Automatic Performance Estimation Of SPMD Programs On MPP

J.F. de Ronde, B. van Halderen, A. de Mes, M. Beemster and P.M.A. Sloot
Parallel Scientific Computing and Simulation Group Department of Computer Science,
University of Amsterdam Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.
email: peterslo@fwi.uva.nl, fax: +31 20 5257490, phone: +31 20 5257463

ABSTRACT

A methodology for the estimation of sequential and SPMD programs performance is
presented. Performance metrics concerning the execution of a specific application on a
target machine are derived using a machine parameterization and a symbolic application
description. Both parameterizations can be obtained automatically using an integrated
toolset: the Performance Estimation Toolkit. The toolset allows for the investigation of
performance behaviour of applications and machines in hypothetical situations. A case
study using the alpha-versions of the toolkit shows that the proposed performance model
allows for prediction of tendencies of the execution time as well as absolute values.

(keywords: performance estimation, SPMD, tools)

1. INTRODUCTION

Migration of large sequential applications to parallel and distributed platforms
is yet still in its infancy. This is largely due to the fact that industry (that has
many large applications of great social and economical relevance) is reserved
towards spending great amounts of money and labour on adjusting their codes
to suit parallel distributed memory or tightly coupled massively parallel (MPP)
machines while it is not clear that the effort spent will pay off eventually. An
environment that can predict the performance of SPMD (Single Program
Multiple Data) data parallel applications on (MPP) is of crucial importance in
the decision phase of such large projects. In addition it can assist in choosing
the most suitable parallel platform for a specific application (e.g. a workstation
network or a massively parallel monolith). We have developed a technique with
which data parallel program performance can be predicted by means of
parameterization of the distributed memory machine as well as the data
parallel application. This technique is based on a static approach. The
Performance Estimation Toolkit (PET) consists of several tools to obtain these
parameterizations and to perform simulations using these formal machine
and application descriptions (that is mapping the parameterized application to
the parameterized machine). The PET is partially developed within an ESPRIT
III project [1]. The structure of this paper is as follows: Section 2 describes the
usage of the PET. The development status of the tools involved is described in
section 3 . Section 4 presents a case study on a molecular dynamics benchmark.
Finally section 5 will conclude on the results obtained so far and briefly shows
the path for further development of the methodology and the PET.

2. THE PERFORMANCE ESTIMATION TOOLKIT (PET)

The Performance Estimation Toolkit is being developed with the goal to
investigate performance behaviour of SPMD programs on parallel (tightly
coupled or distributed memory) systems. In Figure I the synergy of the tools as
they have been developed so far is depicted.

The PET consists of the following:

- A database that contains parameters describing machine characteristics that
are of importance to execution time or temporal performance. These
parameters can be actualized via measurements of elementary times on
realistic machines [2], using results obtained with architecture simulation [3],
or by handcrafted (hypothetical) machine parameters. The database tool offers
the possiblity of adjusting the parameters in an interactive manner.
Furthermore the topology of a multi-processor system can be defined.

- A tool that automatically can derive an abstract representation of SPMD code
(specifically dedicated to Fortran 77 with message passing constructs) in terms
of parameters that describe the characteristics of the code. The representation
language is referred to as symbolic application description (SAD).

- A tool that allows investigation of the behaviour and optimization of SPMD
programs performance with respect to various possible partitionings of the
data-space of the problem under consideration. The development of this tool is
in its initial phase.

- A simulator that integrates these tools to obtain an estimation of the
performance behaviour of a data parallel application on a parallel architecture.

C machine) (application)
machine characterizer application characterizer

machine apphcatlon
parameterization parameterization
\ Simulator /mteractlve

iteractive
machine application
construction construction

performance
estimation

Figure I: synergy of the tools of the PET.

The toolset described above allows for investigation of the temporal
performance (see [4]) behaviour of algorithms that can be expressed in terms of
data parallel SPMD codes. If an implementation of a specific algorithm is
already available, automatic parameterization of the program can be obtained.

The performance behaviour of the parameterized program can be studied
under variation of the program parameters as well as machine parameters.
The parameter values can be changed interactively.

When only a sequential program is available one can derive a parameterized
description and can add parameters that mimick the behaviour of a possible
parallelized version of the original code. In this manner the necessity of a full
implementation of candidate algorithms for performance testing can be
circumvented. In the next section the form of the parameterizations is
discussed.

3. PARAMETERIZATIONS

3.1.1 The Machine Database

To obtain reliable performance estimations of an application on a modelled
machine, the model must define the machine to a certain level of detail. The
model can not be too detailed, because the aim is to estimate the performance
using a high level description of the application, still it can not be too shallow
because a reasonable estimation of the applications execution time is required.
Many machine characteristics, especially those due to recent development
such as multi-level cache and branch prediction strategies, cannot be used
effectively in the estimation without resorting to execution traces or low-level
simulation of the hardware (see for example [5]). Therefore exact estimates are
difficult to obtain in general. However work by Saavedra-Barrera et al. (see [6])
shows that the type of model that is proposed in this paper can provide realistic
estimates. When estimates can not be exact at least tendencies of the
performance behaviour with respect to variations in the parameter values can
be obtained.

The model used for this project distinguishes the following sections:

1. The processor level. Average times are provided for the integer, real, double
precision and complex numeric types on the most frequently used operations,
such as addition, multiplication, division, power, assignment, compare and
intrinsic functions. Times for flow control parameters are also present in the
model.

2. The communications level. The hardware topology is specified together with
the most often used virtual topologies (where possible). For all topologies
latency and throughput are specified per link; when specifying virtual
topologies, the timings include routing.

3. The programming model level. The primitives in the PVM, Express and MPI
[7-9] models that are relevant for SPMD applications are modelled, e.g. send,
receive, multicast and others. The execution behaviour of the procedure calls in
these programming models is described in the machine model. Such a
description is a composition (i.e. mathematical expression) of other parameters
in the machine model.

The machine parameter 'memory size' is considered irrelevant (the machine
has enough memory for the application), while memory speed is incorporated
into the instruction timings. I/O is left out of the model due to irrelevance and
unnecessary complexity.

It should be noted that compiler optimizations are also unpredictable. The
model of the machine as well as the model of the application ignore the fact
that a compiler might modify code to speedup execution.

The approach that is used to obtain time-averages for the various possible
atomic statements is of great importance. The way that these times are
approximated is subject of further research.

3.1.2 Status

The machine database has had its alpha-release. Still work has to be done on
specification of the parameters that describe communication effort. Further
the development of a user-interface as well as an interface to the simulator in
order to allow for automatic mapping of the symbolic application description on
the parameterized machine is important .

3.2 The symbolic application description

The metric that we use for characterisation of the performance of numerical
SPMD applications as occurring in science and industry is execution time. In
general these types of applications do consist of reasonably regular algorithms
such as finite difference or finite element computations. The regularity of such
systems ensures that a description of the program (sequential) will only depend
on a handful of indeterminable control flow induced jumps. The so-called
temporal performance can be derived from the original program in terms of
machine specific parameters and parameters describing the control flow in the
system by hand [see for example [10]). The tedious task of deriving such a
description is met in our toolkit in an automatical manner.

We describe SPMD programs by the following functional hierarchy:
1) Statement block level

2) Control flow level

3) Data locality level

3.2.1 The statement block level
The time complexity of a so called statement block is given by cumulation of all
the individual time complexities occurring in the block. For example :

a=a+ b * c :Time—complexity=t,, -+t +1

addition

assign multiplication

3.2.2 Control flow level

The control flow level introduces indeterminability into the time complexity
description. In general the execution path taken, given a specific set of input
parameters, is only determinable by means of explicit execution. Branch
directions are not statically determinable. In numerical applications
fortunately the amount of constructs like if..then..else or loop that
introduce nondeterminism into code is small compared to amount of
calculations. The algorithms used in numerical applications can depend in
their length of execution on for example the problem size in a clear manner.
These indeterminable parameters are treated in a statistic manner by
describing the possibility of branching in some specific direction along the
execution graph. Branch directions inif..then..else constructs are
specified by probabilities Pi1, P2..,.PN (where we assume the number of
branching directions = N) whereas in 1oop constructs the number of unknown

iterations is presented by a variable that behaves according to a (user defined)
function. Basically the variables described above can be stored in three classes:

1) Directly determinable: for example loop counts that directly depend on the
problem size.

2) Indirectly determinable: for example through some simple backtracing of
data dependencies the dependence on directly determinable variables can be
derived.

3) Indeterminable (except through explicit execution): for example stop
conditions. Such parameters are modelled using a stochastic approach. We
thus can estimate the execution time of a sequential high level language such
as Fortran 77 by means of the following symbolic formula:

sap=y" ﬁ ﬁ P X S|Block(i)]

m; k;

Where N is the number of isolated statement blocks (containing no control flow
characteristics whatsoever), B describes the k-th nested branch probability of

the total of k; branches in which S/Block(i)] is nested. Analogously x, describes

the loop-count of the m;-th nested loop of a total of M, loops in which S/Block(i)] is
nested. S/Block(i)] is the time complexity of a statement block with label i .

3.2.3. Data locality level

The data locality level describes the fact that some fraction of data is involved in
communication and the remaining part is not. In case of static domain
decomposition these fractions are constant. In case of programs where these
fractions can change dynamically it is necessary to model this by means of a
stochastic description. Development of the formalism in which this level can be
expressed is part of future work. It will be done in conjunction with the
mapping tool (see section 2).

3.2.4 Status of the F,SAD compiler

The F,SAD compiler for the automatic abstraction of symbolic application
descriptions of Fortran 77 code has reached an alpha-version. Future
developments of the tool are concerning the development of a user-interface, an
interface to the simulator (map the abstract application on the abstract
machine) and addition of features that allow for translation of sad level 3
(=communication)parameters.

4. A CASE STUDY : SEQUENTIAL MOLECULAR DYNAMICS

We have chosen the molecular dynamics (MD) benchmark from the GENESIS
Benchmarks [2] as subject for a case study for first validation experiments of
the alpha versions of the F,SAD compiler and the machine database. The

choice of this code is motivated by the fact that molecular dynamics is a field of
interest within our group.

4.1 The md1 GENESIS Benchmark

The benchmark concerns a molecular dynamics simulation of a Lennard-
Jones fluid with periodical boundary conditions and calculations of system
properties in terms of reduced units (see for example [11]). The program
contains the MD specific kernel + pre and post-processing of the benchmark
timing measurements and contains in total approximately 1200 lines of
Fortran 77 code. We are primarily interested in estimating the performance of
the MD kernel (the most time consuming part).

4. 2 Results:

The most time consuming part within the benchmark can easily be identified.
It consists of a "DO-loop" in which in every iteration the equations of motion of
a system of "Lennard-Jones" particles are solved using the Verlet algorithm.
In the SAD-formula of this program kernel 16 statically indeterminable
parameters occur (9 loop counts and 7 probabilities). The rest of the parameters
are simply determinable from the input set: problem size (=number of
particles) etc... The unknown parameters have not been modelled stochastically
yet but their behaviour as function of the problem size has been determined by
means of line profiling. This approach was taken to be able to validate the
models proposed above.

DO 20 K = 0,MZ-1
[DO 21 I= MX-1,MX*MY-1,MX
J=HEAD(H+K*MX*MY)
22 __IE (JNE.O) THEN
NEDGE = NEDGE-1
RX(NEDGE) = RX(J)-1.0D0
RY(NEDGE) = RY(J)
RZ(NEDGE) = RZ(J)
ICELL = 1+IDINT((RY(NEDGE)*SFY-+0.5D0)"CELLIY)*MX
& +IDINT((RZ(NEDGE)*SFZ+0.5D0)*CELLIZ)*MX*MY

LIST(NEDGE)=HEAD(ICELL)
HEAD(ICELL) = NEDGE

J=LISTW) Joopcount of DO20..20CONTINUE is referred to as X1

JEGI\(I)EII(IB 2 loopcount of DO21..21CONTINUE is referred to as X2

21 CONTINUE loopcount of 22IF(J.NE.0)..GOTO22 is referred as X3
20 CONTINUE

Figure II: kernel fragment of MD code

Figure II shows an example of a program fragment in this kernel. In this
specific example a loop body is nested within 3 loops of which the outermost two
loop counts are determinable statically (in advance of execution). The
parameters determining the size of these loops (X1 and X2) depend in a simple
manner on input parameters MX and MZ. The values for MX and MZ are
determinable from a small set of input parameters. For problem sizes between
0 and 15000 particles the unknown parameter X3 shows a dependence on the
problem size as depicted in Figure III. For stochastic simulation purposes this
figure inferres that for large problem sizes the value of X3 is approximately
equal to 1. For all the unknown parameters occurring in the SAD formula the
problem size dependence has been determined in the same manner.

Figure III: Unknown X3 vs. number of particles
1.2

unknown X3

04 T T T T T T
0 4000 8000 12000
number of particles

We have specifically investigated the execution time behaviour of the program
on a SUN-SPARC-2 workstation. The measured as well as the predicted CPU-
time consumption of the program kernel as a function of the problem size are
shown in Figure IV. The actual execution time is generally about 20 % larger
than the estimated time.

Figure IV: estimated and real execution times vs. number of particles

300 7

250 1

execution time
in CPU-seconds

""" === measured

— estimated

0 4000 8000 12000
Number of Particles

Clearly the tendencies shown by the program execution and the time-
complexity formula are identical. Not only the overall tendency (linear
dependence on the problem size) but also the presence of structure is predicted
correctly. This reinforces the confidence in the modelling power of the

proposed abstractions. To get better agreement with real time measures
obviously the timing methods have to be more accurate. Refinement of the
timing modules is part of future work.

Future developments

The next phase in the development of the toolset will be dealing with tests of the
machine model for parallel architectures. Furthermore the symbolic
application description will be expanded within the F,SAD compiler for SPMD

codes. The data locality level will be developed in conjunction with the mapping
tool.

5. CONCLUSIONS

The performance characterisation method presented here shows that
estimation of performance trends of sequential numerical programs is feasible.
This allows for speculation on the suitability of candidate algorithms for
sequential systems. It allows for performance estimation of codes of which the
time-complexity formula cannot be derived by hand (just because the codes are
too large). Therefore it can be very helpful in migration of large sequential
codes to parallel systems. The effect that parameter changes have on the
performance behaviour can automatically be investigated. The development of
a third level of functionality within the symbolic application description and the
direct applicability of the machine parameterization to this level will be of
crucial importance to the suitability of the PET to data parallel SPMD codes.
This will be part of future developments.

Acknowledgements:

Part of this research is funded by the Commission of European Communities within the
Esprit Framework under project number: NB 6756. We gratefully acknowledge the
contribution of Alistair Dunlop from the University of Southampton who has supplied us with
a set of benchmarking routines for atomic Fortran 77 statements.

REFERENCES

1. PM.A. Sloot and J. Reeve. 1993. "The CAMAS Workbench". Technical Report: CAMAS-
TR-2.1.1.2 ESPRIT III. (March).

2. A.J.G. Hey. The GENESIS distributed memory benchmarks. Parallel Computing, 17(10-4).
3.H. Muller. Simulating computer architectures, thesis. February 1993. ISBN 90-800769-4-5.
4.R. Hockney. A framework for benchmark performance analysis. Supercomputer March
1992.

5. K. Hwang. Advanced computer architecture, 1993, ISBN 0-07-113342-9.

6. R.H. Saavedra-Barrera et al. Machine characterization based on an abstract High Level
Language Machine. IEEE Transactions on computers, vol. 38 no.12. December 1989.

7. R. Lusky and B. Knighten.1993. "Minutes of the Message Passing Interface Forum"
Dallas, Texas. May 12 -14 1993.

8. Parasoft 1992. "Express User Guide version 3.2"

9.V.S. Sundaram. 1990. "PVM a framework for parallel distributed computing
Concurrency and practice, vol.2(4) (December): 315-339

10.A.G. Hoekstra, P.M.A. Sloot et al. Time complexity of a Parallel Conjugate Gradient
Solver for Light scattering simulations. Technical Report CS-92-06. June 1992. Department of
Computer Systems, University of Amsterdam.

11.M.P. Allen and D.J. Tildesley, Computer simulation of liquids, Clarendon Press. Oxford
1987.

"

