Accuracy of internal fields in volume
integral equation simulations of light scattering

Alfons Hoekstra, Jussi Rahola, and Peter Sloot

We studied the accuracy of volume integral equation simulations of internal fields in small particleg
illuminated by a monochromatic plane wave as well as the accuracy of the scattered fields. We obtained
this accuracy by considering scattering by spheres and comparing the simulated internal and scattered
fields with those obtained by Mie theory. The accuracy was measured in several error norms (e.g., mean
and root mean square). Furthermore, the distribution of the errors within the particle was obtained,
The accuracy was measured as a function of the size parameter and the refractive index of the sphere and 1

N as a function of the cube size used in the simulations. The size parameter of the sphere was as large ag

’ 10, and three refractive indices were considered. The errors in the internal field are located mostly on 1

the surface of the sphere, and even for fine discretizations they remain relatively large. The errors

depend strongly on the refractive index of the particle. If the discretization is kept constant, the errors

depend only weakly on the size parameter. We also examined the case of sharp internal field resonances

in the sphere. We show that the simulation is able to reproduce the resonances in the internal field,

OCIS codes:

1. introduction

The role of large-scale simulations in research on
light scattering by arbitrarily-shaped particles in the
resonance regime (i.e., with dimensions comparable
with the wavelength of the incident light) has gained
increasing importance over the past decade; see e.g.,
Refs. 1-3. The best known, most widely used, and
successful methods include the T-matrix approach,*5
the generalized multipole technique,® the multiple-
multipole method,” and volume integral-based
methods, such as the discrete dipole approximation3
(DDA) and the volume integral equation formalism
(VIEF; see Subsection 2.A below).2-11

As in all simulations we must have a good under-
standing of the errors that are introduced by the
underlying model and by the numerical procedures.
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although at a slightly larger refractive index. © 1998 Optical Society of America
290.0290, 290.5850. .

Ideally, a theoretical error analysis is combined with
computations of errors, and model calculations are
compared with real field experiments. All this is
needed if we are to be able fully to control errors in a
simulation. Unfortunately, in many cases we must
do with much less. In our view the minimum set of
error analysis should include computations of errors
by comparison of simulation results with a set of
known data stemming from, e.g., analytical results in
special cases. Furthermore, we should have a pro-
cedure to determine the sensitivity of the simulation
results in model parameters or numerical parame-
ters. For instance, if simulations are performed ona
grid, we should be able to check the convergence of
the results by decreasing the grid dimensions and
comparing the new results with previous results for
coarser grids.

Simulations of elastic light scattering should of
course obey the rules described above. Some au-
thors were able to do a more-or-less complete analy-
sis. For example, Hage and Greenberg, “{h"
simulated scattering by small porous cubes by usiné
the VIEF method, compared their method against
analytical results (Mie scattering) and against field
experiments (microwave scattering by porous cubes)h
and they analyzed the sensitivity of the method for &
number of parameters, such as the grid spacing.™
However, usually the ideal set of error analysis T®
sults is not available. In many cases, simulati®®
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results for spheres are compared with Mie calcula-
tions in a limited range of size and refractive index.
In volume integral methods for scattering simula-
tions, which are covered more extensively in Section 2,
a formal solution of Maxwell’s equations in the fre-
quency domain is obtained numerically by the method
of moments. The solution is the internal electric field
- in the particle, which we subsequently use to calculate
- cross sections and the scattering matrix of the particle.
* Error analysis in this case has almost always concen-
* trated on the observable quantities, i.e., the scattered
- fields and cross sections (for a small overview, see Sub-
- section 2.B). However, the basic physical quantity
. that is calculated is the internal field.
The errors in the scattered fields are a result of the
errors in the internal field. Therefore, to under-
" stand better the behavior of errors in the volume
integral method and if necessary to improve the
' method, an error analysis on the internal fields is also
pecessary. Furthermore, in some cases the internal
field is the wanted quantity (see, e.g., Refs. 14-18),
and in that case one must have an error analysis of
he internal field simulations. Finally, a relation-
“ship between internal field resonances and the spec-
trum of eigenvalues of the interaction matrix exists.
The spectrum in its turn determines the convergence
of the iterative methods and the numerical errors in
solving the method of moments equations.’® A de-
tailed and systematic study of internal field calcula-
tions in volume integral methods, and the associated
er ors, is therefore desirable.
In this paper we present computations by the VIEF
ethod of internal fields for spheres illuminated by
ane waves and compare the results with Mie cal-
ations. As the range of our calculations is more
extensive than in any publications of which we are
aware, we report, in addition to the errors in the

lernal and scattered fields. Next, for three refrac-
ive indices, errors are obtained as a function of the
ze parameter of the sphere, up to a size parameter
0F10. Finally, we study the special case of an inter-
Bl field resonance in the sphere. Here we keep the
Ze parameter of the sphere fixed and tune the

- Theory

s Volume Integral Equation Formalism

Lthis section we introduce the VIEF of electromag-
“UCscattering. First, the volume integral equation

and its discretization are described. Next, we show
how the resultant linear equations can be solved ef-
ficiently. We have chosen to work with the volume
integral equation instead of the surface integral
equation because the former permits a simple de-
scription of the scatterer in terms of cubic computa-
tional cells. Furthermore, it offers the possibility of
computing scattering by inhomogeneous and aniso-
tropic scatterers, and efficient numerical methods for
solving the linear system in the volume integral
equation formalism exist.

The volume integral equation of electromagnetic
scattering is expressed as (for a derivation see, e.g.,
Refs. 9-11)

E(r) = Ep,(r) + &° f [m(r)* - 1]G(r, r') - E(x")d’r,
\'4

(1)

where E(r) is the electric field inside the particle,
E;.(r) is the incident field, & is the wave number, m
is the complex refractive index, G is the dyadic
Green’s function:

; \AY}
G, v) = (1 + ?) (Ir = =),

and

expl(ikr)

8(r) = 4kr

In the three equations above, we assume that the
electric field has the harmonic time dependence
exp(—iwt).

The integral equation can be discretized in various
ways. The simplest discretization uses cubic cells
and assumes that the electric field is constant inside
each cube (the piecewise-constant approximation).
By requiring that integral equation (1) be satisfied at
the centers r; of the N cubes (the point-matching or
collocation technique) and by using simple one-point
integration, we end up with the equation®.10

{1 — [m(r)?* - 1](k3M - %)}E(r,)

E[m

J*I

- 11T; - E(ry),

lnc

wherei = 1,..., N, V; is the volume of the compu-
tational box, M is given by

M= 3_} {1 - ikd(3/4m)"*]explikd(3/4m)""] = 1},
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d is the length of side of the computational box, and
T,; is given by

e 10
T, = XI:(;%)

1Y

(o} + ipy — 11

exp(ipy) : .
L

py = klr; — xj,
B;= (- )/ —xj.

The factor M arises from the analytica) integration of
the self term from use of a sphere whose volume is
equal to the volume of the cube.®® The matrix T
can be interpreted as a dipole radiation term; i.e., the
cubes couple with one another through a dipole radi-
ation field.

To improve the accuracy of the VIEF, more-refined
discretization schemes could be used. The electric
field inside each computational cube could be ex-
panded in higher-order polynomial basis functions or
vector spherical waves, as was done by Peltoniemi.2¢
Instead of from the collocation method, the system of
linear equations could be obtained from the Galerkin
or the least-squares method.

When the point-matching technique described
above and the piecewise-constant basis functions are
used, the VIEF is mathematically and computation-
ally similar to the DDA 821.22 Lakhtakia has shown
that the DDA and the VIEF are mathematically
equivalent, except for the self term.23.2¢ In the DDA
many formulations for the self term exist (see, e.g.,
Ref. 8), and some of them are quite similar to the
VIEF. In practice, on many occasions DDA and
VIEF simulations result in almost comparable nu-
merical values. One of the advantages of the VIEF
over the DDA is that for the former no effective-
medium theories are needed and thus no free param-
eters are introduced.

The VIEF requires the solution of a large system of
linear equations in which the coefficient matrix is
complex symmetric. The efficient solution of these
equations by.various iterative solvers has been stud-
ied by Rahola.?® The quasi-minimal residual
method of Freund2s turned cut to be best suited to
this problem.

The computationally most intensive operation in
the iterative solution of dense linear systems is the
computation of the matrix—vector product. For our
scattering calculations we can compute the matrix—
vector product without actually forming the coeffi-
cient. When a volumetric scatterer is enlarged to a
cube by addition of ghost cubes, the matrix—vector
product reduces to a three-dimensional (3D) convolu-
tion that can be computed efficiently with a 3D fast
Fourier transform.2?” This is the method that we
used in our test calculations, The fast Fourier
transform was also used in the DDA calculations by
Hoekstra et al. to compute scattering by use of models
with as many as seven million dipoles.282¢
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B. Some Previous Results of Error Analysis

The VIEF and the DDA are similar, and therefopgy

introduce previous studies of the accuracy of p.$
methods. As far as we know, no previous rege
has addressed the accuracy of internal fields obt
with VIEF simulations of scattering. In all caseg
accuracy of scattered fields was measured by comp,
ing them with analytical results, with real ey
ments, or with other calculations. e

Draine has shown a limited set of results for poja
ization of the dipoles in DDA simulations of sphe i
in the long-wavelength limit.3¢ He shows that th 8
errors in the polarization (direction and magnitug £
increase with increasing refractive index, decreagyg
with smaller dipole sizes (i.e., with a finer discretiza
tion), and appear to be largest near the surface of the}
sphere. These errors are attributed to the surfacsy
granularity of the model and to less-effective scres
ing of the dipoles from the incident field.

Hage and Greenberg compared VIEF results f
scattered intensity and linear polarization for x = 13
3, 5 and m = 1.33 with Mie calculations.2213 n g]| §
cases they applied a model containing 1064 cubes'§
They therefore needed to increase the size of the
cubes to increase the size parameter of the sphere.3
This requirement makes it, in our view, difficult to}
interpret the results, which show a decreasing aceu-
racy in the VIEF for increasing size parameter, §
Hage and Greenberg aiso compared C,,, results from §
the VIEF with those of DDA calculations, using 3
Draine’s DDA formulation of 1988.3° Hage and 2
Greenberg showed that the DDA and the VIEF result
in a comparable accuracy; however, for larger cube
sizes the VIEF performs better. E.

Recently Draine and Goodman showed that a new #
formulation of the DDA, which uses the lattice dis- 73
persion relation to calculate the polarizability of the 3
dipoles, performs better than the original DDA and 3
also gives better results than the VIEF.2! They re-
ported performing an extended set of tests of the °J
accuracy of the DDA by use of the lattice dispersion
relation to caiculate cross sections. In all cases a
sphere was modeled with 17,904 dipoles (cubes), and -3
again the size parameter of the sphere was changed -
by changing the size of the dipoles. The main con- -4
clusion is that for small values of m the DDA and the 3
lattice dispersion relation (and also the VIEF) yield
accurate results (<2%) for |m|d/\ < 0.1, where d is
the size of a single dipole in the DDA or is the cube
size in the VIEF. Larger values of m result in some-
what smaller accuracy, and for extremely large ab-
sorption the errors become much larger. Especially
for C ., the errors can be as large as 20%. The exact
source of these errors remains unclear. These re-
sults, however, were restricted to total cross sections. :

In Ref. 8 Draine and Flatau presented more results
on the accuracy of the DDA and also for errors in  *
differential scattering. Root-mean-square (rms) er-
rors in the differential scattering were shown to be of
the order of a few percent, provided that [m|d/A <
0.1. However, for specific scattering angles the er-
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could be as large as 15%. All the results of
ine and co-workers were in the range 1 = x < 7
im=133+00l,m=17+01,m=2+iand
~ 3 + 4i. They did not show results for other
% tiering matrix elements than S,,, except for the
" of a simulation of two spheres in contact, where
ke results were reported.
E “An important parameter in the accuracy of the
bUTEF and the DDA is the size of the cubic cells (or
'poles). Many authors have tested this dependence
2 roce. e.g., Ref. 8 and references therein and Refs. 31
i .d 32), and they all conclude that accurate results
Fean be obtained if Re(m)d/Ax < 0.1. Furthermore,
Ethe effect of surface granularity on the accuracy of
Egimulations of the S, scattering matrix element was
kyiscussed in Ref. 32, Therefore here we take the size
Eof the cubic cells in the VIEF simulations as a sepa-
2 rate parameter and investigate its influence on the
internal fields while keeping other parameters fixed.

b:c.  Resonances in Mie Scattering

F When we are computing the internal and scattered
E clectric fields for a sphere, the fields typically change
~-moothly when the size of the sphere or the index of
efraction is varied. However, some combinations of
f-values of the size parameter and the index of refrac-
tion give rise to a sharp resonance in the Mie solution,
f- where a single mode of the vector spherical harmon-
f ics is greatly amplified. The resonance clearly
E shows up in the internal field and cross sections. We
& want to test whether the VIEF is able to reproduce
¥ such resonances.

' In this section we first give some background in-
g formation on the resonances. In Subsection 4.D we
. show how the VIEF calculations behave in the neigh-
horhood of a resonance. The resonance is a fairly
difficult test for the VIEF, as the resonance peaks can
be quite narrow and thus difficult to locate exactly
and because the coefficient matrix becomes singular
at a resonance.

In the Lorenz—Mie solution the incident, internal,
and scattered fields are expanded in terms of the
vector spherical harmonics; see, e.g., Bohren and
Huffman.3® Consider scattering by a sphere with
size parameter x and refractive index m. The Mie
coefficients of the scattered field are

o = Mbn(ma, () — b2, ()
" omiimxE, (x) — E{w, (mx)

_ U, (ma,’ (x) — ma,(x i, (mx)
b (mx)E,’ (x) — mE (2, (mx)

b,

and the coefficients for the internal field are

o = m,(x)E,'(x) — m&, (), (x)
T (mx)E, (x) ~ mE W, (mx)

_ mu,(0)E,' (%) — mE, (), (mx)

" mi(ma)g, (x) — E(x0, (mx)

Here the Riccati—Bessel functions are
£,(x) = xh,(x),

where j,(x) and A, (x} are the spherical Bessel and
Hankel functions, respectively.

Resonances arise when the denominater in the co-
efficient a,, b,, ¢,, or d,, becomes small. Note that
the denominators of ¢, and d,, are identical, and so
are those of &, and ¢,. This means that an internal
field mode (c, or d,,) and a scattered field mode (b, or
a,) are resonant for the same combination of x and m.

It has been shown that the denominators can be
exactly zero only if either x or m is complex. Fur-
thermore, if x 15 real then m must have a negative
imaginary part corresponding to negative absorp-
tion.343% However, in some cases the resonance can
occur if x is real and the negative imaginary part of m
is small. In these situations the resonance also ap-
pears if we replace m by its real part, and the sharp-
ness and strength of the resonance are determined by
the imaginary part of m. A similar reasening ap-
plies if we keep m real and look at complex values of
X

W, (x) = xj,(x),

. If m and x are real, we can write the coefficients a,,,
b,, c,, and d,, in the following form:

a,(x, m) = Anlz, )
m A (x,m)—iC,(x, m)’
B.(x,m)
bl m) = g ) — Dz, m)
im
™) = B e m) - D, m)
dy(x, m) = il

A lx,m) —iC(x, m)’

The functions A,, B,, C,, and D, are real. In the
resonance positions either C, = 0 or D,, = 0, forcing
a,orb, tobel. If inthat case, A, or B, is small, the
internal field at a resonance can become large.

Resonances show up as sharp peaks in graphs of
the extinction coefficient as a function of the size
parameter. Usually authors use relatively large
size parameters when they study the resonances (see,
e.g., Ref. 36 and references therein). However, be-
cause of computer memory and CPU time limitations
we were, in our simulations, forced to keep the size
parameter limited. Therefore we decided to look for
resonances that have a small, fixed size parameter.
We now find the resonances by tuning the refractive
index. Therefore, in contrast with other authors, we
study the extinction coefficient as a function of the
refractive index to identify the resonances.

We have chosen to analyze scattering near two
resonances. The a,;, d; mode becomes resonant if
x = 4.875 and m = 2.3009279-0.002757527.. Sim-
ilarly, the bg, ¢y mode becomes resonant for x = 4.875
and m = 2.3534695-0.000500169%. As the a-type
modes are TM fields and the b-type modes are TE
fields,3? the first resonance is identified as a seventh-
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order TM resonance, and the second as an eighth-
order TE resonance.

In the simulations we assume a real refractive in-
dex (i.e., set the small imaginary part to zero). As
will be shown in Subsection 4.E, these values for x
and m give rise to strong resonances.

3. Methods

We measure the accuracy of the internal fields ob-
tained by VIEF by simulating scattering by spheres
and comparing the results with Mie calculations. A
sphere is discretized into N cubes. The internal field
is calculated by numerical solution of Eq. (1), as was
described in Subsection 2.A. The internal field is
obtained on the center point of each cube. This field
is denoted Expg, where the superseript i refers to the
field in the center of cube ;. The exact Mie solution
is also calculated in the centers of the cubes and is
denoted E,y;.. The difference field is defined as

Eig = Eiy. — Eings. (2)

This difference field is the basis on which we obtain
values for the accuracy of the internal field. In all
simulations we assume that the sphere is centered at
the origin and that the incident field is an x-polarized
plane wave traveling in the positive z direction.

The model parameters are the size parameter x
and the complex refractive index m of the sphere and
the size of cubes in the VIEF method, d = \/cpwl,
where cpwl means cubes per wavelength. In what
follows, we assume that the wave number & = 2x/\
is set to 1 (i.e., the size parameter x is equal to the
radius r of the sphere). Furthermore, the size of the
cubes is always specified in terms of the cpwl param-
eter. The accuracy of the internal and scattered
fields is measured as a function of these three param-
eters.

In VIEF simulations the sphere is modeled with N
cubic cells. The cubic cells are positioned upon a
grid as described, e.g., in Ref. 8, and the radius of the
sphere is such that it has the same volume as the
total volume oceupied by all cubic cells in the model of
the sphere,

The data sets are analyzed in a number of different
ways. The first method is by visualization. The
electric fields E; (where j means the subscript Mie,
VIEF, or diff) are 3D complex vector fields and are
therefore difficult to visualize. A first approach is to
calculate the energy density:

si = (E)*E, 3)

where * denotes complex conjugation. This scalar
field is a measure of the intensity of the electric field
and can be plotted in color plots in a full 3D projection
or in planes through the sphere. The last-named
method was applied by many other authors (see, e.g.,
Refs. 37 and 38). In this paper we present a number
of examples of such visualizations. Ancther way to
visualize the data is to plot vector fields, which we
obtain by taking either the real or the imaginary
parts of E;.
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In this paper a number of examples of interna] iy -
visualizations are shown as gray-scale plots. ;
have prepared an accompanying document, avajlyp 8
on the World Wide Web, from which the color ye, 2
sions of the figures in this paper and a number of 3
other examples of internal field visualizations cap, be
obtained.3® BS

A final technique that has proved useful is tg plot 3
the amplitude of the electric fields as a function of the 4
distance to the center of the sphere. Although p 3
azimuthal information remains, such plots give much 3
information with respect to the distribution of, eg. A
the errors in the internal field. : o

Although visualization is an indispensable tool i}
helping in our understanding of the data sets, we algy 3§
need quantitative error norms. The great amount of 3§
data (here N can be as large as 10°) forces the use of
statistical error norms. | i

Define the absolute error in the internal field on g 4
point in the sphere as 3

Elabs = |E:‘llﬂ‘|
and the relative error as
Eret = [Eiisd /B

Next, for both absolute and relative errors the mini-
mum, the maximum, the mean, the standard devia-
tion, and the rms errors over all cube positions are
calculated, yielding a good amount of data reduction.
As is shown in Section 4, in most cases the rms,
combined with the maximum error, provides good
insight inte the distribution of the errors.

We briefly discuss the error analysis of the scat-
tered fields. The nonzero elements of the scattering
matrix, i.e., Sy, 815/S1q, S33/S11, and S,,/S,;, are
calculated as a function of the seattering angle, usu-
ally in steps of 1 deg. Note that 8,5, S35, and S;, are
all normalized with §,;. In this way these elements
are always between 1 and —1. Next, for each scat-
tering angle the relative error in S,, is calculated, as
is the absolute error for the other three (normalized)
matrix elements. Again, from the resultant sets of
errors the minimum, the maximum, the mean, the
standard deviation, and the rms errors over the scat-
tering angles are calculated. Finally, the extinction
coefficient C,,,, the absorption coefficient C,,,, and
the scattering coefficient C,_,, are calculated. From
these values the absolute errors and the relative er-
rors between the VIEF and Mie results are obtained.

4. Resuits

A. Introduction

We performed three types of experiment. First we
investigated the convergence of VIEF simulations in
the limit of small discretization. Spheres with con-
stant size parameters and with three different refrac-
tive indices were considered. As we varied the sizes
of the cubes, we compared the VIEF results with the
exact Mie results. Next we investigated the accu-
racy of VIEF simulations as a function of the size




._ s 1. Overview of Size Parameter and Refractive Index of the Three
Spheres Studied in This Section®

cphere Size Refractive
S mber Parameter Index cpwl cpwl/Re(m) N
= 9 105 15 143 41472
- 9  133+001 20 150 98512
5 25+14i 35 140 90,536

]

he cpwl parameter is the cubes-per-wavelength parameter
od in the VIEF simulation, and N is the number of cubes in the

MEF simulation.

arameter of the spheres, also for three different re-
eactive indices. Finally, the behavior of VIEF sim-
ilations near a structural Mie resonance was
mvestigated. In all cases the accuracy of the inter-
8al and scattered fields was obtained, as described in
Section 3, and all data sets were analyzed by the
methods of Section 3. Here we can present only a
mall part of all data sets.

In all experiments three refractive indices, m =
05, m = 1.33 + 0.01i, and m = 2.5 + 1.4i, were
gsed. In this way we covered the range of very small
efractive index (for, e.g., biological particles), mod-
rate refractive index (water, dirty ice), and very high
efractive index with large absorption (for, e.g.,
raphite). All size parameters in the experiments
ere in the range 1-10. The largest VIEF models
pntained of the order of 10° cubes.

In Subsection 4.B three case studies of VIEF sim-
ilations are presented in some detail. The goal is to

1. Energy density for the internal field obtained by Mie calculation.

ig. 1. Left|sphéié 1 (x|= 9, nhl = 1.08, plotted if] the y|4 0.2
lddle, sphere 2 (x = 9, m = 1.33 + 0.01i, plotted in the y = 0.157 plane); ri sphere 3|(x = = 2.5 + [1l.4i, pl in (the
ane).  All scales in the plots are linear.

provide insight into the wealth of information that is
generated in the experiments and to prepare for what
follows. In Subsection 4.C the results of the conver-
gence studies are presented, and in Subsection 4.D
those for the size dependence are given. Finally, in
Subsection 4.E the results for the resonances are pre-
sented.

B. Three Case Studies

Here we consider the internal and scattered fields of
three different spheres (see Table 1). The number of
cubes per wavelength for the VIEF simulations is
chosen such that cpwl/Re(m) is approximately the
same for all three spheres.

In Fig. 1 we show the internal field for the spheres
of Table 1 by plotting the energy density in a plane
through the sphere in a surface plot. Only the Mie
results are drawn. The energy density of the differ-
ence field is shown in Fig. 2. Note that we do not
plot the energy density exactly through a symmetry
plane (ie., the y = 0 plane) because in the VIEF
simulation the cubes are arranged symmetrically
about the x, y, z = 0 planes, and the VIEF calculates
the electric fields at the centers of the cubes. In fact,
we plot the energy density on the plane closest to the
y = 0 plane. ‘

One can observe three typical internal field distri-
butions (see Fig. 1). For a small refractive index the
internal field is almost equal to the incident field.
The energy density of the incident field, which is a
plane wave, is equal to 1 everywhere. As can be

Fig. 2. Same as in Fig. 1 but for the energy density for the difference field defined in Eq. (2).
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Fig. 3. Amplitudes of top, the internal Mie field and bottom, difference field as

1; middle, sphere 2; right, sphere 3.

seen from Fig. 1, for sphere 1 the energy density is
everywhere very close to 1. Also, by looking at the
color density plots and the vector plots (see the WWW
site 39) we can see that the internal field in this case
is a slightly distorted plane wave. For the larger
refractive index of sphere 2 we see a clear difference
between the internal field and the incident field, and
we observe a typical interference peak at the far end
of the particle. Finally, for sphere 3, with large ab-
sorption, we can see that the internal field is very
small, except at the surface. Furthermore, the fields
are strongest at the front end of the particle. These
types of internal field are in agreement with the cases
surveyed by Dobson and Lewis.3? As can be inferred
from Figs. 1 and 2, in all three cases the errors in the
VIEF internal fields are largest on the surface of the
sphere.

Another way to look at the internal field is to plot
its amplitude, and the amplitude of the difference
field, as a function of the radial distance in the
sphere, as demonstrated in Fig. 3. Again, the three
different types of internal field distribution are
clearly seen. Also, the distribution of the errors in
internal VIEF field is now clearly visible. Looking
at the absolute numbers in Fig. 3 already suggests

(See Table 1 for properties of the spheres.)

1 2 3 4

functions of radial distance in the sphere. Left, spherg3

that the absolute and the relative errors increase’
with increasing refractive index of the spheres,

Table 2 lists the statistical averages of the absoluts %
and the relative errors in the internal fields (as de- &
fined in Section 3) for the three spheres. In all our 3
experiments the mean error and the standard devi- §
ation are comparable and the rms is usually some- 2
what larger. The minimum error is usually much .
smaller than the mean error. The maximum error 3
usually is much larger than the rms. Listing the H
rms and the maximum error provides sufficient sta- &
tistical information with which to interpret the data -3
sets. 3

Finally we turn our attention to the scattered 3
fields. Table 3 lists the cross sections obtained by 3
VIEF simulations and by Mie scattering and the rei- =
ative errors. Figures 4—6 show the scattering ma- '3
trix elements as a function of the scattering angle for -3
both VIEF and Mie calculations. The agreement be-
tween Mie and VIEF calculations is generally good.
Only for the large-refractive-index case (sphere 3; see —
Fig. 6) does the VIEF seem to produce somewhat
larger errors, especially for the S),, Sg3, and S, el
ements of the scattering matrix. Note, however,
that Sy, is drawn on a logarithmic scale, which makes

.

PRI

Table 2. Errors in the VIEF Simulations of the Internal Fields for the Spheres Defined in Table 1¢

Absolute Error Relative Error (%) i
Sphere
Number Min Mean SD RMS Max Min Mean SD RMS Max
1 9 x 1075 3 x 1073 4 x107% 5x 1073 0.03 0.09 0.3 0.4 0.5 34
2 1x10°3 0.02 0.02 0.03 0.5 0.1 1.9 2.0 28 19
3 2x107¢ 002 0.03 0.04 0.35 0.9 21 12 23 120

“Error norms are shown for absolute and relative errors

» as defined in Section 3; Min is the minimum error in the internai field, Max

is the maximum error; Mean is the mean error averaged over all cubes and SD is the associated standard deviation; rms is the

root-mean-square error calculated over all cubes.

8488 APPLIED OPTICS / Vol. 37, No. 36 / 20 December 1998



3. Scattering Cross Sections for Spheres i-3 for Mie Calculations and VIEF Simuiations and Relative Errors®

. Tabie
o 1/—-—_7
4 Cext C seu Cah-‘
Sphere
Number Mie VIEF Error (% Mie VIEF Error %! Mie VIEF Error (%!
1 100.19 100.14 0.05 100.19 1806.14 0.05 G ¢ 0
2 697.5 698.0 0.07 607.9 608.8 © 0l 89.6 89.2 0.5
3 207.3 210.4 1.5 1184 118.0 0.3 88.5 924 4.0

——
aproperties of spheres are defined in Table L.

it difficult to assess the errors by visual inspection of

the figures.
In Table 4 the statistical errors over the scattering
angles {only rms and maximum} are shown for the

scattering matrix elements. The table shows that
for the three spheres the results are comparable, ex-
cept for the Sy, element. For this element sphere 3
clearly has larger errors. The numbers in Table 3,

pol
log 811 1
3
. :.;i v'[\ - ° V w T 9o CELI e T
ige i L T
-3 -1
533 534

=3
wn
o

45 90

A
T

i .

Fig. 4. Scattering matrix elements as a function of scattering angle for sphere 1; pol is defined as ~8,;2/811; 533 (833} and S34 (Sg,) are
normalized by 811 (S;;). Selid curves, Mie results; dashed curves, VIEF results.

leg S11 pol

R
<

-1

Fig. 5. Same as Fig. 4 but for sphere 2.
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Fig. 6. Same as Fig.

in combination with Figs. 4—86, show also that we
have to be careful in interpreting the numbers. For
example, the S,,/5;, elements of the scattering ma-
trix for spheres 2 (Fig. 5) and 3 {(Fig. 6) have compa-
rable statistical error norms, although the figures
suggest that the result for sphere 2 is better than for
sphere 3. We should realize that in case of a sharp
minimum or maximum, as for the polarization of
sphere 2, a slight error in the position of the extre-
um can result in relative large differences between
the Mie and VIEF functions and thus in relative large
rms values,

In what follows we report rms values for the errors
in the scattéring matrix. We must, however, keep in
mind, as in the example above, that two equal rms
values can be due to different phenomena (i.e., a
slight overall error versus large errors located near
certain scattering angles). Therefore in a detailed
interpretation of the statistical error norms it is al-
ways necessary to go back to the original data.

C. Convergence

Here we test the convergence of VIEF simulations
with respect to grid refinement. For a number of

Tabie 4, Statistical Errors over the Scatiering Angles (RMS and Max)
for the VIEF Simuiations of the Scattering Matrix for the Three Spheres
from Table 1°

pol =
811 _Slz/sn Sss/su Sm/su
Sphere RMS Max
Number (%) (%) RMS Max RMS Max RMS Max
1 12 37 002 010 003 018 002 0.17
2 7.4 35 004 015 004 026 004 017
3 6.5 15 005 012 0.05 0.17 011 o022

*The error norms for § 11 are computed from the relative error at,
each scattering angle. For the other matrix elements the errqrs
are ahsolute.
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4 but for sphere 3.

spheres the number of cubes per wavelength is grad-
ually increased and the results are compared with
Mie calculations, The convergence is tested for the
same three refractive indices that were used in Sub-
section 4.B (see Table 1) and for three different size
parameters (x = 3,5,9). The internal fields in these
convergence tests are all comparable with those
shown in Fig. 1 and 3. The errors in the internal
fields also behave simiiarly to those in Figs. 2 and 3.
Therefore here we present only the errors of the in-
ternal fields in terms of the statistical error norms:
First, for one representative case all measured sta-
tistical error norms are presented. Then the results
of all experiments are summarized in terms of the
rms and maximum norms,

The cpwl was increased to a value at which the
model contains approximately 10° cubes. This is the
maximum number that we could handle, in terms of
available computer memory and computer time.
For the x = 3 particle the maximum cpwl was 60, for
x = b it was 35, and for x = 9 it was 20. The min-
imum cpw! was 10 in all cases,

As a representative case we first consider a sphere
withx = 5 and m = 1.33 + 0.01i. In Fig. 7 the
absolute and relative errors in the internal field ob-
tained by the VIEF are shown as functions of cpwl.
The same behavior of the errors as functions of cpwl
was observed in all the other experiments that we
performed in thig study. The maximum error is
more-or-less constant and certainly does not decrease
with increasing cpwl. These maximum errors in the
internal field are always located on the surface of the
sphere. All other statistical €ITor norms (minimum,
mean, standard deviation, and rms) show a mono-
tonic decrease with increasing cpwl.

The behavior of the errors in the cross sections and
in the scattering matrix is somewhat different in the
sense that here the maximum error also decreases as
the discretization of the sphere is made finer. Asan

R 1L TN




jﬁmction of epwl.
grviations. Dashed curves, the rms.

B mple we show, in Fig. 8, the relative errors in S,
Phd the cross sections. As was already discussed in
Eubsection 4.B, it is sufficient to know the rms and
. maximum error to gain good insight into the av-
Frage errors.  Figures 7 and 8 show this even better.
Firom now on we therefore report only rms and max-
[mum errors.
E As was already discussed in Subsection 2.B, the
% bes in the VIEF simulation should be small relative
Ho the wavelength inside the particle. This wave-
length equals the wavelength of the incident light in
Vacuum divided by the real part of the refractive
index of the particle. In all our simulations we cal-
culated the size of the cubes by dividing the wave-
lev 4 of the incident light by the cpwl. Therefore if
*we want to compare VIEF calculations for spheres
~ with different refractive indices we have to divide the
£ cpwl by the real part of the refractive index. Inwhat
* follows we report on errors in VIEF calculations as a
function of this scaled cpwl, and in this way we com-
pare the errors for different size parameters and re-
fractive indices.

cpwl

8ITOT

0.06
0.04
R l .......... l
"5 2 B -
L
8
[
4
R T e s
A - = 30 ot

'.-7. Top, absolute and bottom, relative errors in VIEF gimulations of the internal field for & sphere withx = 6 and m = 1.33 + 0.0
Upper solid curves, maximum error; lower solid curves, minimum error.
Left, all the data; right, enlargements of data at left.

Filled circles, mean errors; bars, standard

Figure 9 shows the errors in VIEF simulations as a
function of cpwl/Re(m) for the internal fields. The
accuracy of the internal field shows a clear depen-
dency on the refractive index of the sphere. Keeping
in mind that the standard deviation of the error dis-
tribution is large, of the order of the rms itself, we can
also conclude from Fig. 9 that the relative errors in
the internal field depend only weakly on the size
parameter (in the range covered by our experiments).

The relative error in C,,y, Cocar and Caps depends
strongly on all parameters that we tested (data not
shown). However, for the two smaller refractive in-
dices the errors are always smaller than 1%. Only
for the largest refractive index do larger errors occur.
In that case, even if cpwl/Re(m) = 15, the errors in
the cross sections lie between 2% and 5%. In that
case, however, the error shows a monotonic decrease
with increasing cpwl.

The rms errors in the scattering matrix elements
are much less sensitive to both the refractive index
and the size of the sphere. The two curves seem 10
overlap. Therefore in Fig. 10 we have plotted for

20
15

10

o
0

10

Fig. 8. Relative errors left, in the cross sections (solid curve, C; dotted curve, C,,,; dashed curve, C,pe) and tight, in the S, element
of the scattering matrix (meaning of the curves as in Fig. 7) as a function of cpwl for a sphere withx = & and m = 1.33 + 0.01L.

¥
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m=1.05

m=133+001;

m=25+141

100
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Fig. 9. rms for the rejative errors in the internal field as a function of ¢’ = cpwl/Re(m) for x = 3 (solid curves), x = 5 (dotted curves), and

x = 9 (dashed curves).

each scattering matrix element the rms as a function
of cpwl/Re(m) for all the spheres that we studied.
We plotted all values as single points, without mak-
ing a distinction between the size parameter and the
refractive index of the sphere. Figure 10 shows that
the errors in the scattering matrix elements decrease
as cpwl/Re(m) increases. Furthermore, within the
range of size parameters and refractive indices that
we studied, the errors for a constant value of cpwl/
Re(m) are very close together, a fact that shows up in
Fig. 10 as relatively narrow bands of points.

D. Size Dependence

The experiments discussed in Subsection 4.C suggest
that the dependence of the errors on the size param-
eter is weak. We performed a set of experiments to
test this assumption further. The value of cpwl/
Re(m) was fixed to 15, and VIEF calculations were
carried out for spheres with size parameters in the
range 1 <x < 10. The refractive indices were again
taken as above. Note that in these experiments in-
creasing the size parameter means that the numbers
of cubes in the VIEF simulation also increases.

1
20

15

10

<o’

b 20 [ 0

) 80 20 (D)

The accuracy of the internal field simulation de.]
pends weakly on the size parameter. As an exam.
ple, the results for relative errors in the internal field
form = 1.33 + 0.01; are shown in Fig. 11. Fromzx =
1 to x = 4 the errors decrease, but for x = 4 they seem
to oscillate about a constant value. For the other:
two refractive indices the results are comparable. A3
closer look at the distributions of the errors within §
the spheres also shows that they are in all cases?
highly similar to those presented in Fig. 3 (data not §
shown). The maximum relative error in the internai }
field has, in all three cases, the same order of mag- 3
nitude for the full range of x values. 3

The behavior of the errors in the scattering matrix 3
elements is comparable. In all cases a relevant x
dependence cannot be observed. However, in some :
isolated cases a rms value can suddenly increase for 3
a certain x value. This happens, for instance, for S;; 4
forx = 9 and m = 1.33 + 0.01i. Considering S,; as §
a function of the scattering angle shows that the 3
VIEF simulation has a relatively large error in the 3
backscattering directions (data not shown) that is not 4
present for ¥ = 8 and x = 10. We have not been able

0.15]

.
. P
20 e 60°

et i 1l

o 2, e a. . o
a 20 40 60

Fig. 10. rms for the scattering matrix elements as a function of ¢’ = cpwl/Re(m). Upper left, relative errors of S;;. Absolute errors are
shown for polarization (upper right, S;5/81; (lower left), and S,,/S,, (lower right). These plots do not distinguish among the parameters

in the simulation (i.e., size and refractive index of the sphere).

8492 APPLIED OPTICS / Vol. 37, No. 36 / 20 December 1998



20

15

10

wn
r
.
* -:’
E
~—-’-—‘_,
| .
[
|t
f————
| .

o 11, Relative errors in the internal fields as a function of the
k. parameter. The refractive index was m = 1.33 + 0.01;, and
owl/Retm) = 15.  Upper solid curve, maximum error; lower solid
g, minimum error. Filled circles, mean errors; bars, the stan-
dard deviation. Dashed curve, the rms.

4o find a correlation between this behavior of §,; and
bthe errors in the internal fields.

Finally, the errors in the cross sections do show an
i+ dependence. However, within the range of size
Fnarameters that we have covered the relative errors
b in the cross sections have a tendency to decrease with
increasing size parameter (data not shown). As-
-suming that we can exclude the size parameter as an
-important parameter in the accuracy of VIEF simu-
lations, we can tabulate the errors that we have mea-
sured in this set of experiments as a function of the
refractive index only (see Table 5). This exercise
¥ reveals once more the dependence on the refractive
index that was suggested ahove.

¢ E. Resonances

Finally we investigate whether VIEF simulations are
able to reproduce resonances in Mie scattering (see
Subsection 2.C). We identified two resonances that
fall within the range of (x, m) values that can be
covered by our VIEF simulations. For a size param-
eter of x = 4.875 we found two values of m, close
together, for which the Mie scattering becomes reso-
nant, m = 2.3009279 and m = 2.3534695. Figure
12 shows C,y in the range 2.2 = m =< 2.4 for Mie
caleulations and for a number of VIEF simulations.
In all VIEF simulations we take cpwl = 36, which
corresponds to cpwl/m = 15 for m = 2.4.

The Mie calculations show the predicted reso-
nances as two peaks on a smooth background. The
VIEF simulations also show two sharp peaks, which
are shifted to slightly larger values of m. This sug-
gests that the VIEF is able to reproduce the Mie

Cext
275

250

215

»

00

175

2.2 2.25 2.3 2.35 2.4

Fig. 12. Extinction coefficient as a function of refractive index for
Mie calculations (solid curve} and VIEF simulations (filled circles).

resonances but not at the exact positions. We now
examine the internal fields for a number of cases to
investigate whether the VIEF simulations indeed re-
produce the a, and by Mie resonances. First we ex-
amine a case in which both the Mie and VIEF
simulations are nonresonant (m = 2.2}, and then we
examine the internal fields for all m values at which
either the Mie or the VIEF simulation has a peak in
the extinction coefficient.

Figure 13 shows the energy density in a plane
through a sphere with m = 2.2 (i.e., nonresonant for
both Mie and VIEF calculations). The internal field
in this case is comparable with the internal fields for
m = 1.33 + 0.01i above. However, now the interfer-
ence peak is shifted more to the center of the sphere, a
result that is due to the larger refractive index, which
results in a sharper focusing of the electric field in the
sphere (see also Ref. 37). Again the largest errors in
the VIEF simulations occur on the surface of the
sphere; however, we can now also observe stronger
errors inside the sphere. The rms of the relative er-
rors in the internal field is 16%. For Sy, it is 8.8%, for
polarization it is (.14, for Sg it is 0.08, and for Sy, it is
0.07. Finally, the relative error in C, is 5.2%.
These numbers are consistent with those presented in
Table 5 (only the rms of the polarization is greater than
normal}, and this case is no exception.

Next, consider the case m = 2.3009279, which cor-
responds to the first C ., peak for Mie in Fig. 12.
Figure 14 shows the energy densities for the Mie

Table 5. Typical Mean RMS Errors in the Range 1 =< x < 10

RMS Internal RMS S,, Cross
m Field (%) (%) RMS,,, RMS S, RMS S,, Section (%)
1.05 0.6 10 0.03 0.02 0.03 <0.3
1.33 + 0.01; 4 & 0.05 0.04 0.04 <1
265+ 1.4 22 7 0.03 0.04 0.06 <8
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Mie VIEF

Fig. 13. Energy density for the internal field obtained by Mie calculation, VIEF simulation, and the difference field for m = 2.2. The -
energy density is plotted in the y = 0.08727 plane. The data are not normalized; all scales in the plots are linear.

calculations and VIEF simulations. First notice the
large differences in scale between them. The a; res-
onance in the Mie calculation can be recognized from
the seven peaks in the energy density in each half of
the sphere. The maximum energy density for the
Mie calculation is approximately 250. The VIEF re-
sults are now completely different. The energy den-
sity looks similar to that in the m = 2.2 case (see Fig.
13), although we can observe a split of the interfer-
ence peak in the back of the sphere and a second peak
appearing in the front of the sphere, which can be
interpreted as the onset of a resonance. The result-
ant scattering matrix from the VIEF simulation is
now completely wrong (data not shown).

Figure 15 shows the energy density for the second
Mie resonance, i.e., m = 2.3534695. Again, notice
the large difference in scales for the Mie resonance
and the (nonresonant) VIEF simulation. Further-
more, notice that now we have plotted the energy
density in a y—z plane (i.e., an x = constant plane)
because the resonances of the b type are perpendic-
ular to the incident linear polarization. The bg res-
onance is now recognized by the fact that most energy
density is located in the x = constant plane and in
eight peaks in each half of the sphere.

Finally, the refractive indices for which the VIEF
C,.. curve shows its maxima are analyzed. First
consider the case m = 2.32, which corresponds to the

Mie

difference

first C,,, peak for the VIEF in Fig. 12. Figure 16
shows the energy densities for the Mie calculations
and the VIEF simulations. The a; resonance is now
clearly observed in the VIEF results, with an ampli
tude that is comparable with the true Mie resonance =
from Fig. 14. The Mie results are typically nonreso-

nant and resemble those for m = 2.2 (see Fig. 13).

Figure 17 shows the energy density for the second th
VIEF resonance, i.e., m = 2.36. In this case the by :;'1
resonance is clearly recognizable in the VIEF results, % 2
although the amplitudes are much smaller than 2
those of the corresponding Mie resonance in Fig. 15. e
We did not carry out any more VIEF simulations in ]l];;

the immediate vicinity of m = 2.36. It is possible
that for a slightly different refractive index the VIEF
resonance will be as strong as the Mie resonance.

5. Discussion and Conclusions

The results of the extended sets of experiments to test
the accuracy of VIEF simulations of the internal field
can be summarized as follows: The accuracy of the
internal field simulations decreases with increasing
refractive index. The largest errors always occur on
the surface of the sphere, and the maximum errors
seem to be independent of the size of the cubic cells.
However, the average errors (mean, rms) in the in-
ternal field decrease if the cubic cells decrease in size.
For a fixed value of cubes per wavelength the errors

VIEF i

Fig. 14. Energy density for the internal field obtained by Mie calculation and VIEF simulation for m = 2.3009279. The energy density

is plotted in the y = 0.08727 plane.
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m the internal field depend only weakly on the size of
the sphere.

Qur results are in agreement with those of Draine
see Subsection 2.B and Ref. 30). Draine, however,
gttributes the errors, especially on the surface, to the
surface granularity of the model of the sphere.
However, our results show that even for fine discreti-
zations the maximum errors, located at the surface of
the sphere, stay large. This result suggests that
surface granularity does not provide a full explana-
tion for the error behavior. We believe that the as-
‘sumption of piecewise-constant electric fields in the

cubic cells to discretize Eq. (1) (something that is

Cimplicitly done in the DDA) also contributes to the
possible large errors in the surface layers of the model
he VIEF
lance.

Mie

tstotest -
nal field
2y of the
creasing
occur on
n ep:Qrs
bic’ s,
1 the in- 1
2in size. E =
1€ errors

sy

2v density
Fig. 17.

Fig. 15. Same as Fig. 14 but for m = 2.3534695. The energy density is now plotted in the x = 0.08727 plane.

More-accurate basis functions, such as those used by
Peltoniemi,?° might result in better accuracy of the
fields in the surface layers.

Furthermore, the singularity of the Green’s func-
tion can also cause large errors on the surface. The
Green’s function has an r~2 radial dependency near
the singularity. Our VIEF scheme generates some
errors owing to the use of piecewise-constant basis
functions and crude one-point numerical integration
formulas. Inside the sphere these errors can cancel
because of symmetry. However, on the surface this
cancellation does not occur, and the errors become
visible, a result that may also explain why the max-

imum errors stay large if the discretization is made
finer. Although the smaller cubes can represent the

VIEF

Same as Fig. 14 but for m = 2.36. The energy density is now plotted in the x = 0.08727 plane.
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rapidly changing electric field more accurately, the
singularity of the Green’s function becomes more pro-
nounced because of the reduced distance between
neighboring cells.

The discretization of the sphere should be fine
enough to represent the waves inside the sphere,
which have a wavelength A\/Re(m). The size of the
cubes is represented by d = \/cpwl. Therefore, to
compare the accuracy for different refractive indices,
we present the results as a function of cpwl/Re(m).
Figure 9 shows that, even on this scale, the accuracy
of the internal fields still depends strongly on the
refractive index.

In Ref. 30 Draine provides arguments to support
the reasoning that, if the imaginary part of the re-
fractive index becomes high, another length scale in-
side the particle, the skin depth, will determine the
size of the cubic cells. Therefore he proposes to take
A/|m| as the typical length scale inside the particle
and to keep the cubic cells small with respect to it.
Even if this procedure is taken into account, e.g. in
Fig. 9, we continue to see a strong dependency of the
relative rms errors in the internal field on the refrac-
tive index of the sphere. Another effect than dis-
cretization of the sphere plays a role in determining
the accuracy of the internal fields.

Within the range of our simulations, the size pa-
rameter has a much less pronounced influence then
the other model parameters on the accuracy of the
internal fields. Therefore we assume that we can
rule out the size parameter. [See Table 5, where the
accuracy of the VIEF is given as a function of the
refractive index for cpwl/Re(m) = 15.] It would be
interesting to explore this assumption further and
determine whether it holds for other values of cpwl/
Re(m), for larger ranges of the size parameter, and for
other pa.rtmle shapes. If such were the case, the
expected accuracy of VIEF (or DDA) simulations
could be taken from accuracy tables such as Table 5.

The VIEF simulations are capable of reproducing
strong realistic resonances in the internal fields, as
was shown in Subsection 4.E. However, the posi-
tions of the resonances on the refractive-index axes
(see Fig. 12) were slightly too large (0.9% and 0.4% for
the first and the second peaks, respectively). Aswas
pointed out by an anonymous reviewer, one can ob-
tain such a shift in resonance peaks by slightly re-
ducing the size parameter in the Mie calculation.
Therefore a small error in the size parameter that is
used in the Mie calculation could account for the
effect. However, because the cpwl was large in
these VIEF simulations, the discretization of the
sphere was fine and the error in the resultant equal
volume size parameter was therefore too small to
account for the shift in the resonance peaks.

The width and the height of the peaks in C,, as
functions of m for VIEF simulations are equal to
those for the Mie calculation. We did, however, ob-
serve that the number of iterations needed for con-
vergence of the VIEF simulations increased sharply
near the resonance positions. The analysis in Ref.
19 suggests that at resonance the VIEF coefficient
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matrix becomes singular, which explains the incrg,
in the number of iterations. 5

Our results on the accuracy of the cross Secm
and scattering matrix elements are in good ag
ment with those of other authors. However, gy
method of analyzing the data shows some feat g
that are not immediately obvious from previougy,
published results. The accuracy of the cross sectiopg
and the scattering matrix elements decreases wi}
decreasing size of the cubic cells. Also, the mayjs
mum error in the scattering matrix elements de
creases. As with the internal fields, the dCCuracy
depends only weakly on the size parameter of the
sphere. Furthermore, the absolute errors in scatters
ing matrix elements polarization, Sg3/Sy;, and §,,
S,, are much less sensitive to the refractive mdex
than to the internal fields (see, e.g., Fig. 10 and Table
5). On the other hand, the accuracy of the crogs
sections does show a dependency on the refractive
index that correlates with the accuracy in the inter-
nal fields. The dependency of the accuracy of the §;;
element is less clear. i

Finally, we analyze how the accuracy of the mter-
nal fields translates to that of the cross sections and
the scattered fields. One would expect that, if the
errors in the internal fields decreased, likewise the
errors in the scattered fields would decrease. This
relationship is observed if the accuracy is measured
as a function of the size of the cubic cells. However, #&
if the accuracy is measured as a function of the re- 13
fractive index the correlation is much less clear and §
perhaps not even present. A possible explanation
can be found in errors in the phase relations and # 14
direction of the internal fields. Our definition of the §
errors in the internal fields is based on the amplitude
of the difference between the Mie and the VIEF in-
ternal fields. This means that information with re-
spect to the phase and the direction of the internal
field is discarded. As the scattered fields are a result
of interference between fields radiated from each cu- §
bic cell, it might well be that the statistical errorsin  #§= 1
the internal field need to be supplemented with in- 2
formation on the errors in the phase and direction of
the internal field if we are to understand fully the § 1
accuracy of the cross sections and the scattering ma-
trix.

The accuracy of VIEF simulations could be in-
creased by use of other types of basis functions and
numerical formulations. In many cases the geome-
tries could be represented more accurately with tet-
rahedral elements instead of the cubic ones. The
electric field could be represented with piecewise-
linear or higher-order basis functions, which would
allow one to use larger computational cells. Also,
the use of more-accurate numerical integration for-
mulas and Galerkin or least-squares formulations in-
stead of the collocation technique would improve the
accuracy of the VIEF method.
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