Science

in

Computational Science

July 2003

Acknowledgements

It’s funny how life takes all these twists and turns and you can never really tell for sure

what’s going to happen next. A year and a half ago, I was in need of some intellectual

challenge and eager to see the world. After searching high and low, I decided to apply for

the MSc Computational Science programme. It didn’t really sink in that I was leaving

Peru until I had the plane ticket in my hands. I wouldn’t have been able to make it that

far without the support of the people at my home university, Universidad Peruana de

Ciencias Aplicadas, who encouraged me to continue my education and always gave me

great advice.

Of course, I want to thank my mother for supporting me and respecting my decision to

travel so far away, even though I know she wanted me to stay. And my sister, for having

such confidence in me and encouraging me to got for it.

A very big thank you to the people at Nuffic who let me apply for the fellowship by

fax and skip all the embassy stuff. Otherwise, I would’ve missed the deadline. And, it

goes without saying, that I thank them for awarding me a fellowship. Special thanks to

the fellowships officers, in particular Lenneke and Rianne, for going to great lengths to

ensure that the fellows enjoyed their stay in the Netherlands.

To the people of the Section Computational Science. I learned so much from you all.

Special thanks to Elena for keeping me motivated and reviewing my thesis over and over,

Denis for always having the answers to my technical dilemmas and Rob for being ever so

helpful.

Last, but definitely not least, the friends I made in Amsterdam who made my stay so

enjoyable. When I needed to take my mind off my studies and just enjoy life, I relied on

you. Chris, Antony, Ting, I’m grateful for your friendship.

ii

Contents

Acknowledgements . ii

Abstract . v

1 Introduction . 1

1.1 Interactive Visualization . 1

1.2 Biomedical Data . 2

1.3 Goal of the project . 4

1.4 Chapter overview . 4

2 Visualization for Medical Applications . 6

2.1 Medical Imaging . 6

2.1.1 Digital Imaging Techniques . 6

2.1.2 Window center and window width 8

2.2 Image Storage . 8

2.2.1 The DICOM standard . 10

2.2.2 How big is big? . 11

2.3 Image Visualization . 11

2.3.1 Image Viewers . 11

2.3.2 Visualization systems . 12

2.3.3 DICOM to VTK format conversion 13

2.4 Visualization Techniques . 13

2.4.1 Surface Rendering . 14

2.4.2 Volume Rendering . 14

3 Clipping Engine . 16

3.1 Functionality . 16

3.2 Visualization Elements . 20

3.2.1 Isosurfaces . 21

3.2.2 Planes . 21

3.3 Implementation . 21

iii

3.3.1 Client-Server Architecture . 22

3.3.2 Data Exchange . 23

3.3.3 Operation and Communication . 24

3.4 The Server . 26

3.4.1 Sampling of the Data . 27

3.4.2 Generating the High-resolution plane 28

3.4.3 GUI Elements . 33

3.4.4 Requests to the Server . 36

3.4.5 Local operations on the Client side 37

4 Results . 39

4.1 Parallel computation of the cutting plane 39

4.2 Sub-sampled data set performance on the client 42

5 Conclusions . 45

5.1 Discussion . 46

5.2 Future Work . 46

Bibliography . 49

iv

Abstract

Current 3D imaging systems have the capability to produce incredible amounts of high-

resolution volumetric data. In order for this data to be analyzed, it has to be converted

into visual representations. Specialists in medicine and biology rely on these visualizations

to better understand the structures and relationships present in their subjects of study.

Even though three-dimensional data is available, the traditional practice of analyzing the

information using 2D slices is still predominant. This, of course, requires the expertise to

be able to reconstruct 3D structures mentally.

Interactive visualization can bring to the forefront the information that might be ob-

scured in the density of biomedical data sets, allowing the user to intuitively explore the

data in real-time. More importantly, it has the potential of reducing the need for ex-

ploratory surgery and dissection by presenting clear, accurate 3D reconstructions of the

objects of interest.

The work presented in this thesis intends to take advantage of the wealth of information

in biomedical data sets by visualizing a 3D representation of the subject of study while

at the same time using the familiar approach of visualizing 2D slices to explore the data

set. Moreover, the flexibility of having a 2D slice that cuts through the data set in any

arbitrary direction should give more insight into its content.

The need for accuracy as well as real-time response to the user’s actions poses a

challenge, given that the amount of information to be handled has a negative effect on

performance. As a way to deal with this issue, heavy computations are being executed in

parallel to relieve part of the burden on the client side of the application developed. The

v

purpose of this being that the resources on the client side should be used for providing

interactive performance, while the computational power in the server side should be used

to speed up the calculation of structures extracted from the data set. In this case, cutting

planes.

vi

Chapter 1

Introduction

1.1 Interactive Visualization

Visualization can be defined, in simple terms, as the transformation of data or information

into pictures. This makes it easier for the human brain to process the information, as vision

is the primary human sense.

”Visualization is a necessary tool to make sense of the flood of information in today’s

world of computers” [40]

This is true in every discipline that relies on computer power to generate, capture

and process data. From market fluctuations to weather analysis to scientific simulations,

such amount of data could not be handled by an ordinary person without reducing its

complexity to aid its examination and understanding.

Through visualization, several goals can be achieved [10], such as:

• Explore available data at various levels of detail.

• Accomplish a greater sense of engagement with data.

• Give users a better understanding of data.

• Discover details, relations and patterns within the data through exploration

To reach these goals, the data - most likely comprised of a huge collection of numbers

- needs to be converted to a representation that can be interpreted visually by the user,

like geometric primitives and colors. As an example we can refer to the visualization of

ocean salinity [2] where iso-surfaces are used to represent different levels of salinity and

1

2

the temperature of the waters is mapped into the color of the iso-surfaces. Without going

into much detail and just to clarify this example, I should mention that an iso-surface is

a surface composed of all the points within a volume of data that have the same value.

They will be more extensively explained in Section 2.4.1.

In the field of medicine, the amount and complexity of the data available to medical

staff is constantly increasing due to advancements in computer performance and storage

capacity [10]. However, the availability of more data doesn’t come hand-in-hand with an

increase in human cognitive and perceptual abilities [5]. In fact, the shear volume of data

can be overwhelming if not presented in an intuitive way. That is why visualization plays

such an important role in the development of most kinds of medical systems.

Just like medicine, biological research [35] relies strongly on visualization for the study

of structures and functional relationships. From cells and organelles to corals, biologic

applications benefit from computer reconstruction and rendering of data captured by

imaging techniques or generated by simulations [26].

By adding interactivity to a visualization system, the understanding of the relation-

ships and patterns within the data can be improved. This means that the user is allowed

to modify the presentation of the data, such as changing the coloring, transparency, view-

point, etc..., with a high response time to his/her actions. In essence, an action by the

user triggers a computation and the new presentation that is generated is displayed with

minimal delay, so that the response to the users actions appears to be instantaneous. Due

to the complexity of the data sets to be analyzed, interactive visualization brings all kinds

of potential benefits in exploration by allowing the data to be displayed and manipulated

intuitively and in real-time1, with enough accuracy and speed to be a useful analysis tool.

1.2 Biomedical Data

In the context of this thesis, the phrase ”biomedical data” is meant to be understood as

referring to data collected from applying some kind of imaging technique to a subject of

1A more accurate way to put it would be near real-time, where the perception that the response to the
user’s actions is instantaneous is achieved by a response/repetition rate of 10 to 20 times per second [35].

3

biological or medical origin. Examples of this are the data sets produced by CT scanning

a coral or taking an MRI scan of a patient in a hospital.

With the outstanding capabilities of new 3D and 4D imaging techniques and the in-

creasing power of computers, the field of visualization of multidimensional data sets is

finally living up to its promise of being the tool that would unlock the information hidden

in biomedical data sets. Structures, properties and relationships would be revealed in an

intuitive fashion through the use of image processing and visualization. As visualization

becomes more prevalent, the need for intrusive surgeries or biopsies would be reduced,

providing powerful new opportunities for medical diagnosis and treatment, as well as for

biological investigations.

To illustrate this point, lets take a look at the role of medical imaging in the procedure

of diagnosis and treatment of an illness. For example, in the vascular department of

the Medisch Spectrum Twente hospital [12], all interventions are discussed in a meeting

prior to implementation. Surgeons, radiologists and assistants gather together to look

at all the data available for a patient. This includes CT (Computer Tomography) and

MRA (Magnetic Resonance Angiography2) scan results. These medical imaging techniques

produce three-dimensional data sets, but in practice a radiologists performs some post-

processing in a computer and then prints out the resulting pictures. These are analyzed

by the staff at the meeting in the traditional way, in 2D using a lightbox. It is up to the

staff to mentally reconstruct the images in 3D using their expertise.

It is clear that the improvements in visualization have not catched up yet with the ad-

vancements in medical imaging, such as higher resolution of images and smaller distance

between slides which yield more detailed information than ever before. The problem,

though, is not the lack of techniques for extracting information from 3D data sets and

visualizing them accordingly, but the shift that is necessary between the traditional prac-

tice of visualizing slides in two dimensions and doing so in 3D. In order for such shift to

occur, applications that use three-dimensional data need to present it in a way that makes

2MR angiography is a study of the blood vessels using magnetic resonance imaging (MRI). It utilizes
MRI technology to detect, diagnose and aid the treatment of heart disorders, stroke and blood vessel
diseases.

4

exploration and analysis intuitive.

1.3 Goal of the project

The goal of this research project is to develop a visualization mechanism for the extrac-

tion of a two-dimensional slice from a data set by interacting with a three-dimensional

representation of the object that was sampled to generate the data set.

The data sets considered for this kind of application have the potential of being ex-

tremely big. The advance in technology and imaging techniques suggests that these data

sets could only increase in size, with higher resolution devices that offer more detailed

information being in current development.

Having this in mind, the application developed for the purpose of this project has been

implemented in a client-server model, where the bulk of that data is stored in a remote

data repository accessed by the server. The client of the application interacts with a sub-

sampled version of the original data set and can explore it interactively with a cutting

plane. Once the desired cutting plane is found, the client is able to make a request to the

server for a high-resolution version of this plane, generated using the original data set.

1.4 Chapter overview

This thesis is divided into five chapters. The following is a brief overview of the contents

of each chapter:

Chapter 1 - Introduction - This chapter discusses the importance of visualization and

how it applies to the fields of medicine and biology. It presents the goal of the

research project and basic definitions and concepts needed for a good understanding

of the following chapters.

Chapter 2 - Visualization for Medical Applications - Describes the imaging techniques

used in medicine. One section of this chapter is dedicated image storage, focusing on

the DICOM format, the predominant storage format for medical images. The size

5

of the files produced by medical imaging is discussed, which serves as motivation for

developing our application in a client-server model.

Chapter 3 - Clipping engine - In this chapter, a thorough description of the implemen-

tation of the application is presented. The client-server architecture is explained

in detail and subsections dedicated to the client and the server concentrate on the

functionality of these two elements.

Chapter 4 - Results - Measurements of performance and an analysis of the project are

presented. The focus of this chapter is to explore how interaction and user satisfac-

tion is improved by the use of parallelism and sub-sampled data sets.

Chapter 5 - Conclusions - A final analysis of the development of this project is presented

along with some remarks on the experience of the work done.

Chapter 2

Visualization for Medical Applications

Medical image visualization starts with the acquisition of data that represents the subject

of study. This is referred to as medical imaging [35]. Today’s imaging technology makes

it possible to acquire digital samples of the subjects in three-dimensional space, i.e, in x,

y and z dimensions. Once the data has been obtained, it has to be converted into a visual

representation that can be interpreted and analyzed. Medical visualization applications

and systems tackle this challenge by extracting the information available in medical data

sets and creating an accurate presentation of such data through different visualization

techniques.

This chapter covers medical visualization, from the acquisition of the data to the way

it is stored and the techniques used to create accurate representations of the subjects of

study.

2.1 Medical Imaging

2.1.1 Digital Imaging Techniques

The acquisition three-dimensional data from a subject can be done using different tech-

niques. The choice of imaging technique is determined by the structure or anomaly that

needs to be observed, given that some techniques are better suited than others for certain

applications. When more complete information is necessary, different imaging techniques

can be used to acquire images of the same object, complimenting each other. This is

referred to as Multi-modal Imaging [35].

Through the use of specialized software, the results from different imaging techniques

6

7

can be merged into one representation. As an example, we can take the Erasmus Medisch

Centrum, which uses the Radionics software to combine the results of CT and MR

scans [13]. Using CT scans with a resolution of 512x512 pixels and MR scans with a

resolution of 256x256 pixels, the software requires that the user indicate three points

which are in the same position and uses this information to fuse the scan sets. In order

to differentiate the data sets, CT data is then presented in red and MR in green.

Some of most commonly used imaging techniques are described in this section.

Computed Tomography (CT)

Computed tomography [31] is an x-ray based technique developed in the early 1970s,

and now in widespread medical use. It revolutionized medical imaging and is considered

to be the greatest advancement in radiology since x-rays. Three dimensional imaging is

achieved by rotating an x-ray emitter around the patient, and measuring the intensity of

transmitted rays from different angles. The result is a collection of 2D sections of the

body that provide anatomical information on the positions of air, soft tissues, and bone.

CT scans are probably the most common source of three-dimensional data.

Magnetic Resonance Imaging (MRI)

In Magnetic Resonance Imaging (MRI) [39], also known as Nuclear Magnetic Resonance

Imaging (NMR), the patient is placed inside a strong magnetic field usually generated by

a large superconducting magnet. NMR is utilized to obtain images as a function of proton

spin density and relaxation times. MRI is primarily used as a technique for producing

anatomical images, but it can also give information on the physical-chemical state of

tissues, flow diffusion and motion information.

Ultrasound

Ultrasound [39] is a real-time tomographic imaging technique. It produces real-time to-

mograms of the position of reflecting surfaces (internal organs and structures) and can

also be used to produce real-time images of tissue and blood motion. High-frequency

pulses of acoustic energy are emitted into the patient’s body where they are reflected at

8

the boundaries between tissues of different impedance. By measuring the time delay and

intensity of the reflected pulses, an image indicating tissue interfaces can be reconstructed.

Ultrasound is commonly used for imaging of the heart and blood vessels, as well as

fetal development and gall bladder stones.

Positron Emission Tomography (PET)

PET [31] imaging begins with the injection of a metabolically active tracer molecule that

carries with it a positron-emitting isotope. Within minutes, the isotope accumulates in an

area of the body for which the molecule has an affinity. The radioactive nuclei then decay

by positron emission. When the emitted positron collides with a free electron, high-energy

gamma rays are produced which can be detected by an array of detectors in the scanner.

PET scanners are mostly used for brain imaging, in particular, diagnosis and local-

ization of brain tumors and strokes, as well as monitoring blood flow changes associated

with local brain function.

2.1.2 Window center and window width

This pair of parameters is used as a way of describing the brightness and contrast of the

image. The common notation used for these parameters is C:W, where C is the numerical

value of window center and W is the value of window width. Imaging techniques, such as

X-ray/CT/PET scans, tend to generate consistently calibrated intensities. Therefore, a

specific C:W pair can be used to visualize certain structures (e.g. 400:2000 might be good

for visualising bone, while 50:350 might be a better choice for soft tissue). [36]

Reducing the window length increases the contrast, while displacing the window center

alters the brightness of the resulting image.

2.2 Image Storage

There are several formats for image storage in current use. DICOM and Analyze are among

the prevalent formats. Analyze[3] is actually an image processing program, written by the

Biomedical Imaging Resource at the Mayo Foundation, which can read a variety of formats

9

0 0 0170 170 170

W = 171 W = 71 W = 171

C = 85 C = 85 C = 40

a) b) c)

Figure 2.1: CT brain scan visualized with different pairs of C:W : a) 85:171, b) 85:71 and
c) 40:171

and has its own formats as well. These are the Analyze 7.5 and Analyze AVW [8]. Image

storage formats fall into two categories:

• Standard : These include ACR/NEMA 1.0 and 2.0 and its successor, DICOM

3.0, Interfile [18] (file format for the exchange of nuclear medicine image data),

Papyrus [32],[34] (image file format based on ACR/NEMA 2.0, developed for the

European project on telemedicine -TELEMED).

• Propietary : These include CT proprietary formats - like GE Genesis and Siemens

Somatom - , MR proprietary formats - like GE Genesis, Siemens Magnetom and

Philips Gyroscan - and other propietary formats not tied to a particular device, like

the Analyze formats.

DICOM is the most common format for receiving scans. In fact, there are tools [11]

available to convert most of the proprietary formats to the DICOM format. In the following

section, the DICOM standard will be discussed.

10

2.2.1 The DICOM standard

With the introduction of CT scans and other digital imaging techniques in the 1970’s,

as well as the increasing use of computers in medical applications, the need for a stan-

dard method for transferring images and associated data between devices from different

manufacturers became apparent. In 1983, the American College of Radiology (ACR) and

the National Electrical Manufacturers Association (NEMA) formed a joint committee to

develop such a standard, with the following goals[29] in mind:

• Promote communication of digital image information, regardless of device manufac-

turer.

• Facilitate the development and expansion of picture archiving and communication

systems (PACS) that can also interface with other systems of hospital information.

• Allow the creation of diagnostic information data bases that can be interrogated by

a wide variety of devices distributed geographically.

Earlier versions of the standard were referred to as ACR-NEMA standards. The cur-

rent version is the Digital Imaging and Communications in Medicine (DICOM) Version

3.0, which follows the ACR-NEMA standards version 1.0 and 2.0.

The DICOM standard is structured as a multi-part document consisting of 16 related,

but independent parts. The complete documentation can be found at [29].

The DICOM format

Part 10 of the standard, Media Storage and File Format for Data Interchange, describes

a file format for the distribution of images. Image files which are compliant with Part 10

of the DICOM standard are generally referred to as DICOM format files.

A DICOM file [36] contains both a header (which stores information about the patient’s

name, the type of scan, image dimensions, etc), and the image data (which can contain

information in two dimensions (one slice) or three dimensions (a collection of slices forming

a volume)). Image data is generally sampled using a resolution of 8 bits (256 levels) or

11

16-bits (65,535 levels), although some scanners can produce images with 12 and 32 bits

per sample. RGB images are stored with three samples per pixel.

The DICOM image data can be compressed (encapsulated) to reduce the image size.

Files can be compressed using lossy or lossless variants of the JPEG format, as well as a

lossless Run-Length Encoding format (which is identical to the packed-bits compression

found in some TIFF format images).

2.2.2 How big is big?

The volumetric data produced by the medical imaging techniques previously described

can vary from relatively small (e.g. , 64 x 64 x 32) to huge (e.g., 2048 x 2048 x 1024) [21].

In most cases, the data consists of a single scalar value per pixel, but it is also possible

to have three samples per pixel, as described in Section 2.2.1 (the DICOM format). Just

to give an idea of the size of the data files, lets assume that there is one sample per pixel

and each sample has a resolution of 8 bits. For the examples mentioned, the size of the

data (not including the DICOM header) would go from 1Mb to more than 34 Gb.

2.3 Image Visualization

2.3.1 Image Viewers

The data sets produced by the medical imaging techniques described in Section 2.1 can not

be analyzed by human staff in their original numerical representations. A conversion to a

visual representation needs to take place. For this purpose, image viewers are available.

Efforts go from simple viewers [37] to full-fledged image analysis systems [1], [25], [30],

[23].

The majority of viewers open files in DICOM format and sometimes other popular

formats too, like ACR/NEMA and Interfile. In addition to opening and showing the

contents of the files, some viewers allow format conversion and image manipulation, like

adjustment of brightness and contrast. More sophisticated applications, like 3D-Doctor [1]

can perform 3D image reconstruction from a stack of 2D slices, producing volume and

surface renderings. Specialized software, such as the Radionics XKnife RT system [47]

12

Data object

Process object
(e.g.surface contour)

Process object
(e.g.sub-sample)

Process object
(e.g.extract plane)

Process object
(e.g. triangle filter)

Display Display

Figure 2.2: An example of a visualization pipeline.

used at the Erasmus Medical Centre, takes a step further and uses the data from CT and

MR scans to generate a treatment plan (in this case, a radiation treatment plan).

Another category of viewers are the ones implemented using a client-server model,

like SimpleDICOM [42] which allow viewing and exchanging files over a network. More

ambitious efforts, like the Conquest DICOM server [45] from The Netherlands Cancer

Institute, provide querying capabilities when communicating to the DICOM data base.

2.3.2 Visualization systems

Systems such as IBM Data Explorer [17], AVS Express [4] and the Visualization Toolkit

(VTK) [46] have been designed to facilitate scientific visualization in general and can be

used in medical applications. They provide numerous visualization and analysis algorithms

for its users and all of them follow a data-flow model, where module inputs and outputs

can be interconnected to create a visualization pipeline. In general, a pipeline consists

of objects to represent data (data objects), objects to operate on data (process objects)

and a direction of data flow (arrow connections between objects) [40]. An example of a

visualization pipeline is presented in Figure 2.2.

IBM Data Explorer and AVS Express support threaded parallelism in a shared-memory

environment. The Visualization Toolkit supports parallelism through the use of threads

13

as well as MPI[27]1 in a distributed system.

Unlike commercial products like IBM Data Explorer and AVS Express, VTK is a

free, open-source project supported and extended by the contributions of a community of

developers. It provides a wide variety of algorithms for visualization and image processing,

allowing its users to render and explore 2D and 3D representations of their data.

2.3.3 DICOM to VTK format conversion

For this project, VTK has been chosen as the visualization library to use. In order to be

able to process and visualize the DICOM data sets using VTK’s algorithms, the data has

to be read into a VTK object. DICOM is not among the formats2 that can be read into

VTK, so a conversion from DICOM to the VTK file format is necessary.

For the purpose of format conversion, a freeware tool called dicom2 [15], developed

by Sebastien Barre, has been used. It is a command line program which allows the user

to convert images from the DICOM file format to various other formats, while optionally

performing some rudimentary image processing tasks. dicom2 can be used to convert

medical images to raw format, which VTK is able to read. These can be 2D and 3D raw

files, i.e. slices or volumes.

2.4 Visualization Techniques

Through the use of 3D imaging, it is possible to acquire digital samples of objects through-

out 3-space (x, y and z dimensions). The collection of these sample values is known as a

scalar field. There are several techniques that can be used to visualize static volumetric

data. In this section, two common approaches for the visualization of biomedical data,

surface rendering and volume rendering, are introduced.

1The Message-Passing Interface (MPI) is a standard for message-passing in a distributed memory
environment. Message-passing is a paradigm widely used in high-performance computing to allow commu-
nication between different processes, making it possible to write programs that run efficiently on parallel
computers with distributed memory.

2A vtkDICOMImageReader has been added to the nightly release of VTK. This suggests that the next
stable release will support reading DICOM files directly into VTK. However, at the time of the development
of this project, this capability was not available.

14

2.4.1 Surface Rendering

The collection of all points in a volume with a given scalar value is called a level surface,

also known as iso surface. The scalar value that defines the iso-surface is called the level

of the surface. A surface is generally constructed using polygons as primitives (although

surfaces can also be represented by dots or vector nets). Standard computer graphics

techniques, such as shading models (like Phong or Gouraud shading), can be applied

to the polygon meshes and then the meshes can be rendered efficiently with the use of

optimized hardware.

One of the most popular algorithms for iso-surface generation is the marching cubes [24]

algorithm. In a three-dimensional scalar field, cells are defined as rectangular sub-regions

with eight vertices. The algorithm assumes a linear variation in each direction within the

cell. the idea is to march through the domain cell by cell and determine whether the

surface passes through the cell. If it does, we need to determine the polygons that make

up the surface. According to the set of vertices of the cell that are inside or outside the

surface, a look-up table with the possible combinations of how the surface passes through

the cell is used to determine the polygons to be used.

2.4.2 Volume Rendering

Volume rendering can be defined as the process of displaying scalar fields. The domain is

a series of samples in 3-space, which translates to a voxel representation. Data acquired

from imaging devices like CT and MRI scanners falls into this category. Each sample point

in the domain represents an intensity averaged over a small sample volume. This sample

value is constant over the voxel. Each sample value can be mapped to visual properties,

like color and opacity, by applying a transfer function [9].

Volume rendering techniques based on ray-casting algorithms are widely used for the

visualization of 3-D biomedical volume data. In this rendering process, the entire volume

image data is used. The outcome visible in the resulting image is determined by the

transfer function used to map the data to visual properties. The data that appears in the

final image is obtained by firing a ray from a source point into the volume for each pixel

15

in the image, accumulating color and opacity as the ray intersects different cells. At each

intersection, the scalar value is mapped to color and opacity via a transfer function and

the values are accumulated until the opacity reaches unity or the ray exits the volume,

whichever happens first.

Chapter 3

Clipping Engine

”Accuracy is necessary when observing detailed quantitative behavior or com-

paring data. Interactivity is necessary to understand the overall structure of

data or when looking for important features or other qualitative relationships”[22]

In an ideal case scenario, interactivity and accuracy would be possible simultaneously,

but this is not often the case in real-world applications. For applications where heavy

processing is involved and accuracy is a must, interactivity is hindered by the time required

to do the computations. Therefore, a compromise has to be reached, where interaction is

possible with an acceptable delay and the result presented to the user is detailed enough

to allow a thorough understanding of the data that is being analyzed.

The struggle of finding a balance between interactive performance and accurate rep-

resentation of the data, meaning taking advantage of the totality of the data available to

generate images of the highest resolution possible, is at the heart of the development of

this interactive visualization application. With this issue in mind, this chapter focuses on

the design and implementation of the clipping engine. It starts with an explanation of

the desired functionality of the application and what needs to be visualized. Then, the

focus turns to the implementation in a client-server model, followed by individual sections

dedicated to the client side and the server side.

3.1 Functionality

The goal of this project is to allow for the visualization of data resulting from medical

imaging by interacting with a three dimensional representation of the data set. As it was

16

17

referred in section 3.2, this is achieved through the use of iso-surfaces as a means of giving

the user an idea of the content of the data set and cutting planes to allow a more in-depth

analysis of the characteristics of the observed data.

It is necessary to define what is understood as interactive visualization in the context

of this project. Medical imaging provides a ”snapshot” of the state of a subject at a

given moment in time. Therefore, the resulting data is inherently static. Since this work

focuses on a static dataset, the intention is to enhance the understanding of the structures

within said data set through different rendering and color mapping techniques. This task

is accomplished by allowing the user to interactively modify the viewpoint of the dataset,

allowing for a thorough exploration, and giving him/her the ability to cut through it as

desired, changing the position of the cutting plane as him/her sees fit. Interaction is made

possible through the use of a graphical user interface (GUI) consisting of two visualization

windows and sliders that control different parameters of interest. Section 3.4.3 describes

the user interface in more detail.

The imaging techniques introduced in chapter 2 can produce enormous amounts of

data, which is frequently stored in high-capacity storage facilities. In fact, one of the

objectives for the introduction of the now widely popular DICOM standard was to promote

the creation of such data repositories that could be accessed remotely by users. This leads

to the natural choice of a client-server model for this application. Figure 3.1 shows a

general view of the functionality desired for the client-server application being designed.

One of the main concerns for the user is real-time interaction. With this in mind, a

subsampled data set is used for the interaction on the client side. This allows the user

to manipulate the three dimensional representation of the data and choose the plane of

interest in real-time. Once a selection has been made, the client communicates with the

server to obtain the high-resolution version of the desired plane. The sample rate 1 of the

data set used by the client can be modified by the user at any time, in case the default

1Sample rate is the frequency at which sample points are taken from the original data set. For example,
for a sample rate of 2, one of every two points will be sampled, meaning that when traversing through the
data set in certain direction, for each point sampled one point will be skipped. If the volumetric data set
is sampled with a sample rate of r in the x, y and z directions, the size of the sub-sampled data set would
be reduced by a factor of 1/r3.

18

Choosing
desired

plane

Analyzing data:
modifying C:W

Server
application

Client
application

subsampled data set

plane definition

high-resolution plane

Data repository

Figure 3.1: Retrieval and interactive visualization in a client-server model.

value is inappropriate for the resources on the client side.

Having the data sets stored in a remote location implies that they have to be sent over

a network to the client. To make an approximation of the amount of time required for

this operation, it is assumed that the request is made by the client by sending a message

through the network and, as a response, the server sends the data set. The transmission

time is made up of latency and throughput. The size of the message sent by the client

to make the request is so small compared to the data set that it only contributes to the

latency. From the moment the request is made by the client, the total transmission time

can be defined by the following equation:

Ttrans = 2 ∗ latency + 8 ∗

size of dataset

bandwidth
(3.1)

where latency is expressed in seconds, size of dataset in MBytes and bandwidth in Mbps.

The factor 8 is used to obtain the second term of the equation in seconds.

Just as an example, let’s suppose that we want to send a 1 GB data set through a

network with a bandwidth of 100 Mbps. Ignoring the latency, the transmission time would

be 80 seconds.

Since the latency and bandwidth are inherent to the network, the only way to reduce

19

the transmission time is to reduce the amount of data sent through the network. One way

of doing this is by sub-sampling the data set. Using the same sample rate r to sample in

the x, y and z directions, the amount of data transmitted would decrease by a factor of

1/r3. The transmission time for a sub-sampled data set would then be:

Ttrans = 2 ∗ latency + 8 ∗

size of dataset

r3
∗ bandwidth

(3.2)

To illustrate the reduction in transmission time, let’s assume that the 1 GB data

set mentioned previously is sub-sampled with a sample rate of 2. The transmission time

(discarding the latency) in this case would be 10 seconds, 1/8 of the original time required.

Another option that could be explored to reduce the transmission time could be sending

the data sets in parallel. However, using parallel TCP is only beneficial when data has

to be sent across very long distances, generally spanning several countries or between

continents. To be more specific, when the round-trip time (RTT) is above 20 msec. In

practice, data is sent in parallel between Amsterdam and Geneva, where the RTT is 25

msec. To do so across smaller distances would not bring any benefits.

For this project, sub-sampling is used to reduce the amount of data sent to the client,

reducing the transmission time and the complexity of the data visualized on the client

side. Whenever the user finds a cutting plane from the sub-sampled data set that is of

interest, he/she can request the plane to be extracted from the original data set, receiving

a high-resolution plane calculated using all the data on the server side. The transmission

time for a plane could be approximated by:

Ttrans = 2 ∗ latency +
resolution of plane ∗ bits per sample

106
∗ bandwidth

(3.3)

where resolution of plane is the number of pixels in the plane, e.g. 512x512.

For example, transferring a plane of 512x512 with 8 bits per sample would take roughly

0.02 seconds (just considering the throughput). It could still be argued that it might be

better to transfer the entire data set first and calculate the cutting planes with the totality

of the data on the client side, thus avoiding the requests of high-resolution planes to the

server. It is necessary to consider that the transmission time of a plane is several orders

of magnitude smaller than the time needed for the calculation of the plane itself. Taking

20

into account the fact that the computational resources on the server side, such as parallel

computers, can provide significant speedups in the computation of the plane, it becomes

apparent that doing this operation on the server side and sending the result to the client

would be desirable.

3.2 Visualization Elements

”Volume rendering is the preferred visualization algorithm for many types of

3D data sets, when it is not possible or not desirable to extract polygonized

surfaces from the data.” [21]

However, it is important to keep in mind that volume rendering implies rendering the

totality of the data at the same time. For the amount of data that we are dealing with, this

could prove to be prohibitive in terms rendering speed and slowing down the interaction

considerably.

Another aspect of volume rendering that should be considered is the need for a trans-

fer function to visualize the data. Finding a suitable transfer function to visualize the

volumetric data is not a trivial problem.

”There is a complex relationship between the transfer function and the result-

ing image. (...) the transfer function usually cannot be deduced from an idea

of a suitable result image” [9]

Some imaging techniques, like CT, produce data that is standardized in the range of

data values. Therefore, there are special subranges that always correspond to the same

type of tissue. In these cases, once a useful transfer function has been found, it could be

reused for all data sets of the same type. However, this is not the case for other imaging

techniques, like MRI, where the data sets produced have different distributions depending

on the patient, environment and certain machine parameters.

21

3.2.1 Isosurfaces

Since we do not wish to be restricted by the imaging technique used to generate the data,

iso-surfaces are being used to represent the three-dimensional data. Isosurface rendering is

less demanding because the amount of data presented at a given time is greatly diminished.

Nonetheless, isosurfaces provide the user the possibility to explore the structures present

in the data set. This is achieved by allowing the user to interactively set the iso-surface

level.

3.2.2 Planes

The imaging techniques described in 2.1.1 produce a series of slides separated by a fixed

distance. The collection of these slides make up a volumetric representation of the subject

of study. The preferred method of analyzing data produced by medical imaging is through

the use of two-dimensional slides, which are observed individually by qualified personnel.

In order to aid the analysis of the data, while conserving the traditional approach to

which technicians are accustomed to, cutting planes are being used. However, the planes

are not limited to being perpendicular to the axes. They can be oriented in any direction

and translated to allow a thorough exploration of the data set.

3.3 Implementation

For the purpose of visualization and image processing, the Visualization Toolkit (VTK)

[40] has been chosen. For this particular application, the filters for iso-surface extraction

and sampling and clipping algorithms have been specially useful. Besides the visualiza-

tion algorithms, support for parallelization and running remote processes has played an

important part in the development of the application.

In order to allow the user to interactively modify parameters to explore the data, a

GUI needed to be built. In the first stages of development, the Fast Light Toolkit [43]

was used for this task. It’s main selling point is being light-weight and small. In order to

be used with VTK, separate threads for the visualization code and the user interface were

necessary. Although, in the beginning this was not a problem, complications arose when

22

isosurface
extraction

cutting plane
computation

VTK

OpenGL

Qt

VtkQt

X11

Figure 3.2: Software libraries used for implementation.

adding a second VTK window. Problems with rendering and updating the VTK windows

could not be overcome. Since weight is not a big concern in the development of the user

interface, it was decided to use another library for building user interfaces.

The final implementation was done using the QT GUI application framework [44].

Although not nearly as light-weight as FLTK, QT provides much better widgets and

much more functionality. VTK is cleanly integrated into the QT interface through the

use of the VtkQt library [41]. VtkQt is an extension of VTK. It is based on the VTK

superclasses vtkImageViewer, vtkXOpenGLRenderWindow, vtkRenderWindowInteractor

and Qt superclasses QWidget, QGLWidget therefore inherits all functionality of these

classes. It allows for the insertion of VTK windows in the QT interface and transparent

use of VTK classes alongside Qt, simplifying the development. Figure 3.2 shows the

software architecture for this project.

3.3.1 Client-Server Architecture

There are several advantages to implementing the clipping engine using a client-server

model:

• The computation of the cutting plane is expensive due to the need to find the points

that make up the plane through interpolation. This can be quite time consuming.

Assuming that better computational resources are available in the server, doing this

operation in the server-side might yield better performance for the client.

23

Server Client

 computed data
 high volume

 control data
 low volume

- scanned
 data

 - subsampled
 data
 - cutting plane

Figure 3.3: Client-server communication

• The data files can be contained in a central data repository. As explained in sec-

tion 2.2.2, the size of these data files can go up to Gigabytes, making it inconvenient

or not possible for the client to have them stored locally.

• Performance can be further improved by doing computations in parallel on the server

side. It is unlikely that the client would have high-end computational resources, like

a parallel super computer, at his/her disposition.

As a consequence of all the above, a client-server implementation allows the client to not

burdened with the need to have to store enormous data files and have a fast processor to

compute the planes. The main concern for the client would then be to have a fast enough

graphics workstation for visualization and rendering.

3.3.2 Data Exchange

The flow of data between client and server occurs in an asynchronous manner, with the

server sending subsets of the scanned data by request. The client and the server commu-

nicate through Remote Method Invocations (RMI).

Figure 3.3 illustrates the communication between client and server, pointing out the

imbalance between the amount of data sent from client to server and from server to client.

According to the flow direction, we define the data as:

Control data - data sent from the client to the server, comprised of the requests for

24

data made by the client, such as the definition of the desired cutting plane or the

sample rate for a sub-sampled data set.

Computed data - data sent from the server to the client. In general, it is a subset of

the scanned data sent to the client by request.

Control data is limited to a few bytes since it is comprised of requests for data, therefore

the volume of data transmitted is low. On the other hand, computed data, being a subset

of the scanned data, results in a significantly larger amount of information being sent (high

volume). Due to the disparity in the volumes of data being transmitted, it is expected

that, unless there is a high-bandwidth connection between client and server, more time

would be required to complete the transmission of the computed data than to transmit

the control data.

3.3.3 Operation and Communication

Figure 3.4 gives a general overview of the operation of the client-server application. The

communication between client and server is triggered by two events: a request for a sub-

sampled data set or a cutting plane. By default, a sub-sampled data set is requested

when the application is launched. For this operation, a sample rate value is sent to the

server, triggering the execution of a sampling routine and generation of the sub-sampled

data set. In a similar manner, the client can request a cutting plane. In this case, the

plane definition - a point in the plane and the normal of the plane - is sent to the server,

triggering a routine for extracting the plane. The result is then made available to the

client.

The communication between client and server is handled by the three classes:

vtkSocketController, vtkOutputPort and vtkInputPort, as illustrated in Figure 3.4.

The control data is sent from the client to the server through the vtkSocketController.

After the necessary computations are performed on the server side, the resulting data sets

(computed data) are sent back to the client through the vtkOutputPort and vtkInputPort

objects. These two classes allow for the construction of a pipeline that starts on the server

side and continues on the client side. The OutputPort is placed at the end of the pipeline

25

 data

read
data

Server Client

subsampling

extract
plane
(high

resolution)

 User

 vtkStructuredPoints

 v
tk

S
oc

ke
tC

on
tr

ol
le

r
sample

rate

plane
definition

 vtkOutputPort

 vtkOutputPort

 vtkInputPort

 vtkInputPort

 v
tk

S
oc

ke
tC

on
tr

ol
le

r

Network

sample
rate

plane
definition

extract
plane
(low

resolution)

 subsampled
 dataset

high resolution plane

OR
visualize

isosurface
and plane

 request for
 high

 definition
 plane

 extract
 isosurface

control data

computed data

Figure 3.4: Pipeline of the operation of the client-server application. The communica-
tion between client and server is handled by vtkSocketController, vtkOutputPort and
vtkInputPort

in the server and the InputPort at the beginning of the pipeline in the client. Together,

they communicate all the pipeline protocol so that the fact the pipeline is running on

different processes is transparent.

Several RMI methods are written in the server and registered with the vtkSocketController.

The vtkSocketController in the client connects to the one in the server using the name

of the server and a designated port number. Once the connection is made, the client ap-

plication triggers the RMIs to communicate changes in the parameters controlled by the

user, namely sample rate for the data set and definition of the cutting plane. The server

then modifies these parameters in the server-side pipeline and makes the results available

26

 v
tk

S
oc

ke
tC

on
tr

ol
le

r

 v
tk

S
oc

ke
tC

on
tr

ol
le

r

sample_rate ...
triggerRMI (getSampledGrid(sample_rate))
update vtkInputPort
...

 getSampledGrid(sample_rate) {
 ...
 update vtkOuputPort
 ...
 }

 getPlane(plane_definition) {
 }

 other RMIs

RMIs

Server Network Client

Figure 3.5: RMI being triggered from the client.

through the vtkOutputPort objects. After a RMI is made, the client updates the output

of the corresponding vtkInputPort resulting in an update of the client-side pipeline. An

example of the client triggering a RMI is shown on Figure 3.5.

With the sub-sampled data set, the client can generate locally iso-surfaces and low-

resolution cutting planes. These are created according to the parameters set interactively

by the user through the GUI. The iso-surface is rendered in a 3-D render window along

with the low-resolution cutting plane. Only when a request is made to the server for a

high resolution plane, is the high-resolution plane computed and rendered in the client

side.

3.4 The Server

The server in the application is in charge of providing the client with the following:

Sampled data set - that can be used by the client for the three-dimensional represen-

tation of the data and interactive positioning of the desired plane.

27

vtkStructuredPointsReader

vtkExtractVOI

vtkOutputPort

original data set

subsampled data set

to client

Figure 3.6: Pipeline of the sampling of the data set.

High-resolution plane - which is sent to the client as polydata, representing the geo-

metric structure of the plane and point attribute values. Once received, it can be

mapped to the desired color scale, allowing for the modification of brightness and

contrast locally.

In the next sections, the implementation of these operations will be explained in detail.

3.4.1 Sampling of the Data

After the client sets the name of the data set to be analyzed through a RMI, the server

loads this data into memory. The client can then request a sub-sampled version of the

data set at any point by triggering a RMI with the chosen sample rate. This process

is illustrated in 3.4. The data set can be sampled with different sampling rates in each

direction (i, j, k). Figure 3.6 shows the pipeline for subsampling. The filter vtkExtractVOI

is used to sample the data set with the sample rates defined by the user.

Figure 3.7 shows four snapshots of iso-surfaces of the same level generated from data

sets obtained with different sample rates. From left to right, it becomes apparent that

the reduced number of points in the data sets with higher sample rates produce less

detailed results. Since a smaller amount of polygons is used in these iso-surfaces, faster

28

a) b) c) d)

Figure 3.7: Iso-surface rendering for different sampling rates: a) sample rate = 1, b)
sample rate = 2, c) sample rate = 4, d) sample rate = 5

rendering speeds are possible. So is the case with the plane that cuts through the iso-

surface. Therefore, in the case where the original data sets are significantly big and the

client doesn’t have the resources to render a large amount of polygons at interactive speed,

interactivity is aided by the use of a sub-sampled data set. Of course, information is lost

by sampling the original data set. The motivation behind using a sub-sampled data set is

only to improve the experience of the user in terms of interactive performance, allowing

an overall exploration of the data set. For a more thorough study of a specific occurrence,

the option of requesting a high-resolution plane is provided.

3.4.2 Generating the High-resolution plane

For the extraction of the arbitrary plane from the data set, the class vtkCutter was

used. This class is a filter that cuts through a data set. It creates a polygonal surface

corresponding to the implicit function F(x, y, z) = value(s) [20]. In this case, the implicit

function was a plane function with the desired position and orientation. A pipeline for this

process is presented in Figure 3.8. Cutting with an implicit function is time-consuming.

Some measurements were made of the time taken to receive the high-resolution plane once

the request is made by the client. Figure 3.9 shows the results. It can be seen that the

time increases linearly with the size of the plane to be computed. The measurements

29

vtkStructuredPointsReader vtkPlane

vtkCutter

vtkOutputPort

implicit functioninput

polydata

to client

Figure 3.8: Pipeline of the extraction of the plane.

were made using data sets of different sizes. When asking for a plane that cuts through

a data set of 512x512x53, the time required for the computation and rendering in the

client was over a minute (the top point in the graph). This certainly goes against the

goal of providing interactive performance. New measures should be taken then to speed

up this process. Taking advantage of VTK’s support for parallel computing, a parallel

implementation of the plane computation is in order.

Data Parallelism

The Visualization Toolkit (vtk) supports task, pipeline and data parallelism [2]. Data

parallelism is useful for processing extremely large data sets, not unlike the ones produced

by medical imaging, as was addressed in section 2.2.2.

Data parallelism is achieved through the use of several parallel processes, where:

• an identical sequence of modules are run in each process.

• these data parallel modules process independent subsets of data

• the results of the last module in the sequence are usually merged to create a single

result [2]

30

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600

tim
e

(s
)

size (kbytes)

Request and reception of cutting plane

vtkCutter

Figure 3.9: Time measurements for the interval between the request and reception of the
high-resolution plane by the client.

This corresponds to the Single Program Multiple Data (SPMD) paradigm, where var-

ious parallel processes execute asynchronously one program on different pieces of data to

achieve a faster execution of certain computation applied to a data set.

In order to reduce the time required to obtain the high-resolution plane after the

request is made by the client, the calculation of the plane has been done in parallel. The

implementation uses multiple processors that communicate through MPI, as shown on

Figure 3.11. The processors execute the computation of the cutting plane on a different

sub-volume of the original data set. The pipeline for each process, as seen in Figure 3.10 is

similar to the one where the calculation was done only by one process (Figure 3.8), but it

adds a step for selecting a different subset of data for each process, using vtkExtractVOI.

The result generated by each process is a section of the cutting plane. These results are

appended together by process 0 using a class called vtkAppendPolyData which has as

inputs the sections of the plane calculated by each of the other parallel processes. The

output of the vtkAppendPolyData filter is a single high-resolution plane (see Figure 3.11).

31

vtkStructuredPointsReader

vtkPlane

vtkCutter

vtkOutputPort

implicit functioninput

polydata

to process 0

vtkExtractVOI

Figure 3.10: Pipeline of the cutting plane computation for each process that runs in
parallel.

Data Decomposition

In order to achieve a reasonable load balancing 2 between the processors assigned to do the

parallel computation of the plane, a suitable decomposition of the data must be applied.

The normal of the plane has been chosen as the determining factor in the determination

of the partitioning of the data domain. The domain decomposition is implemented in the

following manner, where the total number of processors is totalProcs and the number of

processors that calculate the plane in parallel is nCalcProcs = totalProcs - 1, because one

processor is reserved for appending the results (see Figure 3.12):

• Determine the smallest component of the normal of the plane. Let’s call it v.

• Divide the length of the domain in the direction of v into nCalcProcs segments of

equal length. Let’s call the length of each segment l

• Assign to each processor a rectangular block of data, where the length of the sides

2Load balancing is achieved when the workload is evenly distributed between processors, so that the
time that processors are idle due to lack of work is minimized. When a processor is idle, processing cycles
are lost resulting in the speedup being lower than its ideal value.

32

 Read_3D_Data1

 Compute_Plane1

 Read_3D_Data2

 Compute_Plane2

 Read_3D_Data3

 Compute_Plane3

 vtkOutputPort

 vtkInputPort

 vtkInputPort

 vtkInputPort

 vtkOutputPort vtkOutputPort

 vtkAppendPolyData

complete plane

Process 0 Process 1 Process 2 Process 3

Figure 3.11: Data parallelism. Each process, except one reserved for appending the re-
sults, computes part of the cutting plane. In the figure, the computation is done using 3
processes. Process 0 appends the results from all the processes together.

of the block are the same as the original data set except in the direction of v. The

length of that side is l.

The parallel implementation of the cutting plane computation was tested on the Dis-

tributed ASCI Supercomputer 2 - DAS-2 [14]. This cluster uses the PBS [33]3 (Portable

Batch System) to dynamically assign the nodes on which the computation will run. This

makes it impossible to know in advance the name of the node on which process 0 would

run, therefore there isn’t a fixed node to which the client can connect to make its requests.

To solve this problem, a stand-alone application has to run on the server. Let’s call it the

request server Process 0 of the MPI implementation connects to the request server and

sends it the complete plane once the computation is finished. Since the request server has

3The Portable Batch System (PBS) is an extensible batch queuing and job management system for
UNIX, originally developed for NASA. It operates on networked, multi-platform UNIX environments, in-
cluding heterogeneous clusters of workstations, supercomputers, and massively parallel systems, providing
a single interface to all computer resources.

33

N (nx, ny, nz)

nx < nz < ny

a)

Pro
ce

ss
 1

Pro
ce

ss
 2

Pro
ce

ss
 3

Pro
ce

ss
 4

N (nx, ny, nz)

ny < nz < nx

b)

Pro
ce

ss
 1Pro

ce
ss

 2Pro
ce

ss
 3Pro

ce
ss

 4

Figure 3.12: Two examples of data decomposition, with 4 processors. In a), the component
of the normal in the x direction, nx, is the smallest of the components of the normal, so
the partitioning is done in the direction of the x-axes. In b), the smallest component of
the normal is in the direction of the y-axes.

a fixed location, any client can connect to it and make its requests. Therefore, the request

server handles all the requests made by the client and in the case that a request for a

high-resolution plane is received, the parallel plane computation module is executed.

”in scientific visualization, three classes of interaction can be identified: in-

teraction for configuration and control of the visualization pipeline, which is

mainly done by means of graphical user interfaces, interaction for viewpoint

control, and interaction with application data, also called semantic interac-

tion” [16]

The GUI developed for this application allows the first two kinds of interaction described

in the quote above. Control over the visualization elements, described in 3.2, is achieved

through the use of sliders and direct interaction with the 3-D render window. The view-

point can be modified by interacting with the 3-D render window, allowing for the exam-

ination of the objects from different angles.

3.4.3 GUI Elements

The GUI is made up of three elements: 3-D render window, 2-D render window and control

panel. The arrangement of the elements is shown in Figure 3.13.

34

 3-D
 Render
 window

 2-D
 Render
 window

 Control
 panel

Figure 3.13: GUI mock-up showing the distribution of the elements (left) and snapshot of
the GUI (right).

3-D Render Window

The functionality of this window is two-fold: it allows the visualization of data in three-

dimensional space as well as direct interaction with the objects on the scene. The default

interaction of the vtkRenderWindow is maintained, meaning that the user can rotate,

translate and scale the objects by mouse interaction4. The 3-D render window is used to

display two elements:

• Isosurface

• Low resolution cutting plane - calculated from the subsampled data set

The cutting plane can also be manipulated directly using the mouse. Its normal

can be selected and set to the desired direction with the mouse and the plane itself can

be dragged along the data set for exploration. This functionality is achieved with the

4The interaction is handled by the vtkRenderWindowInteractor, which forwards events to a
vtkInteractorStyle. The default style is ’joystick’, which means that holding down the mouse but-
tons generates a stream of events that cause continuous actions (e.g., rotate, translate, pan, zoom). It is
possible to toggle between ’joystick’ and ’trackball’ style, which lets the user grab and move objects.

35

class vtkPlaneWidget. This class provides a plane that can be placed on the scene and

manipulated by the user. Initially, the value of the center of the cutting plane is set to the

center of the 3D data set and its normal to the z-axes. The exploration of the data set is

achieved by implementing a callback function that executes whenever the vtkPlaneWidget

changes position.

The visualization pipeline is set so that the plane used by the vtkPlaneWidget is

used as the Input for a vtkProbeFilter. This filter samples data values at specified

point locations. It requires two inputs: Input and Source. The Input geometric structure

is passed through the filter and used to cut through the data set. The output of the

vtkProbeFilter is the interpolated data values at the Input point positions [20]. In this

case, we compute data values on a plane (plane specified as Input) from a volume (Source).

In other words, we calculate the values of the 3D data set that fall into the plane. The

callback function refreshes these values, which are mapped to grayscale according to the

window center and window width parameters (which can be modified in the control panel)

and displayed.

2-D Render Window

Unlike the 3-D render window, the 2-D render window doesn’t allow direct interaction

by the user. Its function is to display a front view of the cutting plane selected in the

3-D render window. This is accomplished by placing a camera focused on the center of

the plane displayed in the 3-D render window and positioned at a constant distance from

the plane. The view of that camera is displayed in the 2-D render window. To keep the

correct viewpoint of the camera, its position has to be refreshed every time the position

of the plane changes. This means that the camera position has to be reset in the callback

function of the vtkPlaneWidget.

Control Panel

The widgets that allow the user to manipulate the parameters of the visualization are

encapsulated in the control panel. The parameters that can be interactively modified are:

• Iso-surface level

36

Figure 3.14: 2-D and 3-D render windows.

• Window center - which controls the brightness of the image

• Window width - which controls the contrast of the image

• Sample rate of the data set used for interactive manipulation in the client

The values of these parameters are modified through sliders. The range of possible values is

determined according to the data set that is being analyzed. The minimum and maximum

scalar values in the data set are obtained. With this information, the range of the window

center is set to the range of values in the data set and its default value is set to the

mid-point. The maximum value of the window width is set to the extent of the data

set (maximum value - minimum value) and its default value is set this value, so that the

default window covers all the scalar values in the data set. For the iso-surface level, the

mid-point of the values in the data set is the default, with range of possible values going

from the minimum value present in the data set to the maximum value.

3.4.4 Requests to the Server

As explained in 3.4, the client can request from the server sub-sampled data sets and high-

resolution planes. This is achieved by using the widgets in the control panel. A slider

allows the user to modify the sampling rate of the data set in use, thus making a request

37

to the server by triggering a RMI. A high-resolution plane can be obtained by clicking on

a button, which results on a call to the appropriate RMI method in the server. In both

cases, the requested poly data is received through a vtkInputPort. The sub-sampled grid

and the plane each have a different vtkInputPort assigned for this purpose.

The update mechanism in VTK goes upstream, meaning that operations are not ex-

ecuted unless there is an explicit request for data. This means that although a RMI is

triggered by the client, the data in the vtkInputPort will not be received until the output

of the vtkInputPort is explicitly updated.

3.4.5 Local operations on the Client side

Once a sub-sampled data set is made available to the client, two operations can be per-

formed: iso-surface extraction and generation of a low-resolution cutting plane. Sec-

tion 3.4.3 explained how these operations are triggered through the GUI. Now, the imple-

mentation of these operations will be detailed.

Isosurface generation

The iso-surface generation is accomplished with the use of a vtkContourFilter. This

filter takes a volume as input and generates one (or more) iso-surfaces as output using the

Marching Cubes algorithm explained is Section 2.4.1. The result is a surface represented

by a polygon mesh. In order to simplify the rendering of the surface, the output of

the vtkContourFilter is passed through a vtkTriangleFilter to trangulate any non-

triangular polygons. The result is passed through a vtkStripper to produce triangle

strips and polylines, which are faster to render.

After the polydata is generated, it is mapped to a color and assigned a level of opacity

to make it see-through, as to not obscure entirely the cutting plane that will be rendered

with it in the 3-D render window. Figure 3.15 shows the pipeline for this operation on the

left side.

38

vtkContourFilter

vtkOutputPort

subsampled data set

from server

vtkStripper

Mapping and rendering

vtkProbeFilter

vtkPlaneSource

Mapping and rendering

vtkTriangleFilter

Render
Window

3D

add isosurface
actor

add cut plane
actor

Isosurface
extraction

Cutting plane
extraction

Figure 3.15: Pipeline for the processes applied to the sub-sampled data set received from
the server. An isosurface and a cutting plane are extracted from the data set.

Low - resolution cutting plane generation

As explained in Section 3.4.3, a low-resolution cutting plane can be obtained from the

sub-sampled data set using a vtkProbeFilter. The sampling of the data set is deter-

mined by the geometric structure used as Input, in this case a vtkPlaneSource. The

vtkPlaneSource is a collection of quadrilaterals arranged to form a plane. The resolu-

tion of the vtkPlaneSource, meaning the number of quadrilaterals in which the plane is

subdivided, is set according to the resolution of the data set. The vtkProbeFilter then

samples the data set at the vertices of the quadrilaterals and the points in between are

interpolated. Figure 3.15 shows the pipeline for this operation on the right side.

Chapter 4

Results

4.1 Parallel computation of the cutting plane

The parallel computation of the cutting plane on the server side has been implemented

taking advantage of VTK’s support for parallelism. Parallelism support is available in

distributed-memory environments, via MPI, and in shared-memory environments, via

pthreads or sprocs. The implementation was tested on the DAS-2 (Distributed ASCI

Supercomputer 2). DAS-2 is a wide-area distributed cluster of 200 Dual Pentium-III

nodes designed by the Advanced School for Computing and Imaging (ASCI). It is used

for research on parallel and distributed computing by five Dutch universities (Vrije Uni-

versiteit, Leiden University, Universiteit van Amsterdam, Delft University of Technology

and University of Utrecht). It consists of five clusters, located at the five universities

(four clusters with 32 nodes and one with 72 nodes at Vrije Universiteit). The parallel

implementation of the computation of the cutting plane was tested with up to 16 parallel

processes.

Two approaches for data parallelism were tried:

• Using the data decomposition as explained in Section 3.4.2.

• Using VTK’s support for data parallelism through parallel streaming.

VTK handles data parallelism through parallel streaming, where the data is parti-

tioned into independent subsets using VTK’s streaming data model [22]. In this context,

streaming is defined as the ability of a sequence of modules to process an independent

39

40

3 processors 8 processors

5 processors 9 processors

slice of a coral computed
in parallel

explicit
decomposition

vtk
decomposition

Pro
ce

ss
 1

Pro
ce

ss
 2

Pro
ce

ss
 3

Pro
ce

ss
 4

Figure 4.1: Domain decomposition using the explicit decomposition proposed in Sec-
tion 3.4.2 and using VTK’s support for parallelism. The sections of the slice computed by
each processor have been rendered in a different shade of gray.

subset of data. Each parallel process executes a sequence of modules. The data parti-

tioning starts when each process is asked to compute a portion of the entire output data

of the last module in the sequence. At that point, for each of the parallel processes an

update request is issued. In parallel, the update requests are propagated up the sequence

of modules, determining for each module which portion of the input data is needed to

compute the requested output of the module.

The vtkAppendPolyData filter (the one that appends the results of all the processes

together to form the complete plane) implements this functionality. It’s just a matter

of activating the parallel streaming mode by calling ParallelStreamingOn(). Coding

is simplified considerably since the developer doesn’t need to explicitly assign a different

subset of data for each process to work on. Instead, in parallel streaming mode the

vtkAppendPolyData filter asks for a different piece of the plane polydata from each of

its inputs (the outputs of the other processes). When the update request is propagated

up the pipeline of each process, the request for a subset of polydata is translated into a

41

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

tim
e

(s
)

number of processors

Time measurements for calculation of cutting plane

vtk decomposition
explicit decomposition

Figure 4.2: Time measurements for the calculation of a cutting plane of dimensions
512x512 with 16 bits per sample.

request for an independent subset of the input data set (i.e. the volumetric data).

Figure 4.1 shows the way the data domains are assigned to the parallel processes using

the explicit decomposition detailed in Section 3.4.2 and using VTK’s parallel streaming

for the computation of a slice of a coral. The data set used for testing was a CT scan of a

coral consisting of 53 slices with a resolution of 512x512 pixels. The plane to be calculated

in parallel has a normal in the direction of the z axes, causing the volumetric data set to

be divided as illustrated in the divided volume on the left side of Figure 4.1. On the other

hand, the way VTK handles data parallelism produces domains of different topologies.

Figures 4.2 shows the time required to calculate the plane in parallel using an increas-

ing number of parallel processes and Figure 4.3 presents the associated speedup. The

proposed explicit decomposition yields slightly faster calculation times than the VTK de-

composition using parallel streaming, despite more complex code needed to implement

it. The difference is shown more clearly in the higher speedups obtained for the explicit

decomposition.

It should be noted however, that the explicit decomposition works specifically for

the calculation of a cutting plane and would not be appropriate if the application were

extended to cut the data set with other surfaces. That would require a re-thinking of

42

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

Speedup for calculation of cutting plane

vtk decomposition
explicit decomposition

Figure 4.3: Speedup measured for the calculation of a cutting plane of dimensions 512x512
with 16 bits per sample.

the way the data decomposition is implemented. On the other hand, when using parallel

streaming the data decomposition is not a concern and the system could be easily extended

to use other surfaces to cut the data set.

Comparing the explicit decomposition versus the VTK decomposition using parallel

streaming, the benefits in terms of improved performance are not very impressive. Al-

though the explicit decomposition always yielded faster computation times, the margin

by which it surpassed the other method was small, as observed in Figure 4.2. Considering

the extra work required to implement data decomposition explicitly, the improvement it

provides might not be considered significant.

4.2 Sub-sampled data set performance on the client

In order to improve the interaction speed in the client side, a sub-sampled version of the

original data set is being used. The sample rate can be set by the user through the GUI.

When interacting with the 3-D render window, the user perceives the interaction to be

smooth when the response to his/her actions is (near) instantaneous. This is achieved

with a response/repetition rate of 10 to 20 times per second [35].

43

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14

tim
e

(s
)

sample rate

Rendering time measurements for different subsampled data sets

render times

Figure 4.4: Measurements of the rendering times of the 3-D Render Window. The original
data set (512x512x53) was sampled with different sample rates and these subsampled data
sets were used to create an iso-surface and a cutting plane which were rendered in the 3-D
Render Window.

To quantify the benefit of using a sub-sampled data set, measurements of the time

required to re-render the 3-D render window have been made. The results are shown in

Figure 4.4. The 3-D render window shows two elements, an iso-surface and a cutting

plane extracted from the sub-sampled data set. When a transformation is applied to the

elements (they are rotated, scaled, translated) or they are modified in some way (change in

the iso-surface level, position of the plane, ...) it is necessary to render the window again.

The complexity (number of polygons) of the data presented depends on the resolution

of the data set, which has a direct effect on the time needed to render the scene. The

rendering speed itself depends on the graphics hardware used [5], so the plots shown here

should be interpreted in relative terms. Figure 4.4 shows the rate at which the rendering

time decreases when the sub-sampled data sets are used. It is clear that even sampling

every other point in the original data set (sample rate = 2) significantly decreases the

rendering time.

The effect of sub-sampling in the improvement of the interaction is better observed in

Figure 4.5, which shows the number of frames per second that are rendered for the different

44

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

fra
m

es
 p

er
 s

ec
on

d

sample rate

Frames per second for different subsampled data sets

frames per second

Figure 4.5: Frames rendered per second according to the sample rate applied to the original
data set.

sub-sampled data sets. It is observed that only by sub-sampling it is possible to achieve

an interactive response rate of at least 10 frames per second. Using the original data set

introduces a considerable delay when interacting with the elements in the scene. Even

when using the lower sample rates, the interaction less than optimal and the visualization

is jerky.

Chapter 5

Conclusions

The goal of interactive visualization is to provide the ability to rapidly examine (and

understand) data through visualization methods[19]. The work presented in this the-

sis strives to do just that, by using 3D visualization methods in an effort to make the

visualization of biomedical data sets more intuitive, specially to the untrained eye that

can not mentally reconstruct three-dimensional structures from a stack of 2D slices. At

the same time, traditional 2D techniques are incorporated to accommodate the need for

conventional analysis of 2D slices.

With the growing size of biomedical data sets, due to better resolution provided by the

latest imaging techniques, centralized data bases with high storage capacity are becoming

the norm. The application presented in this thesis has been developed assuming that the

data sets are stored in a central location, making a client-server model the natural choice

for implementation. The data sets are accessed by the server, to which the client connects

to make requests for data. A sub-sampled version of the data set is used in the client side

in order to achieve an acceptable visualization speed and make the experience of exploring

the data set interactive, giving a near real-time response to the user’s actions. However,

this approach brings into question the trade-off between accuracy and interaction speed.

Until high-performance graphics hardware is readily available on the average workstation,

sub-sampling provides an efficient means to achieve acceptable interactive performance.

In order to deal with the delay introduced by the extraction of arbitrary 2D slices

from a biomedical data set, the computation of these slices from the complete data set is

provided by the server, where better computational resources are available, such as the

parallel distributed supercomputer used for testing. By doing this operation in parallel,

45

46

it is possible to improve the interactive experience for the user. This was confirmed

by calculating the speedup provided by the parallel computation, as was discussed in

Chapter 4.

5.1 Discussion

For the exploration of the data in the client side, the main concern is interactivity, therefore

a sub-sampled data set is used. However, the 2D slices extracted from a sub-sampled data

set might not be detailed enough. Since the analysis of 2D slices in medicine is the standard

way of visualization for diagnosis, it is of great importance to preserve the accuracy of

the images. Therefore, it is desirable to use the totality of the data available for the

extracted slice. This computation is done in the server, which has access to the entire

data set. When the computation is done by a single processor, the performance of the

application is crippled. As the size of the data sets increases, excessive amounts of time are

required for the calculation of the cutting plane defeating the goal of interactivity. Doing

the computations in parallel on the server side eases this problem, with performance tests

showing the benefit.

Determination of an appropriate sample rate for the data set used in the client side is

left to the user. Depending on the graphics hardware engine available in the client and

the complexity of the data set, a higher or lower sample rate than the default value would

be required for interactive performance. Finding this optimal sample rate falls beyond the

scope of this project, but implementing an intelligent way of doing this would certainly

prove beneficial. Moreover, in cases where the client is able to handle the entire data set

without a noticeable effect on the interaction, it would be advisable to avoid sub-sampling,

work with the entire data set in the client and reduce communication with the server.

5.2 Future Work

Biomedical imaging and visualization methods have the potential of being exceptionally

powerful tools for clinical diagnosis and treatment, as well as offering the possibility of

reducing the need for invasive clinical procedures. With the continued improvement in

47

3D visualization techniques, scientific exploration and biological investigations stand to

benefit greatly from accurate representations of data where nature of the objects studied

can be better understood through an intuitive exploratory process.

The appeal and acceptance of 3D visualization systems is not only linked with the

advancement of the visualization techniques themselves, but comes hand-in-hand with

the creation of improved interaction techniques and environments. It could be argued

that the future of medical and biological investigations lies in fully immersive, real-time

virtual environments. Virtual environments are defined as ”realtime interactive graphics

with three-dimensional models, when combined with display technology that gives the

user immersion in the model world and direct manipulation.” The key points here are

interaction and immersion. The strength of virtual environments lies in that they allow

an easy to understand presentation and more intuitive interaction with data. Virtual

environments like the CAVE or the Distributed Real-time Interactive Virtual Environment

(UvA-DRIVE) [6]1 could provide such functionality, although it could be argued that it is

unlikely that their use outside a research environment would become widespread. A more

portable and affordable solution could be the Personal Space Station [28], which permit a

more natural interface with the virtual objects through direct handling.

Ongoing research at the section Computational Science of the UvA is focused on

the development of a Virtual Radiology Explorer (VRE) [7] which allows the user to

visualize and explore a patient’s condition and experiment with treatments for vascular

diseases. The work presented in this thesis can be thought as an element in such a system.

The clipping engine is a desktop application, so integrating it into VRE would require a

migration to a virtual environment implying a restructuring of the user interface.

The clipping engine has been used and tested in an academic environment. In real

life, a variety of issues arise when sensitive information, such as medical data sets, is

concerned. Remote access to patient data requires strong security and high-bandwidth is

necessary for the volume of data to be transfered. Grid technology can provide this support

1The UvA DRIVE is a low-end VR system built with commodity hardware developed at Universiteit
van Amsterdam in Asociation with SARA [38]. The system offers performance and features comparable to
high-end systems, such as immersive projection, stereo vision and multi-modal interaction, at a relatively
affordable cost.

48

and implementing the application as a grid service would seem not only convenient, but

necessary.

Some more immediate improvements include direct reading of DICOM files and cutting

of the data set with curved surfaces. The former can be easily accomplished when the

VTK’s reader for DICOM files, vtkDICOMImageReader, becomes available in a stable

release. As it is now, the DICOM files have to be converted to raw data to be loaded by

the application. The imaging data is conserved, but in the conversion process the header

information included in the DICOM file is lost. By reading the DICOM file directly, this

information could be preserved and the conversion step would be eliminated. Extending

the application to include curved surfaces for cutting would enrich the possibilities for

examining the data sets, such as vein irregularities.

Bibliography

[1] 3D-Doctor home page. On the web: http://www.ablesw.com/3d-doctor/. Able

Software.

[2] Ahrens, J., Law, C., Schroeder, W., Martin, K., and Papka, M. A parallel

approach for efficiently visualizing extremely large, time-varying datasets. Tech. Rep.

LAUR-00-1620, Los Alamos National Laboratory, 2000.

[3] Analyze homepage. On the web: http://www.mayo.edu/bir/Software/Analyze/

Analyze.html. Mayo Foundation for Medical Education and Research.

[4] AVS Express home page. On the web: http://www.avs.com/software/soft t/

avsxps.html. AVS Advanced Visual Systems.

[5] Belleman, R. Interactive Exploration in Virtual Environments. PhD thesis, Uni-

versiteit van Amsterdam, 2003.

[6] Belleman, R., and Shulakov, R. Distributed Real-time In-

teractive Virtual Environment (DRIVE) home page. On the web:

http://carol.wins.uva.nl/̃robbel/DRIVE/.

[7] Belleman, R., and Sloot, P. Simulated vascular reconstruction in a virtual

operating theater. In Computer Assisted Radiology and Surgery (Excerpta Medica,

International Congress Series 1230) (Berlin, Germany, June 2001), Elsevier Science

B.V., pp. 938–944.

[8] Brett, M., and Rorden, C. The analyze data format. On the web:

http://www.mrc-cbu.cam.ac.uk/Imaging/analyze fmt.html. MRC Cognition and

Brain Sciences Unit. University of Cambridge.

[9] Castro, S., Konig, A., Loffelmann, H., and Groller, E. Trans-

fer function specification for the visualization of medical data. Tech.

rep., Vienna Institute of Technology, March 1998. On the web:

http://www.cg.tuwien.ac.at/research/TR/98/TR-186-2-98-12Abstract.html.

49

50

[10] Chittaro, L. Information visualization and its application to medicine. Artificial

Intelligence in Medicine 22, 2 (2001).

[11] Clunie, D. A. Dicom3tools software. On the web:

http://www.dclunie.com/dicom3tools.html.

[12] Cramer, H. Exploratory interview report 1: Medisch spectrum twente hospital.

Universiteit van Amsterdam, 2003.

[13] Cramer, H. Report of meeting on radiotherapy planning at Erasmus Medisch Cen-

trum. Universiteit van Amsterdam, 2003.

[14] Distributed ASCI Supercomputer 2 (DAS-2) home page. On the web:

http://www.cs.vu.nl/das2/.

[15] dicom2 home page. On the web: http://www.barre.nom.fr/medical/dicom2/.

Sebastien Barre.

[16] Hasse, H., Gobel, M., Astheimer, P., Karlsson, K., Schroder, F.,

Fruhauf, T., and Ziegler, R. How scientific visualization can benefit from virtual

environments. CWI Quarterly (1994), 159–174.

[17] IBM Visualization Data Explorer home page. On the web:

http://www.research.ibm.com/dx/. IBM Research.

[18] Interfile home page. On the web: http://www.keston.com/Interfile/interfile.htm.

The Keston Group.

[19] Johnson, C., Parker, S., Hansen, C., Kindlmann, G., and Livnat, Y. Inter-

active simulation and visualization. IEEE Computer (December 1999).

[20] Kitware. Vtk Class Documentation. On the web:

http://www.vtk.org/doc/nightly/html/classes.html.

[21] Koning, A. H. J. Applications of volume rendering in the CAVE. In Paralleldator-

centrum Seventh Annual Conference Proceedings: Simulation and Visualization on

the Grid (December 1999).

[22] Law, C. C., Schroeder, W. J., Martin, K. M., and Temkin, J. A multi-

threaded streaming pipeline architecture for large structured data sets. In Proceedings

of Visualization ’99 (October 1999), IEEE Computer Society Press.

[23] Ligier, Y., Ratib, O., Logean, M., and Girard, C. Osiris : A medical image

manipulation system. M.D. Computing Journal 11, 4 (July-August 1994), 212–218.

51

[24] Lorensen, W. E., and E.Cline, H. Marching Cubes: A high resolution 3d surface

construction algorithm. ACM Computer Graphics 21, 4 (1987), 163–169.

[25] Mazda home page. On the web: http://www.eletel.p.lodz.pl/cost/software.html.

Technical University of Lodz.

[26] Merks, R. Branching Growth in Stony Corals: A modelling approach. PhD thesis,

Universiteit van Amsterdam, 2003.

[27] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The

International Journal of Supercomputer Applications and High Performance Comput-

ing 8 (1994).

[28] Mulder, J. D., and van Liere, R. The personal space station: Bringing in-

teraction within reach. In Proceedings of VRIC 2002 (June 2002). On the web:

http://homepages.cwi.nl/̃robertl/papers/2002/laval/paper.pdf.

[29] NEMA. Digital imaging and communications in medicine (DICOM). Tech.

rep., National Electrical Manufacturers Association, 2001. On the web:

http://medical.nema.org/dicom/2000.html.

[30] Osiris home page. On the web: http://www.expasy.ch/www/UIN/html1/projects/

osiris/osiris.html. Digital Imaging Unit. University Hospital of Geneva.

[31] Ozkurt, A. Interactive Medical Volume Visualization for Surgical Operations. PhD

thesis, Dokuz Eylul Universitesi, Turkey, 2001.

[32] Papyrus home page. On the web: http://www.expasy.ch/www/UIN/UIN.html. Dig-

ital Imaging Unit of the University Hospitals of Geneva (Switzerland).

[33] Portable Batch System home page. On the web: http://www.openpbs.com. Altair

Grid Technologies, LLC.

[34] Ratib, O., Hoehn, H., Girard, C., and Parisot, C. Papyrus 3.0 : Dicom

compatible file format. Med. Informatics 19(2) (1994), 171–178.

[35] Robb, R. A. Handbook of Medical Imaging: Processing and Analysis. Isaac N.

Bankman, Academic Press, 2000, ch. Three-Dimensional Visualization in Medicine

and Biology, pp. 685–712.

[36] Rorden, C. The DICOM standard. On the web:

http://www.psychology.nottingham.ac.uk/ staff/cr1/dicom.html.

52

[37] Rorden, C. ezDICOM home page. On the web:

http://www.psychology.nottingham.ac.uk/staff/cr1/ezdicom.html.

[38] SARA home page. On the web: http://www.sara.nl.

[39] Schmidt, F. Development of a Time-Resolved Optical Tomography System for

Neonatal Brain Imaging. PhD thesis, University College London, 1999. ch. An

Overview over Existing Medical Imaging Techniques. pp. 35-44.

[40] Schroeder, W., Martin, K., and Lorensen, B. The Visualization Toolkit: An

Object-Oriented Approach To 3D Graphics. Prentice Hall, 1997.

[41] Shamonin, D. VtkQt. On the web: http://carol.wins.uva.nl/̃dshamoni/VtkQt.

[42] SimpleDICOM home page. On the web: http://www.radiology.upmc.edu/Public/

public resources/software/index.html. UPMC Health Systems. University of

Pittsburgh.

[43] Spitzak, B. Fast light toolkit homepage. On the web: http://www.fltk.org/.

[44] Trolltech. Qt homepage. On the web: http://www.trolltech.com/products/qt.

[45] van Herk, M., and Zijp, L. Conquest DICOM server. On the web:

http://www.xs4all.nl/̃ingenium/dicom.html. The Netherlands Cancer Institute.

[46] Vtk home page. On the web: http://www.vtk.org. Kitware.

[47] XKnife RT home page. On the web: http://www.radionics.com/products/rt/xkrt/.

Radionics. Tyco Healthcare Group LP.

