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ABSTRACT

We describe parallelization for distributed memory computers of a preconditioned Conjugate Gradient method,
applied to solve systems of equations emerging from Elastic Light Scattering simulations. The execution time
of the Conjugate Gradient method is analyzed theoretically. First expressions for the execution time for three
different data decompositions are derived. Next two processor network topologies are taken into account and the
theoretical execution times are further specified as a function of these topologies. The Conjugate Gradient
method was implemented with a rowblock data decomposition on a ring of transputers. The measured - and
theoretically calculated execution times agree within 5 %. Finally convergence properties of the algorithm are
investigated and the suitability of a polynomial preconditioner is examined.
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1 ] INTRODUCTION

Elastic Light Scattering (ELS) is a powerful non destructive particle detection and
recognition technique, with important applications in diverse fields such as astrophysics,
biophysics, or environmental studies. For instance, light scattered from (nucleated) blood cells
contains information on both the cell size and the morphology of the cell [1,2,3,4,5]. The
number of theories describing light scattering from biological cells is limited [6,7]. Moreover,
no adequate general theory is known yet to describe analytically the ELS characteristics of
arbitrary shaped particles (although the need for such a theory is generally appreciated).

Many exact and approximate theories to calculate ELS from particles are known [8].
Nevertheless, important classes of particles fall outside the range of these theories. This started
much research in the field of light scattering by arbitrary shaped particles [9]. The coupled
dipole method, due to Purcell and Pennypacker [10], is one method that in principle allows
calculation of ELS from any particle.

In September 1990 the project entitled "Simulation of Light Scattering from Micron Sized
Particles by means of Computational Physics Methods" started in the department of Computer
Systems of the Faculty of Mathematics and Computer Science of the University of Amsterdam.
It is the purpose of this project to show that the coupled dipole method can be applied to
simulate the ELS of all types of small particles and that this is of fundamental interest in e.g.
the development of cell characterization techniques. Recent progress in large vector-processing
super-computers and parallel-processing systems on the one side, and advanced optical
detection equipment on the other hand, will allow us to investigate in detail the light scattering
properties of, for instance, human white blood cells.

The computational most demanding part of the coupled dipole method is a large set of
linear equations that must be solved. Particles of our interest, human white bloodcells, give rise
to matrices with dimensions of O(104) to O(106). To keep calculation times within acceptable
limits, a very efficient solver, implemented on a powerful (super)computer is required. We
apply a Conjugate Gradient (CG) method, implemented on a transputer network, to solve the
system of equations.

This technical report concentrates on the functional and implementation aspects of
parallelizing a CG method suited to our application. After a description of ELS and the coupled
dipole method in section 2, section 3 gives a theoretical time complexity analysis of the CG
method for different parallelization strategies. Based on the results of section 3 the CG method
was implemented on a bi-directional ring of transputers, with a rowblock decomposition of the
system matrix. Section 4 describes this implementation, and section 5 presents performance
measurements and convergence behaviour of the method. The results are discussed in section
6, and finally conclusions are drawn in section 7.

2 ] ELASTIC LIGHT SCATTERING FROM SMALL
PARTICLES

2 . 1 Introduction

Consider a particle in an external electromagnetic field. The applied field induces an
internal field in the particle and a field scattered from the particle. The intensity of the scattered
field in the full solid angle around the particle can be measured. This ELS pattern can be viewed
as a fingerprint of the particle and is extremely sensitive to properties of the particle [8].
Therefore it is possible to distinguish different particles by means of ELS. This non-destructive
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remote sensing of particles is a very important application of ELS. The question arises wether it
is possible to fully describe a particle solely on the basis of its complete ELS pattern (the
inverse scattering problem). In principle this is impossible without knowledge of the internal
field in the particle [11]. Fortunately, in most application we have some idea of the particles
involved and in that case it usually is possible to solve the inverse problem within a desired
accuracy. In most cases measurement of just a very small part of the ELS pattern suffices to be
able to identify several particles.

To solve the inverse scattering problem, or to define small parts of the ELS pattern which
are very sensitive to identify particles requires a theory to calculate the ELS of an arbitrary
particle. Sloot et al.[1,12] give an overview of analytical and approximation theories for ELS,
and conclude that for ELS from human white bloodcells no suitable theory exists to calculate
the complete ELS pattern. Hage [13] draws the same conclusion for his particles of interest;
interplanetary and interstellar dust particles. In general one can conclude that for most
applications it is up till now not possible to calculate the ELS pattern. As a consequence, many
research groups rely on the analytical Mie theory of scattering by a sphere (see for instance ref.
[14]), although it is known that even small perturbations from the spherical form induce notable
changes in the ELS pattern [15,16]. This prompted much research to scattering by arbitrary
shaped particles [9]. We intend to calculate the ELS pattern by means of the so-called Coupled
Dipole method [10].

2 . 2 Basic theory of ELS

We will introduce some basic definitions and notations to describe the ELS. The full
details can be found in text books of e.g. Bohren and Huffman [8] or van der Hulst [7].
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Figure 1: Scattering geometry

Figure 1 gives the basic scattering geometry.
A particle  is situated in the origin, and is
illuminated by an incident beam travelling in the
positive z-direction. A detector at r measures the
intensity of the scattered light. The distance |r| is
very large compared to the size of the particle. The
far field scattered intensity is measured. The far
field is only dependant on the angles θ and φ (and a
trivial 1/|r| dependence due to the spherical wave
nature of the far field) [17]. The plane through r
and the wave vector of the incident beam (in this
case the z-axes) is called the scattering plane. The

angle θ between the incident wave vector and r is the scattering angle. As a simplification we
assume φ = π/2, the yz plane is the scattering plane. The incident and scattered electric field are
resolved in components perpendicular (subscript ⊥) and parallel (subscript ||) to the scattering
plane. In this case (E0)|| = (E0)y and (E0)⊥ = (E0)x, where the superscript 0 denotes the
incident light. The formal relationship between the incident electric field and the scattered
electric field (superscript s) is

[1]

E ||
s

E⊥
s =

e
ik(r-z)

-ikr
S2S3

S4S1

E ||
0

E⊥
0

 .

The matrix elements Sj (j = 1,2,3,4) are the amplitude scattering functions, and depend in
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general on θ and φ. Another convenient way to describe ELS is in the frame work of Stokes
vectors and the Scattering matrix [8, chapter 3.3].

The scattering functions Sj(θ,φ) depend on the shape, structure and optical properties of
the particle. Analytical expressions only exist for homogeneous (concentric) spheres,
(concentric) ellipsoids and (concentric) infinite cylinders. Furthermore, a lot of approximations
for limiting values of the scattering parameter α*  and the relative refractive index m exist (see
[7], paragraph 10.1).

2 . 3 ELS from human leukocytes

In previous years we developed both theory and experimental equipment to study the ELS
from biological particles [18,19,20,21,22,12]. Sloot developed an extension of the RDG
scattering for concentric spheres (called mRDG) [19], which was very well suited to explain the
anomalous Forward Scattering (FS) of osmotically stressed human lymphocytes [20]. Based
upon mRDG calculations of the FS of omsotically stressed lymphocytes we even predicted a
totally unexpected biological phenomenon, the change of nuclear volume of lymphocytes in
aniosmotic conditions. Recently we have proven this prediction to be correct [21].

Although the simple analytical mRDG theory can explain certain ELS characteristics of
leukocytes, we have shown in [12] and [23] that the ELS pattern of leukocytes contains
polarization information, which cannot be described by mRDG. It is just this polarized ELS
which facilitates differentiation between e.g. neutrophylic and eosinophylic granulocytes [24].
Recent experiments carried out by our group, in collaboration with Prof. Dr. J. Greve,
University of Twente, the Netherlands, show that the scattering matrix of most human
leukocytes deviate from the simple mRDG approximation [to be published].

Obviously a more strict and fundamental approach is required to calculate the details of
the ELS pattern of human leukocytes. We cannot use the Mie theory, nor first order
approximations as mRDG. The relevant parameter α and m for human leukocytes are in the
range 10 ≤ α ≤ 100 and 1.01 ≤ m ≤ 1.1§ [1]. Therefore other well known approximations (as
anomalous diffraction or ray tracing) cannot be applied [7]. We have to rely on numerical
techniques to integrate the Maxwell equations, or on discrete theories like the Coupled Dipole
formulation of ELS.

2 . 3 The coupled dipole method

In the coupled dipole method of ELS a particle is divided into N small subvolumes called
dipoles. Dipole i (i = 1,..,N) is located at position ri (r = (x,y,z)T). An externally applied
electric field E0(r) is incident on the particle (E(r) = (Ex(r),Ey(r),Ez(r))T). An internal electric
field E(ri) at the dipole sites, due to the external field and the induced dipole fields is generated.
The scattered field at an observation point robs can be calculated by summing the electric fields
radiated by all N dipoles. The scattered field Es(robs) as measured by an observer at robs is

[2] Es (robs ) = Fobs, jE
j=1

N

∑ (rj ),

* The scattering parameter α is defined as α = 2πr/λ, where λ is the wavelength of the incident light, and r
a measure of the particle size.

§ We assume that the particles are suspended in water, and the wavelength of the incident light to be in the
visible range (400 nm ≤ λ ≤ 700 nm).
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where Fi,j is a known 3×3 matrix of complex numbers describing the electric field at ri,
radiated by a dipole located at rj. The field radiated by dipole j is calculated by multiplying Fi,j
with the electric field E(rj) at dipole j. Fi,j depends on the relative refractive index of the
particle, the wavelength of the incident light and the geometry of the dipole positions.

As soon as the internal field E(ri) is known, the scattered field can be calculated. The
electric field at dipole i consists of two parts: the external electric field (i.e. E0(ri) and the
electric fields radiated by all other dipoles:

[3] E(ri ) = E0(ri ) + Fi, jE
j≠i

N

∑ (rj )

  

.

Equation 3 results in a system of N coupled linear equations for the N unknown fields, which
can be formulated as a matrix equation

[4] AE = E0  ,

where

[5] E =
E(r1)

�

E(rN )















  

and

 

A =
a1,1 � a1,N

� � �

aN,1 � aN,N














 

,

with ai,i = I  (the 3×3 identity matrix) and ai,j = -Fi,j if i ≠ j. The vector E0 has the same
structure as E. The complex matrix A is referred to as the interaction matrix. Equation 4 is a set
of 3N equations of 3N unknowns (the 3 arising from the 3 spatial dimensions). All numbers in
equation 4 are complex. The 3N×3N interaction matrix is a dense symmetric matrix.

The size of the dipoles must be small compared to the wavelength of the incident light (d
~ λ/10, with d the diameter of a spherical dipole, and λ the wavelength of the incident light).
We are interested in light scattering from particles with sizes in the order of 3 to 15 times the
wavelength of the incident light. A crude calculation shows that in this case the number of
dipoles N lies in the range O(104) to O(106). Therefore equation 4 is a very large linear system.
Calculation of the internal electric fields at the dipole sites, that is to solve the system linear of
equation 4 is the computational most demanding part of the coupled dipole method. In the
sequel we will address this problem in detail.

2 . 4 ] Numerical considerations

From a numerical point of view, the coupled dipole method boils down to a very large
system of linear equations Ax = b, with A an n×n complex symmetric matrix, b a known
complex vector and x the unknown complex vector. Linear systems are solved by means of
direct - or iterative methods [25]. Direct methods, such as LU factorization, require O(n3)
floating-point operations to find a solution, and must keep the complete (factored) matrix in
memory. On the other hand iterative methods, such as the Conjugate Gradient method, require
O(n2) floating-point operations per iteration. The k-th iteration yields an approximation xk of
the wanted vector x. If xk satisfies an accuracy criterion, the iteration has converged and xk is
accepted as the solution of the linear system. If the spectral radius and the condition number of
the system matrix satisfy some special criteria, iterative methods will converge to the solution x
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[25], and the total number of iterations q needed can be much smaller than n. The total number
of floating-point operations to find a solution is O(qn2), which is much less than with direct
methods. Furthermore, iterative methods do not require the system matrix being kept in
memory.

Merely the size of the system matrix forces the use of iterative methods. Suppose one
floating-point operation takes 1.0 µs, and n = 3.0 105. A direct method roughly needs O(850)
years to find a solution. Even on a 1000 node parallel computer, assuming ideal linear speedup,
a direct method still requires O(10) months. An iterative method needs O(25) hours per
iteration, which is O(100) seconds on the ideal 1000 node parallel machine. If q << n,
calculation times can be kept within acceptable limits, provided that the implementation can run
at a sustained speed in the Gflop/s range.

2 . 3 ] The conjugate gradient method

A very powerful iterative method is the Conjugate Gradient (CG) method [25]. Usually
this method is applied to systems with large sparse matrices, like the ones arising from
discretizations of partial differential equations. Draine however showed that the CG method is
also very suited to solve linear systems arising from the coupled dipole method [26]. For
instance, for a typical particle with 2320 dipoles (n = 6960) the CG method only needs 17
iterations to converge.

The original CG method of Hestenes and Stiefel [27] (the CGHS method in Ashby's
taxonomy [28], to which we will confirm ourselves) is only valid for Hermitian positive
definite (hpd) matrices. Since in the coupled dipole method the matrix is not Hermitian (but
symmetric), CGHS cannot be employed. We will use the PCGNR method, in the Orthomin
implementation (see reference [28] for details). Basically this is CGHS applied to the normal
equation

[6] AH A x = AH b,

(the superscript H denotes the Hermitian of the matrix), with total preconditioning. The
PCGNR method is suitable for any system matrix [28]. The algorithm is shown below:

The PCGNR algorithm

Initialize: Choose a start vector x0 and put

k = 0
r0 = (b - Ax0) calculate the residual vector

s0 = M-1M-HAHr0
p0 = s0 the first direction vector

Iterate: while |rk| ≥ ε |b| iterate until the norm
of the the residual
vector is small enough

    
αk =

(AHrk)
Hsk

(Apk)
H(Apk)

xk+1 = xk + αkpk calculate new iterate

rk+1 = rk - αk(Apk) update residual vector

sk+1 = M-1M-HAHrk+1
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βk =

(AHrk+1)
Hsk+1

(AHrk)
Hsk

pk+1 = sK+1 + βkpk calculate new direction vector

k = k + 1

stop xk is the solution of Ax = b

The number ε is the stopping criterion, and is set to the squareroot of the machine precision.
Since all implementations will be in double precision (i.e. a 52 bit fraction) ε is set to 10-8. The
vector rk is the residual vector of the k-th iteration, the vector pk is the direction vector, and M
is the preconditioning matrix. The iterations stops if the norm of rk is smaller than the norm of
b multiplied by ε.

The purpose of preconditioning is to transform ill-conditioned system matrices to a well
conditioned form, thus increasing the convergence rate of the conjugate gradient method. The
preconditioning matrix M must approximate the system matrix A as closely as possible but still
allow a relative easy calculation of the vector sk . A good preconditioner decreases the total
execution time of the conjugate gradient process. This means that a good parallel preconditioner
not only decreases the total number of floating-point operations, but also possesses a high
degree of parallelism. A good preconditioner depends both on the system matrix and the parallel
computer. For instance, the incomplete Cholesky factorization preconditioner [29] is very
successful on sequential computers, but performs not as good on vector- and parallel
computers.

Polynomial preconditioners [30] are very well suited for parallel computers [31, 32], and
experiments have shown that, implemented on a distributed memory computer, they can be
much more effective than incomplete factorization preconditioners [see e.g. 33]. Therefore we
adapt the concept of polynomial preconditioning and put

[7] M−1 = γ iA
i

i=0

m

∑
  
.

The choice of m and γi is topic of active research [e.g. 32,34], but is beyond the scope of our
research. Here we concentrate on parallelization of the PCGNR method. We take the von
Neumann series as the polynomial preconditioners.

[8] M−1 = Ni

i=0

m

∑ ,

where N = I - A.

3 ] TIME COMPLEXITY ANALYSIS

3 . 1 Introduction and formal method

This section presents the functional aspects of parallelizing the PCGNR method for
matrices coming from the coupled dipole method. Parallelism is realized by decomposition of
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the problem. This can be a task decomposition or a data decomposition [35]. In the first case
the problem is divided into a number of tasks that can be executed in parallel, in the second case
the data is divided in groups (grains) and the work on these grains is performed in parallel. The
parallel parts of the problem are assigned to processing elements. In most cases the parallel
parts must exchange information. This implies that the processing elements are connected in a
network. Parallelizing a problem basically implies answering two questions: what is the best
decomposition for the problem and which processor interconnection scheme is best suited.

The PCGNR algorithm basically consists of a big while loop. The consecutive instances
of the loop depend on previously calculated results, and therefore cannot be executed in
parallel. The same is true for the tasks inside one instance of the loop. This means that task
decomposition is not applicable for the PCGNR algorithm. Parallelism will be introduced by
means of data decomposition.

A metric is needed to decide which decomposition and interconnection scheme should be
selected. We choose the total execution time of the parallel program Tpar. The decomposition
and interconnection that minimize Tpar must be selected. In case of data parallelism the
execution time Tpar depends on two variables and on system parameters:

[9] Tpar ≡ Tpar(p,n; system parameters) ;

p is the number of processing elements and n a measure of the data size.
 The system parameters emerge from an abstract model of the parallel computing system.

A computing system is defined as the total complex of hardware, system software and compiler
for a particular high level programming language. A time complexity analysis requires a
reliable, however not too complicated abstraction of the computing system.

At this point we will restrict ourselves. First of all we assume that the parallel computing
system is an instance of Hoare's Communicating Sequential Processes [36]. This means that
the system consists of a set of sequential processes, running in parallel and exchanging data by
means of synchronous point to point communication. The abstract model needs to specify how
the parallel processors† are connected (the network topology), the time needed to send a certain
amount of data over a link connecting two processors, and execution times on a single
processor. Our target platform, a Meiko computing surface consisting of 64 transputers,
programmed in OCCAM2, clearly falls within this concept.

The communication is described by a startup time τstartup plus a pure sending time
nτcomm, where n is the number of bytes that is sent, and τcomm the time to send one byte.

The next assumption is that the action within the sequential processes mainly consists of
manipulating floating-point numbers (which is obviously true for numerical applications), and
that the time needed to perform one floating-point operation can be described with a single
parameter τcalc. At this point Tpar can be further specified:

[10] Tpar ≡ Tpar(p,n; τcalc,τstartup,τcomm,topology).

Finally we assume that the parallel program consists of a sequence of cycles [37]. During
a cycle all processors first perform some computation and after finishing the computation they
all synchronize and exchange data. This program execution model is valid if parallelism is
obtained through data decomposition. With this final assumption Tpar can be expressed as [37]

† Here it is assumed that every processor in the system contains exactly one process
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[11] Tpar =
Tseq

p
+ Tcalc.np + Tcomm

  
,

with

Tseq ≡ Tpar(p=1,n);
Tcalc.np ≡ Tcalc.np(p,n; τcalc,topology);
Tcomm ≡ Tcomm(p,n;τstartup,τcomm,topology).

We have slightly adapted the formulations of Basu et al., by describing the effect of their
system utilisation parameter Up by Tcalc.np.

We define Tseq, the execution time of the sequential algorithm, to be the execution time of
the parallel algorithm on 1 processor, and not as the execution time of the fastest known
sequential implementation. Tcalc.np describes all calculations that cannot be performed
completely in parallel ('np' stands for non-parallel). Effects of load imbalance will, among
others, appear in this term. Tcomm is the total communication time of all cycles of the parallel
program.

In the next sections we discuss a number of possible data decompositions and network
topologies. The expressions for Tpar will be written in increasing detail as a function of the
variables and system parameters. Finally, a measurement of the system parameters will give
numerical values of Tpar as a function of p and n. On basis of this information a specific
parallelization strategy (i.e. a data decomposition and network topology combination) is
chosen.

3 . 2 Decomposition

One iteration of the PCGNR algorithm‡ contains 3 vector updates (xk+1, rk+1, pk+1), 3
vector inner products ([(AHrk)H sk],  [(Apk)H (Apk)], [rk rk]), and 2 + 2m matrix vector
products (AHrk, Apk, and 2m for the polynomial preconditioning). Table 1 gives the execution
times on a single processor for these operations. The total execution time for one iteration is

[12] Tseq (n) = 16(m+ 1)n2 + (44 − 4 m)n− 6( )τcalc  
,

where the squareroot operation (norm of rk) and two divisions (αk, βk) are neglected.
The PCGNR method possesses three types of data: scalars, vectors and matrices. All

operations are performed on vectors and scalars. The matrices A and M remain unchanged, and
appear only in matrix vector products. Therefore it is possible to define a static decomposition
of the matrices. This prevents that large pieces of the matrices have to be sent over the network.
In the sequel three different decompositions of the matrix will be discussed: the row-block
decomposition, the columnblock decomposition, and the grid decomposition.

‡ From here on we will calculate the time complexity of one iteration step of the PCGNR algorithm. The
initialization time is comparable to the time needed for one iteration (due to the same number of matrix
vector products). Therefore it is not necessary to include it in the analysis. Furthermore, if the number of
iterations becomes large, the initialization time can be neglected compared to the total iteration time.
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Operation Tseq

vector update (vu) Tseq
vu (n) = 8n τcalc

vector inner product (vi) Tseq
vi (n) = (8n− 2)τcalc

matrix vector product (mv) Tseq
mv (n) = (8n2 − 2 n)τcalc

Table 1: The execution times of the three basic operations. The matrix is of
size n×n and the vectors are of length n; all numbers are complex.

Since we want to
per form as many
calculations as possible in
parallel, the vectors are
also decomposed. For
parallel vector operations
just one decomposition is
possible. The vector is
divided in equal parts,
which are assigned to the
processors in the network.
As will become clear in the next paragraphs, this decomposition does not always match the
matrix decomposition. Therefore, during the execution of the algorithm, the decompostion of
the vectors changes. The vector decomposition is dynamic, parts of the vector will be sent over
the network during the execution of the parallel PCGNR.

The rest of this section presents the parallel vector operations and their time complexity,
followed by the parallel matrix vector product for the three different matrix decompositions.
Appendix A introduces our symbolic notation to visualize the decompositions.

The vector operations

1

2

3
 

+ [factor] ×

 

1

2

3
 

=> 

1

2

3

Diagram 1: parallel vector update

The parallel vector update is performed as depicted in
diagram 1. The vector update is performed completely
in parallel, provided that the scalar "factor" (αk or βk)
is known in every processor. The result of the vector
update is evenly distributed over the processors. This
vector is either used as input for a matrix vector
product (rk+1 and pk+1) or is further processed after the PCGNR algorithm has terminated
(xk+1). The computing time for this parallel vector update (complex numbers) is

[13] Tpar
vu (p,n) = 8

n

p









τcalc =

Tseq
vu (n)

p
+ 8

n

p









 − n

p







τcalc

 
,

with x the ceiling function of x. Equation [13] is of the form of equation 11. The parallel
vector update, implemented as in diagram 1, does not have to communicate data; Tcomm = 0.
The non-parallel part is a pure load balancing effect:

[14] Tnp.calc
vu (p,n) = 8

n
p









 − n

p







τcalc
 
.

If the length of the vector n is not precisely divisible by the number of processors p, than some
processors receive pieces of the vector with size n/p, and some with size n/p-1. This
introduces a load imbalance in the system, of which the effect is described by equation 14. Note
that for a large grain size n/p Tnp.calc is very small compared to Tseq/p.

The parallel inner product is shown in diagram 2:
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1

2

3
 

× 

1

2

3

 => [1] + [2] + [3] ;  [1] + [2] + [3] -> [ ]

Diagram 2: the parallel innerproduct.

Every processor calculates a partial innerproduct, resulting in a partial sum decomposition of
scalars. These scalars are accumulated in every processor and summed, resulting in an inner
product, known in every processor. This is necessary because the results of parallel inner
products, the numbers αk and βk, are needed in the parallel vector update as the scalar "factor"
The total time for the parallel innerproduct is:

[15]

Tpar
vi (p,n) = 8

n

p









 − 2







τcalc + tca.calc + tca

=
Tseq

vi (n)

p
+ tca.calc − 2 1 − 1

p







τcalc






+ 8

n

p









 − n

p







τcalc + tca

where tca is the time for a complex accumulate, the total communication time to send the
complex partial inner products resident on each processor to all other processors. The tca.np is a
computing time introduced by summing the partial inner products after (or during) the scalar
accumulation. For this parallel vector inner product we find

[16] Tcomm
vi (p,n) = tca  ,

and

[17] Tcalc.np
vi (p,n) = tca.calc − 2 1 − 1

p







τcalc






+ 8

n

p









 − n

p







τcalc

 
.

The non-parallel part consists of two terms. The second term in equation 17 is the load
imbalance term. The first term describes the sommations in the parallel vector inner product that
cannot be performed completely in parallel. The exact form of this term depends on the way in
which the complex accumulate operation is implemented, and therefore depends on the
topology of the network. This is also true for Tcomm.

The matrix vector products

We will consider the matrix vector product for three different decompositions of the
matrix; the row-block -, column-block -, and grid decomposition. These matrix decompositions
dictate how the argument - and result vector of the matrix vector product must be decomposed.
This vector decomposition will usually not match the decomposition as considered above.
Therefore, the parallel matrix vector product requires pre- and post processing of the vectors, as
will become clear in the next paragraphs.



11

- The rowblock decomposition.

1

2

3

Diagram 3: the rowblock
decomposition

1

2

3
 

× 

 

=> 

1

2

3

Diagram 4: the kernel of the parallel
matrix vector product, with rowblock
decomposition of the matrix.

The row-block decomposition is achieved by dividing
A in blocks of rows, with every block containing N/p or
(N/p-1) consecutive rows, and assigning one block to
every processing element. This is drawn schematically in
diagram 3. Note that A is symmetric so that AH is also
decomposed in row-block.**  The kernel of the parallel
matrix vector product (A × vector and AH × vector) is
shown in diagram 4.

The argument vector must reside in memory of every
processing element. However, this vector is always the
result of a vector update, or a previous matrix vector
product, and is distributed over the processing elements (see
diagram 1 and 4). Therefore, before calculating the matrix
vector product, every processing element must gather the
argument vector. The result is already decomposed in the correct way for further calculations
(inner products, vector updates, or matrix vector products). The diagram for the total parallel
matrix vector product, with vector preprocessing is drawn in diagram 5.

1

2

3
  

-> 

 

;

 

1

2

3
 

× 

 

=> 

1

2

3

Diagram 5: the total parallel matrix vector for a rowblock decomposed matrix.

The vector is gathered firstly; all processors send their own part of the vector to all other
processors. Next the matrix vector product is performed. The total execution time for this
operation is (mv;rb means matrix vector product in row-block decomposition)

[18]

Tpar
mv;rb(p,n) = n

p









 8n− 2( )τcalc + tvg

=
Tseq

mv (n)

p
+ (8n− 2)

n
p









 − n

p







τcalc + tvg
 

,

with tvg the time needed for the vector gather operation. The non-parallel time Tnp  only
consists of a load balancing term, and the only contribution to Tcomm is the vector gather
operation.

- The columnblock decomposition

**  If A is not symmetric, AH would be decomposed in columnblock (see next paragraph) and the analysis
changes slightly, also incorporating elements from columnblock decomposition. It turns out that in the
non-symmetric case, the time complexity of the rowblock and columnblock decomposition is equal (data
not shown).
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1 32

Diagram 6: the column-
block decomposition.

Column-block decomposition is achieved by grouping N/p or
(N/p-1) consecutive columns of A into blocks and distributing these
blocks among the processing elements (see diagram 6).

For a symmetric matrix the Hermitian of the matrix is also
decomposed in column-block. The computational kernel for the
column-block decomposition is very different from the row-block
kernel, and is drawn in diagram 7.  The result of the matrix vector
product is a partial sum decomposition that must be accumulated and scattered such that the
resulting vector is properly distributed for further calculations. This vector is either an input for
another matrix vector product, or for a vector operation. All require the vector to be distributed
evenly over the processors (see diagram 1, 2, and 7). This defines the post processing
communication step, which we call a partial vector accumulate, and some floating-point
operations in evaluating the partial sums. The total parallel matrix vector product is drawn in
diagram 8.

1 32

 

× 

1

2

3
 

=> 1 + 2 + 3

Diagram 7: the computational kernel of the parallel matrix vector product for a rowblock decomposed matrix.

1 32

 

× 

1

2

3
 

=> 1 + 2 + 3

 

-> 

1

2

3

Diagram 8: the total parallel matrix vector product for a rowblock decomposed matrix.

The total time for this operation is

[19]

Tpar
mv;cb(p,n) = 8n

n

p









 − 2 n







τcalc + tva.calc + tva

=
Tseq

mv (n)

p
+ tva.calc − 2 n 1 − 1

p







τcalc








 + 8n

n

p









 − n

p







τcalc + tva

 

,

where tva is the time to accumulate and scatter the resulting vector, and tva.calc the time to
evaluate the partial sums. Here Tnp consists of a load balancing term (the 3rd term) and a term
for the summations in the partial vector gather operation (the 2nd term). Tcomm is the
communication time for the partial vector accumulate operation.

- The grid decomposition

The grid decomposition is a combination of rowblock and columnblock decomposition.
The (square) matrix A is decomposed in p square blocks, which are distributed among the
processing elements. The grid decomposition is drawn in diagram 9.
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11 12 13

21 22 23

31 32 33

Diagram 9: the grid decomposition

11 12 13

21 22 23

31 32 33
 

× 

11,21,31

12,22,32

13,23,33

 

=> + +

11

21

31

12

22

32

13

23

33

Diagram 10: the computational kernel for the parallel
matrix vector product for a grid decomposed matrix.

The Hermitian of A also is grid decomposed,
therefore the constrained of a symmetric
matrix is not needed for this decomposition.
The computational kernel for the parallel
matrix vector product is shown in diagram 10
(the kernel for the parallel Hermitian matrix
vector product looks the same). The
argument vector is decomposed as a mix
form between the decomposition of the
argument vector in the rowblock and
columnblock matrix decomposition. The
vector is divided in p1/2 equal parts, and
these parts are assigned to p1/2 processing
elements. The vector is scattered among the
processing elements containing a row of blocks of the matrix. The result vector is scattered
among the processing elements in the block column direction, partially sum decomposed among
the processing elements in block row direction. Both the argument and result vector are not
properly decomposed for the vector updates and inner products, nor for another matrix vector
product. Therefore the total matrix vector product contains the kernel and two communication
routines, see diagram 11.

 

-> 

11,21,31

12,22,32

13,23,33

  

;

 

11 12 13

21 22 23

31 32 33
 

× 

11,21,31

12,22,32

13,23,33

 

=> + +

11

21

31

12

22

32

13

23

33
 

 -> 

Diagram 11: the total parallel matrix vector product for a grid decomposed matrix.

The first communication routine is a partial vector gather operation, the second is a partial
vector accumulate, followed by a scatter operation. The total time for the parallel matrix vector
product can now be expressed as follows:

[20]

Tpar
mv;g(p,n) = n

p









 8

n

p









 − 2







τcalc + tpva.calc + tpvg + tpva

=
Tseq

mv (n)

p
+ tpva.calc − 2 n

n

p











1

n
− 1

p







τcalc













+8
n

p











2

− n2

p









 τcalc + tpvg + tpva

,

tpvg is the time for the partial vector gather operation, tpva the time for the partial vector
accumulate, and tpva.calc the time to evaluate the partial sums after or during the vector
accumulation.

Once more Tnp consists of a loadbalancing term and floating-point operations that are not
performed completely in parallel, and Tcomm is the time needed in the communication of the
pre- and post processing steps.
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A comparison

At this point the execution time of the parallel PCGNR for the three matrix
decompositions can be compared. The only difference, at this level of abstraction, appears in
the execution time of the matrix vector product. Table 2 summarizes Tcomm and Tnp  of the
matrix vector product for the three decompositions, where Tnp is further subdivided in the load
balance term and the other non-parallel floating-point operations.

decompostion Tnp load balance Tnp other non-parallel
floating- point operations

Tcomm

rowblock
(8n− 2)

n

p









 − n

p







τcalc none tvg

columnblock
8n

n

p









 − n

p







τcalc tva.calc − 2 n 1 − 1

p







τcalc tva

grid
8

n

p











2

− n2

p









 τcalc

tpva.calc − 2 n
n

p











1

n
− 1

p







τcalc tpvg +tpva

Table 2: Tnp and Tcomm of the matrix vector product, for three different matrix decompositions, Tnp is
further divided in a load balancing term and other non-parallel computations

In practical situations it can be assumed that a load imbalance is present. In that case

[21] Tnp
mv;rb < Tnp

mv;cb
 

(for perfect load balance Tnp
mv;rb ≤ Tnp

mv;cb )

therefore, if

[22] Tcomm
mv;rb ≤ Tcomm

mv;cb
 , (for perfect load balance Tcomm

mv;rb < Tcomm
mv;cb)

it follows that

[23] Tpar
mv;rb < Tpar

mv;cb
 
.

This means that if equation 22 holds, the implementation of the PCGNR algorithm with a
rowblock decompostion of the matrix is always  faster then an implementation with a
columnblock decompostion. This is true for any parallel computing system as defined in section
3.1.

During a vector gather operation, appearing in the rowblock decomposition (see diagram
5), every processor must send one packet of maximum n/p complex numbers to all other
processors. In the vector accumulate operation of the columnblock decompostion (see diagram
8) every processor must send a different packet of maximum n/p complex numbers to every
other processor.

On a fully connected network, where all processors are connected to each other and the
links operate at the same speed, the vector gather and vector accumulate operation both take the
same time, i.e. the time to send one packet of n/p complex numbers over a link. In this case
tvg = tva and equation 22 holds.

For less rich network topologies, where processor pairs are connected via one or more
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other processors, the vector accumulate takes longer time. This can be seen as follows. During
the vector gather operation, after receiving and storing a packet, a processor can pass this
packet to another processor, which also stores it and passes it along. The vector gather
operation now takes say s times the time to send one packet of n/p complex numbers over a
link, where s depends on the specific network topology.

In the vector accumulate operation all processors must send different messages to all other
processors. As with the vector gather operation, this can be achieved in s steps, but now the
packet size is larger. A processor, say j, receives at some time during the accumulate operation
a packet originally sent by processor i. This packet contains a part of the complete vector (size
n/p complex numbers) destined for processor j, and the packets for the processors which
receive data from processor i via processor j. The exact size of all the messages depends
strongly on the network topology and implementation of the vector accumulate, but the mean
packet size in the s steps must be larger then n/p complex numbers. The vector accumulate can
also be achieved with packages of n/p complex numbers, but than the number of steps needed
to complete the operation must be larger then s.

Therefore, in case of load imbalance, equation 23 always holds, and without load
imbalance equation 23 holds if the network is not fully connected (which is almost always the
case). Without specific knowledge of the computing system we can rule out PCGNR for
symmetric matrices with columnblock decomposition of the matrix.

3 . 3 Topology

As a consequence of the data decomposition (parts of) the vectors and scalars must be
communicated between processors. In this section we will derive expressions for the execution
times of these communication routines for several network topologies.

Table 3 lists the topologies that can be realised with transputers, assuming that every
processing element consists of 1 transputer and that the network contains at least 1 'dangling'
(free) link to connect the network to a host computer.

The topologies are categorized in four groups; tree's, (hyper)cubes, meshes and
cylinders. Two tree topologies can be build, the binary and ternary tree. The number of
hypercubes is also limited. Only the cube of order 3 is in this group, cubes of lower order are
meshes, whereas cubes of higher order cannot be realised with single transputer nodes.
Transputers are usually connected in mesh and cylinder topologies. Note that the pipeline and
ring topology are obtained by setting p2 = 1. The torus topology (mesh with wrap around in
both directions) is not possible because this topology, assembled from transputers, contains no
dangling links.

We will examine the time complexity of the communication routines mentioned
previously, plus overhead, for two topologies; a bidirectional ring and a square (p1=p2)
cylinder with bidirectional links. The rowblock decomposition is analysed on the ring, the grid
decomposition is considered in conjunction with the p1=p2 cylinder (from now on referred to as
cylinder). We have also analysed the rowblock decomposition on the cylinder and the binary
tree. The total execution time on the cylinder is higher than on the ring and the binary tree. The
time on the last two is comparable (data not shown).
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Topology Order Number of
processors (p)

Comment Example

k-tree d 1
k-1

k
d+1

- 1
k-1

2 ≤ k ≤ 3
d = 0

d = 1

d = 2

binary tree, k = 2

Hypercube d 2d d ≤ 3

d = 3

Mesh p1xp2 p1: number
of processors
in a row.
p2: number
of processors
in a column.

p
1 = 3

p
2= 4

Cylinder p1xp2 Wrap around
in p1
direction

p1 = 3
p

2= 4

Table 3: Overview of topologies that can be realised with transputers. The black dots are processing elements
(PE), every PE consists of 1 transputer. The network must contain at least 1 free link for connection to a host
computer. All links are bidirectional.

The rowblock decomposition on a bidirectional ring

The parallel PCGNR with rowblock decomposition of the matrix contains a vector gather
operation and a complex accumulate operation. During the vector gather operation (see diagram
5) every processor receives from any other processor in the network a part of the vector, which
is  subsequently stored. After the vector gather operation each processor has a copy of the total
vector in its local memory. On the bidirectional ring this is achieved as follows:
1) In the first step every processor sends its local part of the vector to the left and the right
processor and, at the same time, receives from the left and the right processor their local part.
2) In the following steps, the parts received in a previous step, are passed on from left to right
and vice versa, and in parallel, parts coming from left and right are received and stored.
After p/2 steps (with x the floor function of x), every processor in the ring has received the
total vector. The execution time for the vector gather operation on a bidirectional ring is
(assuming double precision numbers, i.e 16 bytes for a complex number)

[24] tvg
ring = p

2






τstartup + 16
n
p









τcomm





  .

The time for the complex accumulate operation (see diagram 2) is easily derived from the
previous analysis. Instead of a complex vector of n/p elements a complex number is sent.
After every communication step, the newly received partial inner products are added to the
partial inner product of the receiving processor. In total p complex numbers are added. This
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leads to the following expressions for tca and tca.calc:

[25] tca
ring = p

2






τstartup + 16τcomm( )
 
;

[26] tca.calc
ring = 2(p− 1)τcalc  .

Grid decomposition on a cylinder

The parallel PCGNR with grid decomposition of the matrix contains a partial vector
gather operation, a partial vector accumulate operation, and a complex accumulate operation.
Derivation of the execution time of these operations on a cylinder topology is not as
straightforward as for the previous case. First we must decide in which direction the wrap
around in the cylinder is made; horizontally or vertically. We assume a one to one relationship
between the grid decomposition of the matrix (see diagram 9) and the distribution of the
submatrices over the processor network, e.g. block 23 of the decomposed matrix resides in
memory of processor 23 (row 2, column 3) of the cylinder. In this case the partial vector gather
operation  (see diagram 11) results in a vector, scattered over every row of the cylinder (this is
also true for the Hermitian matrix vector product if the the symmetry property of A is applied).
This suggests a 'column wise' scattering of the original vector over the grid, see diagram 12.

11
21

31

12
22
32

13
23

33

Diagram 12: the column wise decomposition of a
vector

11,21,31

12,22,32

13,23,33

11
21

31

12
22
32

13
23

33

->

Diagram 13: The partial vector gather, with a
column wise decomposed vector.

The partial vector gather operation is once again drawn in diagram 13 which, implemented in
this way, consists of p1/2 simultaneous vector gathers along the columns of the cylinder. Every
processor in the column must receive a package of n/p complex words of every other
processor in the column.

The vector accumulate can be separated into two communication steps, see diagram 14.

+ +

11

21

31

12

22

32

13

23

33

11
21

31

12
22
32

13
23

33

11

22

33

-> ->

Diagram 14: The vector accumulate, separated into
two different communication routines.

The first step is a communication in the
horizontal direction. The vector, which is sum
decomposed in the horizontal direction is
accumulated in the diagonal processors of the
cylinder (performing the summations on the
diagonal processors§§). The vector is now
decomposed over the diagonal of the cylinders
in parts of n/(p1/2) elements. These parts are
scattered in the second step in vertical direction,
resulting in the 'column wise' scattering of the original vector. The first step implies that every
processor on the diagonal must receive packages of n/(p1/2) complex numbers from every

§§ The summations can be postponed until all data is present on all processors. Then all summations can be
performed completely in parallel. Unfortunately this leads to much more communication, thus increasing
the total execution time of the partial vector accumulate.
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processor in the row of the grid. In the second step, the diagonal processors must sent
packages of n/p complex words to all processors in their column.

Note that both in the partial vector gather and in the vector accumulate the grid can be
viewed as p1/2 independently operating pipelines or rings (depending on the wrap around)
containing p1/2 processors. In the first step of the vector accumulate (see diagram 14) the
largest packages must be sent (in row wise direction). Therefore it is most advantageous to
make a wrap around in horizontal direction, creating rings in row wise direction.

Now we can derive expression for tpvg and tpva. The partial vector gather is a gather
operation of packages of n/p complex words on p1/2 simultaneously operating bidirectional
pipelines each containing p1/2 processors. Basically this is implemented in the same way as the
vector gather operation on the ring (see previous section), but now a total of p1/2-1 steps are
required to get the messages from every processor in the pipeline to every other processor.
Therefore the execution time of the partial vector gather operation on the cylinder is

[27] tpvg
cylinder = ( p − 1) τstartup + 16

n
p









τcomm







 .

The vector accumulate operation is an accumulation to the processors on the diagonal of the
cylinder of a sum decomposed vector of n/(p1/2) complex words on p1/2 simultaneously
operating bidirectional rings of p1/2 processors, followed by scattering of packages of n/p
complex words from a processor to all other processors in p1/2 simultaneously operating
pipelines containing p1/2 processors, therefore

[28] tpva
cylinder =

p

2









 τstartup + 16

n
p









τcomm







+ ( p − 1) τstartup + 16

n
p









τcomm







.

The first step of the partial vector accumulate operation introduces the calculations that should
be accounted for by tpva.calc. After every communication step the received vectors of n/p1/2
complex words are added to the partially accumulated vector in the diagonal processor. A total
of p1/2 vectors must be added,  therefore

[29] tpva.calc
cylinder = 2( p − 1)

n
p









τcalc  .

The complex accumulate is straightforward, the partial inner products are first
accumulated in the horizontal direction, followed by an accumulation in the vertical direction. In
both sweeps p1/2 complex number are added. This leads to the following expressions for tca
and tca.calc:

[30] tca
cylinder =

p

2









 τstartup + 16τcomm( ) + ( p − 1) τstartup + 16τcomm( )

 
;

[31] tca.calc
cylinder = 4( p − 1)τcalc .
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A comparison

The derivation of the expression for the communication - and non-parallel routines, as a
function of the systemparameters, allows us to compare Tpar of the PCGNR method for two
different parallelization strategies: the row-block decomposition on a ring and the grid
decomposition on a cylinder.

Here we will compare Tnp and Tcomm of both parallelization strategies in some limited
cases. In the next section numerical values for the system parameters are presented, and a
detailed comparison will be made. From section 3.1 and 3.2 it follows that

[32] Tnp
PCGNR = 3Tnp

vu + 3Tnp
vi + (2m + 2)Tnp

mv
 
,

and

[33] Tcomm
PCGNR = 3Tcomm

vu + 3Tcomm
vi + (2m + 2)Tcomm

mv
 .

Combining the expressions of the previous section with equations [32, 33] results in:

[34] Tnp
PCGNR( )

ring

rowblock
= 16(m + 1)n+ 44 − 4m( ) n

p









 − n

p







+ 6(p+ 1
p

− 2)











τcalc

  
;

[35] Tcomm
PCGNR( )

ring

rowblock
= (2m + 5)

p
2






τstartup + 16

p
2







(2m + 2)
n
p









 + 3







τcomm
  
;

[36]

Tnp
PCGNR( )

cylinder

grid
= 16(m+ 1)

n

p











2

− n

p








2







 + 6

n

p









 − n

p














+

(2 m+ 2) (2 p − 4)
n

p









 + 2

n

p







+ 6(2 p + 1

p
− 3)






τcalc

 

;

[37]

Tcomm
PCGNR( )

comm

cylinder
= (2m + 5)

p

2









 + (4m + 7)( p − 1)









τstartup +

16 (2m + 2)
n
p











p

2









 + 2( p − 1)

n
p

















+ 3

p

2









 + p − 1


















τcomm

 

.

In case of a perfect load balance it follows from equation 34 and 36 that (assuming n >> p)

[38] Tnp
PCGNR( )

ring

rowblock
= O(p)τcalc

  
,

and

[39]
Tnp

PCGNR( )
cylinder

grid
= O(n)τcalc

 .
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With a load imbalance in the system, Tnp for the grid-cylinder combination has the same order
of magnitude as with a perfect load balance (equation 39). However, a load imbalance has a
strong impact on the row-block-ring combination; Tnp now becomes

[40] Tnp
PCGNR( )

ring

rowblock
= O(n)τcalc

 
,

which is the same order of magnitude as the grid-cylinder combination.The order of magnitude
of Tcomm follows from equation 35 and 37, and is

[41] Tcomm
PCGNR( )

ring

rowblock
= O(p)τstartup + O(n)τcomm

 
,

and

[42] Tcomm
PCGNR( )

cylinder

grid
= O( p)τstartup + O(n)τcomm

 
.

Equations 39 to 42 show that Tnp and Tcomm for the rowblock-ring combination and the grid-
cylinder combination are comparable. Numerical values of the system parameters are needed to
decide which combination is better, and how much better. Furthermore, we must keep in mind
that Tpar for the PCGNR implementation is mainly determined by Tseq/p, with an order of
magnitude

[43]
Tseq

p
= O

n2

p







τcalc

 
.

Using the orders of magnitude as derived above, we can find a crude expression for the
efficiency ε of the parallel PCGNR, where we have taken the worst case Tcomm of equation 41:

[44] ε =
Tseq

pTpar
≈ 1

1 + O
p
n





 (1 + τcomm

τcalc
) + O

p2

n2







τstartup

τcalc  

.

Equation 44 shows that deviations from ε  = 1 occur due to three sources. Let us first
concentrate on the term involving τcomm. This term can be identified with the communication
overhead fc defined by Fox et al.[35, section 3-5]. For a problem dimension dp and a
dimension of the complex computer dc Fox et al. show that in general (in our notation)

[45]

constant

n2 p( )1 d p

τcomm
τcalc

if dc ≥ d p

fc =

p
(1 dc −1 d p ) constant

n2 p( )1 d p

τcomm
τcalc

if dc < d p

  

.

Thus, for the row-block-ring combination (dp = 2 and dc = 1) fc is
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[46] fc = constant
p
n

τcomm
τcalc  

,

which is in agreement with equation 44. However, for the grid-cylinder combination (dc = 2)
one would expect

[47] fc = constant
p

n
τcomm
τcalc  

,

which disagrees with our result. The reason for this is the implementation of the partial vector
accumulate. The first step of this operation (see diagram 14) cannot exploit the full
dimensionality of the network, giving rise to an order of magnitude of Tcomm  as in equation
42.

The second term of the denominator in equation [44] is due to non-parallel computation
(the grid cylinder combination) or due to load imbalance (the rowblock-ring combination) and
has the same order of magnitude as the communication overhead. The last term in the
denominator describes the efficiency reduction due to communication startup times. This term
however is an order of magnitude smaller than the previous two.

As long as τcalc, τcomm, and τstartup have the same order of magnitude, and n >> p, the
efficiency of the parallel PCGNR algorithm can be very close to unity. In the next paragraph we
will investigate this in more detail.

3 . 4 The hardware parameters

Our parallel computing system is a Meiko computing surface, consisting of 64 T800
transputers, each with 4 Mb RAM, hosted by a Sun sparc workstation. The configuration is
described in more detail by Hoffmann and Potma [38]. The programming language is Occam 2
and the programming environment is the Occam Programming System (OPS). As described in
section 3.1, the abstract model of the computing system consists of a specification of the
network topology, and the three hardware parameters.

The OPS allows configuration of any possible network by specifying which transputer
links of the available processors must be connected. The Meiko system services use this
information to program the configuration chips in the computing surface. Furthermore, the
programmer can specify exactly which tranputers in the computing surface must be booted.
This allows to configure bidirectional rings of any number of transputers (up to 63, with 1
running the OPS) and cylinders with p = 4, 9, 16, 25, 36, and 49. The communication times
were measured by sending different sized packets over the bidirectional links and measuring the
total sending time. Fitting of the measurements to a straight line resulted in τstartup = 13.3 µs,
and τcomm = 0.99 µs/byte.

The parameter τcalc  should not just incorporate the raw computing power of the floating
point unit of the transputer, but also the overheads due to indexing and memory access. As a
consequence it is virtually unachievable to define one unique value for τcalc, because different
operations, such as a single addition, or a vector update, give rise to different overheads. The
abstraction of the computing system seems to coarse. Fortunately most floating-point
operations in the PCGNR algorithm take place in the matrix vector products. Therefore we
timed the complex matrix vector product, with all overheads, and used these results to derive
τcalc. The results is τcalc = 1.62 µs/floating-point operation (double precision).

With the experimental values for the systemparameters a numerical calculation of Tpar is
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possible. To compare the rowblock-ring - and grid-cylinder combination a relative difference
function rd(p,n) is defined:

[48] rd(p,n) =
(Tpar

PCGNR)ring
rowblock − (Tpar

PCGNR)cylinder
grid

(Tpar
PCGNR)ring

rowblock + (Tpar
PCGNR)cylinder

grid
 

.

The sign of rb(p,n) tells which parallelization strategy is faster, the amplitude tells how big the
relative difference between the two is.

Figures 2, 3, and 4 show rb for n = 1000, 10.000, and 100.000 and 1≤p≤100; figure 5
shows rb for n = 100.000 and 1≤p≤1000, where we considered the case m=0 (no
preconditioning, m≠0 gives comparable results). In all cases rb strongly oscillates around zero,
however the amplitude is very small. This means, from a time-complexity point of view, that
both parallelization strategies are equivalent. Depending on the exact values of n and p, one is
faster than the other. However, the relative difference in total execution time is very small. This
is true as long as n>>p, which will be the normal situation.

Since the execution time Tpar cannot justify a choice between the rowblock-ring - and the
grid-cylinder combination, other criteria enter the discussion.
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Figure 2: The relative difference function for n =
1000 and 1≤p≤100
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Figure 3: The relative difference function for n =
10000 and 1≤p≤100
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Figure 4: The relative difference function for n =
100000 and 1≤p≤100
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Figure 5: The relative difference function for n =
100000 and 1≤p≤1000

From an implementation point of view the rowblock-ring combination is preferable. The
rowblock decomposition introduces just one communication routine: the gather operation.
Parallel PCGNR with a grid decomposition on the other hand contains more, and more
complex communication routines. Furthermore, from a user point of view the rowblock-ring
combination has one important advantage. The ring can have any number of processors, and
therefore the maximum number of free processors can always be used during production runs.
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This is important in parallel computing environments where the users can request any number
of processors. These considerations are all in favour of the rowblock-ring combination.
Therefore it was decided to implement parallel PCGNR with a rowblock decomposition of the
matrix, on a bi-directional ring of transputer.

Figure 6 show the theoretical efficiency of this parallel PCGNR. If the number of rows
per processor is large enough the efficiency will be very close to unity. Therefore parallel
PCGNR with rowblock decomposition, implemented on a bidirectional ring is very well suited
for coarse grain distributed memory computers.
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Figure 6: The theoretical efficiency for parallel PCGNR,
m=0, with a rowblock decomposition of the matrix,
implemented on a bidirectional ring of transputers. The
dashed line is for n=100, the dot-dashed line is for n=1000
and the full line is for n=10000; p is the number of
transputers

4 ] IMPLEMENTATION

The parallel PCGNR was implemented in Occam 2 [39] on the Meiko Computing
Surface. The implementation consists of two parts: a harness containing the configuration
information and communication libraries, and the actual PCGNR implementation.

Figure 7 shows the configuration of the transputers in the Computing Surface. The host
transputer runs the Occam Programming System, and is connected with the host computer (a
Sun Sparc II station). The root transputer is connected to the host transputer. The input/output
from the parallel program to or from the screen, keyboard, or filing system of the host
computer is performed by this root transputer. Furthermore, the root transputer, together with
the p-1 slave transputers, run the harness and the parallel PCGNR. The host transputer is
present for development, debugging and testing of the parallel program. During production
runs the root transputer can be connected directly to the host computer.

The root and slave transputers all run the same two processes, a router and a calculator,
see figure 8. Router processes on neighbouring transputers are connected via a channel. These
channels are associated with hardware transputer links. The router process calls communication
routines from a communication library. These routines, such as e.g. the vector gather
operation, take data from local memory and send it to other routers, and process data that is
received during the communication routine
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Figure 7: The configuration of the transputers

The calculator process performs the work on the decomposed data. This work is divided
in cycles, as was described in section 3.1. At the end of every cycle a communication step
occurs. The calculator sends a command, in the form of a single character, via the command
channel to the router process. The router process receives this character, interprets it and issues
the desired communication routine. During this communication step the calculator process is
idle. After finishing the communication, the router process sends a 'ready' signal to the
calculator process, which then proceeds with the next cycle in the algorithm. In principle the
communication hardware and the CPU and FPU of the transputer can work in parallel, thus
allowing to hide the communication behind calculations. We decided not to use this feature of
the transputer, because total communication time is very small compared to calculation times.
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Figure 8: Main processes and streams in a transputer; MEM is the local memory, Router and Calculator are two
OCCAM processes, and Tp-1, T0, and T1 are three neighbouring transputers in the bidirectional ring

This implementation keeps the matrix in memory. The maximum matrix that fits in the
local memory of one transputer is n=495. On the full 63 transputer ring, the maximum matrix
size is n=3885. For realistic, larger problems the matrix cannot be kept in memory. The matrix
elements will then be calculated as soon as they are needed, using the definition in equation 5.

The main advantage of our implementation is the complete decoupling of the details of the
communication and the "useful" work in the parallel program. The calculator code closely
resembles the sequential code, with just some extra statements issuing commands to the router.
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The algorithm is easily adapted by making changes in the calculator process. This is important
for e.g. testing the influence of the parameter m in the preconditioner.

5 ] RESULTS

This section presents the results of two experiments. First we measured the performance
of the implementation of the parallel PCGNR for m=0 (no preconditioning), by measuring the
execution time of one iteration of the PCGNR algorithm, as a function of p and n. These results
are compared with the theory of section 3. Secondly, we tested the convergence of the PCGNR
algorithm, for typical matrices of the coupled dipole method, for m=0 and m=1.

5 . 1 ] Performance measurements

We have measured the execution time of one iteration of the parallel PCGNR, with m=0,
for n = 60, 219, and 495 as a function of p, where 1≤ p ≤ 63. Figures 9, 10, and 11 show the
measured and calculated efficiencies of one iteration of the parallel PCGNR. Table 4 gives the
error, in percents, between the theoretical and measured Tpar as a function of p and n. Finally
we measured Tpar for the maximum problem on 63 transputers, i.e. n=3885. The error between
theory and experiment was 3.4 %. The theoretical efficiency in this case is 0.98.

5 . 2 ] Convergence behaviour

The matrix A, as defined by equation 5 depends on the relative refractive index nrel of the
particle of interest, the wavelength of the incident light, and the position and size of the dipoles.
To test the convergence behaviour of PCGNR for these matrices, the norm of the residual
vector, as function of the iteration number k was measured, for some typical values of the
parameters. Here we will show results for the currently largest possible matrix (n=3885, i.e.
1295 dipoles). The results for smaller matrices are comparable.
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Figure 9: The efficiency on one iteration of the parallel PCGNR for n = 60, as a function of the number of
processors. The black dots are the experimental results, the solid line is the theoretical efficiency.

The wavelenght of the incident light was set to λ = 488.0 nm (blue light), and the
diameter of the dipoles to λ/20. The scattering particle was a sphere, the dipoles were put on a
cubic grid with spacing λ/20. The relative refractive index was chosen to depict some
representative material compounds of interest: nrel = 1.05 and 1.5 to give the range of indices of
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biological cells in suspension; nrel = 1.33 + 0.05i, dirty ice; nrel = 1.7 + 0.1i, silicates; and nrel
= 2.5 + 1.4i, graphite.
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Figure 10: The efficiency on one iteration of the parallel PCGNR for n = 219, as a function of the number of
processors. The black dots are the experimental results, the solid line is the theoretical efficiency.
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Figure 11: The efficiency on one iteration of the parallel PCGNR for n = 495, as a function of the number of
processors. The black dots are the experimental results, the solid line is the theoretical efficiency.

p

1 2 4 8 16 32 63

60 2.2 2.2 1.1 1.3 8.3 27.7 64.4

n 219 0.5 0.8 1.0 1.5 2.0 5.4 13.6

495 0.7 0.8 1.1 1.3 1.7 2.0 5.4

Table 4: The percentual error between the experimentally measured and theoretically calculated execution time of
one iteration of the PCGNR, as a function of p and n.

Figures 12, 13, 14, 15, and 16 show the logarithm of the norm of the residual vector
divided by the stopping criterion (ε times the norm of b) for nrel = 1.05, nrel = 1.5, dirty ice,
silicates, and graphite respectively. If the measured function is smaller than zero, the iteration
has converged. We tested for m=0 and for m=1 (first order von Neumann preconditioning).
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Figure 12: The norm of the logarithm of the residual
vector rk divided by the norm of b times ε, as a
function of the iteration number, for nrel = 1.05.

Figure 13: The norm of the logarithm of the residual
vector rk divided by the norm of b times ε, as a
function of the iteration number, for nrel = 1.5.
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Figure 14: The norm of the logarithm of the residual
vector rk divided by the norm of b times ε, as a
function of the iteration number, for nrel = 1.33 +
0.05i (dirty ice).

Figure 15: The norm of the logarithm of the residual
vector rk divided by the norm of b times ε, as a
function of the iteration number, for nrel = 1.7 +
0.1i (silicates).
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Figure 16: The norm of the logarithm of the residual vector rk divided by
the norm of b times ε, as a function of the iteration number, for nrel = 2.5
+ 1.4i (graphite).



28

Table 5 summarizes the results and gives the execution times of the PCGNR

nrel titer number of iterations ttotal
m = 0 m = 1 m = 0 m = 1 m = 0 m = 1

1.05 6.54 13.3 6 3 39.2 40.0

1.5 6.54 13.3 32 16 209.3 213.2

1.33 + 0.05 i 6.54 13.3 20 10 130.8 132.8

1.7 + 0.1 i 6.54 13.3 52 45 34.0 59.8

2.5 + 1.4 i 6.54 13.3 91 80 59.5 106.3

Table 5: Total number of iterations and execution time per iteration (titer) and the total execution time (ttotal),
as a function of the relative refractive index nrel; m=0 means no preconditioning, m=1 is a first order von
Neumann preconditioner.

6 ] SUMMARY AND DISCUSSION

Our aim is to simulate the scattering of (visible) light by biological cells (specifically
human white bloodcells). For this we exploit the Coupled Dipole method (see section 2). This
model gives rise to a very large system of linear equations. As was shown in section 2, just the
size of this system forces us to use an iterative method to solve the equations. Furthermore,
acceptable run times can only be achieved if the iterative solver converges fast, and if the
calculations can be performed at a very high speed. The first demand led to the choice of the
CG method, the second one to a parallel MIMD computer.

The CG method is almost always applied to banded (sparse) matrices, coming from e.g.
finite element discretizations. For these type of problems the CG method is successfully
parallelized (see e.g.[35], chapter 8), also together with (polynomial) preconditioners (see e.g.
[40]). Application of the CG method for full matrices is less common. However, system of
equations with full, but diagonally dominant matrices as coming from the Coupled Dipole
method, or from other computational Electromagnetics techniques (see e.g. [41]) can be solved
efficiently with a (preconditioned) CG method.

The choice for a parallel distributed memory computer, as opposed to a vector
supercomputer, was made for the following reason. For realistic particles the size of the matrix
becomes to large to fit in memory. For instance, a double precision complex matrix of
dimension 105 requires ±150 Gbytes RAM. Fortunately, the CG method does not need the
complete matrix in memory, and the matrix elements can be calculated when needed. However,
this calculation of matrix elements will be a severe bottleneck for the vector computer (cannot be
vectorized), whereas this calculation of matrix elements parallelizes perfectly.

Parallelization of the CG method was done from scratch. First an abstract model of the
computing system was defined. The parallel computing system is viewed as a set of
communicating sequential processes, programmed in a number of consecutive cycles. During
each cycle all processes perform work on local data, after which they synchronize and exchange
data. With this abstraction the execution time of a parallel program can be expressed as equation
11. The first term is known and gives the smallest possible execution time for the parallel
implementation (assuming an ideal sequential implementation). The other two terms are sources
of efficiency reduction and must be minimized.

Our approach to parallelization was to start as general as possible, that is without any
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specific knowledge of the computing system, and try to minimize Tpar . Next limited
characteristics of the computing system are specified, trying to find a good parallel
implementation without detailed knowledge of the parallel computer. Finally numerical values
of the model parameters (which of course strongly depend on the particular parallel computer)
are needed to make an ultimate choice, if necessary, between different parallel implementations,
and to calculate theoretical performance figures. This allows a generic approach to the
parallelization of the application.

The decomposition is the only property of a parallel application that is independent of the
computing system. The decomposition, together with the algorithm, lay down which
calculations must be performed during a cycle, and which data movements must be performed
after the calculations. Three data decompositions were considered: the rowblock -, columnblock
-, and grid decomposition. The resulting expressions for Tpar contain the only parameter of the
abstract model of the computing system that does not explicitly refer to the parallel nature of the
computing system, namely τcalc. Using these expressions we showed that an implementation of
the CG method, for complex symmetric matrices, with columnblock decomposition is always
slower than with rowblock decomposition. This conclusions holds for all parallel computers
which fall in the range of the abstract computing system. Although the difference in execution
time will be small in practice, it is an important point of principle that these conclusions can be
drawn at such a high level of abstraction.

The expressions for Tpar contain terms for communication routines, and associated
calculations. These terms can be expressed as a function of the parameters τstartup, τcomm, and
τcalc if the connections between the parallel processors are specified. This means that a very
important property of the parallel computer must be defined, the network topology. Here we
restricted ourselves to the possibilities of the single transputer processing node, although the
same analysis could have been made for more complex topologies such hypercubes (see [35])
or three dimensional meshes.

We analyzed the rowblock decomposition in combination with a ring topology and the
grid decomposition in combination with a cylinder topology. Expressions of Tpar as a function
of the decompostion, topology and time constants are derived. These very detailed expressions
are compared by an order of magnitude analysis, where we assumed n>>p. The first striking
feature is the sensitivity of the rowblock-ring combination to a load imbalance (see equations 38
and 40), which is totally absent in the grid-cylinder combination (equation 39). Actually, the
loadimbalance in the grid-cylinder combination is O(1)τcalc , which is negligible to the O(n)τcalc
due to the calculations in the partial vector accumulate (see equation 29). The total number of
communication startups is smaller for the grid-cylinder combination then the rowblock-ring
combination, but the total amount of transmitted data is the same (O(n), see equations 41 and
42). If τstartup and τcomm  have the same order of magnitude, the startup time for
communications is negligible compared to the pure sending time. In that case the
communication overhead for the cylinder, and the less rich ring topology have the same order
of magnitude. These considerations show that the rowblock-ring combination and the grid-
cylinder combination will have comparable execution times. As long as the time constants have
the same order of magnitude, and n>>p, both parallel implementation will have an efficiency
close to 1 (see equation 44).

Based on Fox's equation for the fractional communication overhead fc (equation 45) a
smaller communication time for the grid-cylinder combination is expected. As was already
argued in section 3.3 the partial vector gather operation is the bottleneck. This communication
routine, implemented as proposed in section 3.3 does not exploit the full dimensionality of the
cylinder. We did not look for a better implementation of the partial vector gather operation,
using since the expected efficiencies of the parallel CG method with this implementation are
already very satisfactory.
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Finally the time constants were measured and introduced in the expression for Tpar.
Figures 2 to 5 show that the rowblock-ring - and the grid-cylinder combination are almost
indistinguishable if one looks at their execution time. This shows that even on a low
connectivity network as a ring it is possible to implement a parallel CG method with a very high
efficiency (see figure 6), comparable with implementations on a cylinder topology. Keeping
this in mind we implemented the rowblock-ring combination, based on two practical
considerations; programming effort and system resources.

Figures 9 to 11 and table 4 show that the agreement between the theoretical and the
measured values of Tpar are very good, provided that n/p is not to small. For small n and large
p the errors between theory and experiment become very high. In this situation every processor
has only a few rows in memory and in that case the single parameter τcalc to describe the
calculation times in a single processor is not very accurate. However, this is not a real problem,
since we are mainly interested in the situation n/p >> 1, where the errors between theory and
experiment are very small.

The experiments were performed with relatively small matrices, which could be kept in
memory. If the problem size grows the matrix cannot be kept in memory and the matrix
elements must be calculated every time they are needed. This means that the total calculation
time in the matrix vector product will increase, but that the expressions for the communication
times remain the same (the same vectors must be communicated). The term Tseq and the
loadimbalance terms will increase with a constant factor, but their order of magnitude remains
the same. Therefore, due to the extra floating point operations the execution time will increase,
but the parallel CG method will still run at a very high efficiency.

The last experiment concerned the convergence properties of the CG algorithm, and the
influence of one preconditioner on the convergence speed. As was noted in section 2.3 a good
preconditioner for a parallel PCGNR implementation must not only decrease the total number of
floating point operations needed to find a solution, but furthermore the preconditioning steps
must allow efficient parallelization. The polynomial preconditioner of equation 7 can be
implemented using matrix vector products only (assuming that the coefficients γi are known at
forehand). From section 3 it is obvious that the matrix vector product can be parallelized very
efficiently in the rowblock-ring combination. Therefore the polynomial preconditioner is an
ideal candidate for parallel implementations. Our implementation of the first order von Neuman
preconditioner (m=1, see equation 8) supports this point. Measurements of the execution times
for this implementation show that the efficiency is very close to 1 (data not shown). The same
will be true for higher order preconditioners.

Figures 12 to 16 show that |rk|, the norm of the residual vector after the k'th iteration,
decreases exponentially after every iteration. Even for graphite, with a large refractive index,
the number of iterations needed for convergence is only 91, which is 2.3% of the matrix
dimension n. For smaller refractive indices the number of iterations for m=1 is half of the
number of iterations for m=0. The time for one iteration however is approximately a factor two
higher (four instead of two matrix vector products per iteration). Therefore the total execution
time is approximately the same (see table 5). For higher refractive indices the number of
iterations is still decreased by the preconditioner, but not by a factor of two. In that case the
total execution time for m=1 is much larger than for m=0. The first order von Neumann
preconditioner is to crude to be an effective preconditioner for our type of matrices. In the
future we will experiment with higher order von Neuman preconditioners, and other types of
polynomial preconditioners. Especially if the size of matrix grows we expect that good
preconditioning will be inevitable to obtain realistic execution times.

7 ] CONCLUSIONS
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The preconditioned Conjugate Gradient method, for dense symmetric complex matrices,
using polynomial preconditioners, can be parallelized successfully for distributed memory
computers. Both a theoretical analysis of the time complexity and actual implementations prove
this conclusion. Furthermore, the time complexity analysis shows that a parallel implementation
on a one dimensional (ring) topology is as good as an implementation on a more complex two
dimensional (cylinder) topology.

Theoretical predictions of the execution time of the parallel implementation agree very
well with the experimental results. The abstract model of the computing system is well suited to
describe the behaviour of regular numerical applications, such as the Conjugate Gradient
method, on parallel distributed memory computers.

Convergence of the PCNR method, for some typical matrices, is very good. The first
order von Neuman preconditioner, used as a test case, parallelizes very well; the efficiency of
the implementation remains close to 1. However, the total execution time is not decreased.
More research to better polynomial preconditioners is required.
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APPENDIX A symbolic notation to visualize data decomposition

A matrix and vector are denoted by a set of two brackets:

matrix:

  

,and  vector:

  

.

The decomposition is symbolized by dashed lines in the matrix and vector symbols, as in

1

2

3

and
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1

2

3
  

.

The matrix and vectors are divided in equal parts and distributed among the processing
elements. The decomposition is drawn for three processing elements, but is extended to p
processing elements in a straightforward way. The decomposition of the matrix is static, it
remains the same during the computation. The decomposition of the vectors can take three
distinct forms, depending on the calculation that was or has to be performed:

1] The vector is known in every processing element:

 

;

a special case is a scalar known in every processing element, which is depicted by [ ] ;

2] Parts of the vector are distributed among processing elements:

1

2

3
 

;

3] Every processing element contains a vector, which summed together gives the original
vector. This "decomposition" is referred to as partial sum decomposition. This partial sum
decomposition usually is the result of a parallel matrix vector product;

1 + 2 + 3

 

.

A special case is a partial sum decomposition of scalars, which is the result of parallel
innerproducts. This will be depicted by [1] + [2] + [3]. Furthermore a mix of (2) and (3) is
possible.

The '->' denotes a communication, e.g.

1

2

3
  

->

 

represents a vector gather operation, that is every processing element sends its part of the vector
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to all other processing elements. The '=>' denotes a calculation, e.g.

1

2

3
 

+ 

1

2

3
 

=>

 

1

2

3

is a parallel vector addition.
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