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Abstract. We present here a performance model which simulates differ-
ent versions of the hierarchical treecode on different computer architec-
tures, including hybrid architectures, where a parallel distributed gen-
eral purpose host is connected to special purpose devices that accelerate
specific compute-intense tasks. We focus on the inverse square force com-
putation task, and study the interaction of the treecode with hybrid ar-
chitectures including the GRAPE boards specialised in the gravity force
computation. We validate the accuracy and versatility of our model by
simulating existing configurations reported in the literature, and use it
to forecast the performance of other architectures, in order to assess the
optimal hardware-software configuration.

1 Introduction

The problem of computing the force interactions in a system of N mutually
interacting particles is one of the important challenges to Computational Science.
The gravitational interactions among stars in a stellar globular cluster, or the
electrostatic interactions among ions in a chemical solution are typical instances
of such a problem, generally known as the N-body problem. As interactions are
long ranged, the N-body problem scales as O(N?), leading to an unsustainable
computational load for realistic values of N. Special software and hardware tools
have been developed in order to make the simulation of realistic N-body systems
feasible.

Two of the most important contributions to this research have been the in-
troduction of the hierarchical treecodes [1], and the realisation of the GRAPE
class of Special Purpose Devices (SPDs) [2]. Such approaches aim at reducing
the time spent in computing the forces. The treecode reaches this goal by com-
puting partial forces on a given particle from a truncated multipole expansion
of groups of particles, instead of adding each single force contribution. Groups
become larger and larger as their distance from the given particle increases.
This technique allows to decrease the computing time of the force evaluation to



O(NlogN), at the cost of a reduced accuracy, due to the truncated multipole
expansion. The highest multipole order is usually the quadrupole.

The GRAPE is a very fast SPD, containing an array of pipelines, each one
hardwiring the operations needed to compute a gravitational (or electrostatic)
interaction. The latest development in the GRAPE series, GRAPE-6, will con-
tain more than 18 000 hierarchically organised pipelines in its final configuration,
for an aggregated peak performance of about 100 TeraFlop/s [3]. A computing
environment able to take advantage of both approaches could provide a further
boost to N-body computation. Research in the direction of merging these two
approaches has been carried out for about a decade [4, 5], but the attained per-
formance has been limited by several factors, the most important being related
to the difficulty of using GRAPEs efficiently in a distributed architecture. When
selected nodes of a distributed architecture are GRAPE hosts, and GRAPEs
are used to compute forces also for particles stored in remote nodes, a huge
amount of communication is necessary to perform this task, leading to a very
high communication overhead.

In this paper, we explore the possibility of using a parallel host in order to
improve the performance of the system. Efficient parallelisation of the treecode
is not straightforward, and much efforts have been devoted to this task [6—
8]. Coupling a parallel host with a set of GRAPE boards introduces a further
complication, as said above, which makes it difficult to estimate the optimal
configuration of the resulting hybrid architecture. In order to understand the
complex interplay of the parallel algorithm, the parallel general purpose host,
and the multiple board SPD, we developed a performance model, by means of
which we can predict the performance of real systems [9, 10]. Using this tool, the
task of designing the optimal computing environment for the integration of N-
body systems can be made less difficult. A detailed discussion on our performance
modelling approach is given in [9].

In the following sections, we present our model, the hardware, and the soft-
ware components of the modelled environment. Then we show the modelling of
configurations reported in the literature, which validate our model. Finally we
show the results concerning the model of a configuration that integrate GRAPE
boards in a distributed parallel architecture.

2 The performance model

2.1 Modelling approach

Our modelling approach can be sketched as a so-called Y-chart, represented in
fig. 1. We define an application model, where each task of the software applica-
tion is described in terms of the operations performed, and the workload that
such operations produce. Workload is expressed as a function of the application
parameters P = {m, ma,... }. Our application is here the treecode; we will give
below in table 1 the modelling expressions of each task of the treecode, as a
function of its application parameters.
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Fig. 1. Performance modelling process. The output of the simulation model, ¢, is the
modelled execution time. The rightmost sketch represents a speedup graph (P is the
number of processors), showing the behaviour produced by two different values assigned
to a certain parameter N. The meaning of the other symbols is explained in the text.

In the machine model, each architecture resource is specified in terms of the
time spent in accomplishing the task it is designed to perform, as a function of the
machine parameters M = {1, 2, ... }. Such quantities are basic performance
parameters, such as clock frequency and communication bandwidth.

A wirtual interface maps each task of the application model to the appropri-
ate machine resource; possible resource contention is managed and resolved by
the performance modelling environment. The result of the task mapping is the
simulation model, which is the actual simulator of the whole system. It simulates
an instantiation of the treecode, running on an instantiation of a computer ar-
chitecture. According to the input parameters, it can simulate different treecode
implementations, running on different architectures, including SPDs. The simu-
lation model outputs the execution time of the application, the utilisation of the
various hardware components, and other performance measures.

Our performance model is implemented in PAMELA (PerformAnce ModEling
LAnguage) [11]. PAMELA is a C-style procedure-oriented simulation language
in which a number of operators model the basic features of a set of concurrent
processes. A detailed overview on PAMELA is given in [11].

2.2 Model components

Software application The hierarchical treecode [1] is one of the most popular
numerical methods for particle simulation involving long range interactions. It
is widely used in the Computational Astrophysics community to simulate sys-
tems like single galaxies or clusters of galaxies. It reduces the computational
complexity of the N-body problem from O(N?) to O(N log N), trading higher
speed with lower accuracy. We give now a short description of the main treecode
procedures. A simple pseudo-code sketching the basic tasks of the treecode is
given in fig. 2.
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into eight ’child’ cubes, whose linear size Pasic treecode tasks.

in one half of their parent’s. This proce-

dure is repeated until the two particles find themselves into different cubes.
Hierarchically connecting such cubical cells according to their parental relation
leads to a hierarchical tree data structure. When force on particle £ is computed,
the tree is traversed looking for cells that satisfy an appropriate criterion (see
[12] for a detailed overview on acceptance criterions). By applying this procedure
recursively starting from the tree root, i.e. the cell containing the whole system,
all the cells satisfying the acceptance criterion are found.

The original treecode algorithm has been modified in several ways, in or-
der to improve performance. The tree traversal phase has been optimised by
performing a single traversal for a group of nearby particles [13], whereas the
original algorithm performs a tree traversal for each particle. This drastically
reduces the number of tree traversals, and allows concurrent force computation
on vector machines. It is also ideal when the treecode is used with GRAPE,
because each pipeline of the array contained in a GRAPE board can compute
force on a different particle simultaneously. The drawback of this technique is an
increase in memory usage, because for each group an interaction list containing
all the cells interacting with the group must be written and stored in memory.

The use of interaction lists is also useful for parallelisation on distributed sys-
tems. The possibility of decoupling tree traversal and force computation through
interaction list compilation, allows the implementation of latency hiding algo-
rithms for the retrieval of cell information stored in a remote processor mem-
ory [8]. We will refer to this version of the parallel treecode as HOT (HOT is
the acronym of Hashed Oct-Tree, which is the name given to the code by its
authors).

Another modification consists in computing force only on a small fraction of
the IV particles at each code iteration, a criterion originally introduced in the
direct N-body code (cf. [14]). In this case, each particle is assigned an individ-
ual time-step, and at each iteration only those particles having an update time
below a certain time are selected for force evaluation [7]. In this code, a differ-
ent approach for remote interactions computation is also implemented: data of
the selected particles are sent to the remote processors, interactions are com-
puted remotely, and results are received back. A further modification consists
in rebuilding the local tree less frequently than at every iteration. This version



t =0
while (t < t_end)
if code is HOT
build local tree
exchange data to build global tree
for each group
build interaction list
(communications needed for remote data retrieval)
for each group
for each particle in group
compute forces
if code is GDT
if it is time to rebuild tree
build local tree
for each selected particle
traverse local tree to compute local forces
send particles to remote nodes
receive particles from remote nodes
compute force on remote particles
send forces to remote nodes
receive forces from remote nodes
integrate orbits

Fig. 3. Pseudocode sketching the generic parallel treecode tasks. HOT and GDT are
the two versions of the treecode modelled in this work (cf. sec. 2.2). Tasks involving
communication are highlighted.

will be referred as GDT, which is a short for GADGET, the name given to the
code by its authors. In fig. 3 we give a pseudo-code representation of the generic
algorithm that our model simulates.

Application model Many other versions of the treecode have been proposed,
implementing different tools and techniques. A recent report on that is given
in [7]. Our performance model has been designed to reproduce the behaviour of
state-of-the-art parallel treecodes, running on distributed architectures, and able
to make use of dedicated hardware. Table 1 shows a synopsis of the modelling
expressions of the application tasks described above, given as functions of the
relevant application parameters.

Computer architecture The parallel system simulated in our machine model
is a generic distributed multicomputer, where given nodes can be connected to
one or more SPDs. When SPDs are present, the appropriate task is executed on
them. The application model needs no modification in this case. According to
an input parameter which tells whether SPDs are present, the mapping interface
chooses the routine that maps the task to the SPD, or to the general purpose
processor. Since we are interested in SPDs dedicated to the gravity force com-
putation, the machine model of the SPD reproduces the GRAPE activity, and
its communication with the host. The modelling of the fairly complicated data
exchange machinery between GRAPE and its host is discussed in [10].



Table 1. Synopsis of the modelling expressions for each task of the application model.
All ¢p terms are constant factors proportional to the operations per particle performed.
cm terms are proportional to the amount of bytes per particle transmitted. The index
of a ¢p or cm term refers to the task performed.

task parameter description modelling expression

n: number of particles per processor

: -n-1
build local tree Ne numbe.r of cells per processor cpye-n-log n+
nmp: operations per cells to compute mul- CPmp - N * Nimp
tipoles
data - exchange for Np: number of processors cmgt - Np

HOT global tree

m: fraction of particles selected for force
computation (= 1 if code is HOT)

ng: number of groups per processor

ne: number of cells per processor

build local lists Cpu =M Ny - Ne

Jrmt: number of sources from remote pro-
cessors CMgl * Jrmt = Ny
ng: number of groups per processor

data exchange for
HOT global lists

m: fraction of particles selected for force
computation

n: number of particles per processor

j: total number of force sources

compute forces CPfe-m M- ]

m: fraction of particles selected for force
data exchange for computation

GDT remote force N: total number of particles

Np: number of processors

cm, g -m- N -log Np

integrate orbits n: number of particles per processor CPor * T

The hardware characteristics of the simulated multicomputer are parame-
terised by two constants, 7, and 7,. The first quantity, 7,, accounts for the
processor speed, its value being the amount of floating points operations per
nanoseconds; 7, accounts for the network speed, and its value is the transfer
rate in us/B. In the execution model, each computation-related function (those
containing a cp constant in the modelling expressions reported in table 1) will be
multiplied by 7,, each communication-related function (those containing a cm
constant) will be multiplied by 7.

3 Results

3.1 Model validation

We present here the result of running our simulation model with modelling
parameters such that performance measurements reported in the literature are
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Fig. 4. Timings of the HOT tasks. The real system timings are also reported. The
hardware architecture is the Intel Touchstone Delta.

reproduced. We show for each case the scaling with the total particle number N
of each task of the code, compared with the corresponding real system timings,
as reported by the measurements authors. Finally we present a plot comparing
the total compute time for a code iteration of each configuration.

HOT on Touchstone Delta The Touchstone Delta was a one-of-a-kind ma-
chine installed at Caltech in the early nineties. It consisted of 512 i860 computing
nodes running at 40 MHz, and connected by a 20 MB/s network. The perfor-
mance measurements reported in [8] are based on a run using the whole 512
nodes system, and consist in a timing breakdown of a code iteration taken dur-
ing the early stage of evolution of a cosmological simulation, when the particle
distribution is close to uniform. The total number of particles is N = 8.8 - 10°.
Implementation limitations prevented our performance model to simulate 512
concurrent processes, so that we limited our simulation to 32 processes, and
scaled down 16-fold the measured compute time reported in [8]. Since the com-
munication overhead for that run was just ~ 6%, we assumed a linear scalability
of the code. The timing breakdown of our simulation is presented in fig. 4. The
real system measurements are reported for comparison.

The figure shows that the force computation task and the tree traversal are
the most expensive tasks. The relative computational weight of each task is qual-
itatively well reproduced by our model. Quantitatively, a certain discrepancy be-
tween our model and the real system timings originates from an over-estimation
of the tree traversal and the force computation tasks, which also results in over-
estimating the total time, as shown in fig. 7. Since the main goal of our present
model is versatility with respect to both hardware and software modelling, and
qualitative accuracy, a quantitative discrepancy in a single case does not limit
the general validity of the model.
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Fig. 5. Timimings of the GDT tasks. The real system timings are also reported. The
hardware architecture is a Cray T3E. (a): performance scaling with the number of
processors, being N = 500 000. (b): scaling with N, in a run with 16 processors. Note
the change of scale in the two plots.

GDT on T3E This case reproduces the configuration described in [7], where
the GADGET code is run on the T3E hosted at the supercomputing centre in
Garching, Germany. Each computing node has a frequency of 300 MHz, and
the communication network has a throughput of 500 MB/s. Three cases are
reported in [7], each running the same cosmological simulation, where a system
of 500 000 particles is evolved for 3350 time steps. The difference among the
three cases is in the number of processors used. Since in this case measurements
from three different hardware configuration are reported, we could compare our
model results with a larger set of timing values. We also simulated the fastest
configuration, scaling the value of N. As reported in [7], we assumed that only 5%
of the particles are selected on average at each time step for force computation.
Similarly, we assumed that the local tree is rebuilt each 10 time steps. Timing
breakdowns for both cases are shown in fig. 5.

Fig. 5(a) shows the performance gain as the number of processors increases.
The trend in the measurements suggests a saturation in the attained perfor-
mance, arguably due to an increasing load imbalance. This trend is not visible
in our model results, because load imbalance is not modelled. The overall pattern
of fig. 5(b) resembles the HOT case pattern. Now the tree build task is more
relevant, despite of the fact that it is performed only every ten iterations. This
is to be expected, since the tree build task is performed for all particles, while
the tree traversal and force computation tasks are performed only for a small
fraction (5%) of the selected particles. Also in this case our model results match
the real system timings. The latter did not provide separate values for the tree
traversal and the force computation tasks, so that only the aggregate value can
be reported on the plot.

sim. travs. + force
1 sim. tree build
1 meas. travs. + force

0
+
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Fig. 6. Timings of the sequential treecode tasks. The real system timings are also
reported. The hardware architecture consists of a Compaq 500 MHz workstation con-
nected to a GRAPE-5.

Sequential treecode on GRAPE-5 Here we simulate the configuration de-
scribed in [15]. In that case, a modified treecode is used to simulate a system
containing about one million particles, and groups of ~ 2000 particles share
the same interaction list. This code is run on a Compaq workstation with a
500 MHz Alpha 21264 processor, connected to a GRAPE-5 board containing 96
virtual pipelines (1) , each one able to compute a force interaction in 75 nanosec-
onds. Estimating a force interaction as 30 flops, the aggregate performance of
a GRAPE-5 board is 38.4 Gflop/s. Fig. 6 shows the results of our simulation
model, compared with the real system timings, as reported in [15].

In this case, the force computation task is performed by the GRAPE. An
important fraction of the total timing is taken by the communication between
the host and the GRAPE. The decrease of importance of the tree traversal task,
due to the particle grouping technique, is clearly observable.

Cases comparison We compare here the three cases presented above. We show
in fig. 7 a plot of the time taken by a code iteration versus N, as obtained from
our simulation model, compared with the real system measurements. The value
for the HOT code on the Touchstone Delta is 16 times greater than the value
reported in [8], in order to scale their 512 processor run to our 32 processor simu-
lation. The converse scaling would have resulted in simulation values overlapping
the values for the GRAPE case.

' A GRAPE-5 board contains in fact 16 physical pipelines, each one running at 80
MHz, which is 6 times the speed of the board bus. The board ’sees’ 16*6 = 96 logical
pipelines, running at 80/6 MHz. Appropriate hardwiring manages the data exchange
between the pipelines and the board.
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Fig. 7. Timings of a code iteration for the three simulated configurations.

The simulation values match well the real system measurements. This allows
us to use our model to forecast the behaviour of other configurations with a
good degree of confidence. Results from such simulations are given in the next
section.

3.2 Model forecasts

We explore in this section the possibility of using a hybrid architecture con-
sisting of a distributed general purpose system, where single nodes host zero or
more GRAPE boards. We span the two-dimensional parameter space defined
by the two quantities P, the number of nodes, and G, the number of GRAPEs.
We assign to those quantities values as follows: P € {1,2,4,8,12,16,20,24},
G € {0,1,2,4,8,12,16}. We simulate the same software configuration as de-
scribed in the previous section with respect to the case related to the sequen-
tial treecode on GRAPE-5. The SPD we simulate in this case is the GRAPE-4
[16], whose performance per board is 30 Gflop/s, comparable to GRAPE-5s. It
provides a higher accuracy with respect to GRAPE-5, and is used in fields as
Globular Cluster dynamics on Planetesimal evolution [2], where high comput-
ing precision is required. The general purpose nodes are assumed to perform a
floating point operation in 2 ns, and the communication network is assumed to
have a 100 MB/s throughput.

When one of the nodes of the distributed system is a GRAPE host, forces
on particles that it stores can be computed on the GRAPE hosted by it. Forces
on particles residing on nodes that do not host GRAPEs can be computed on
remote GRAPESs, provided that both particle positions and particle interaction
lists be sent to the node hosting the GRAPE. This implies a very large com-
munication traffic. With our simulation we try to evaluate the relevance of this
communication overhead.

Fig. 8 shows our results. It is clear that, as long as all nodes are connected
to one (or more) GRAPE, a remarkable performance benefit appears. For com-
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Fig. 8. Timings for a system with P processors and G GRAPEs. Comparison with a
system without GRAPES (marked as 0 G) is also provided.

parison, we also provide the timing of a system without GRAPEs. When no all
nodes are GRAPE hosts, the very large communication overhead due to send-
ing particle and interaction list data is disruptive for performance. This result
suggests that the communication task needs a very careful analysis, in order to
design an efficient parallel treecode for hybrid architectures. Here we assumed
that a 'non graped’ node sends all its data to a single ’graped’ node. We dis-
cuss this point further in the next section. The plot in fig. 8 also features an
oscillatory behaviour, particularly evident in the case with 8 GRAPEs. The lo-
cal minima (i.e. better performances) correspond to configurations where P is
an exact multiple of G. In this case the computational load on the GRAPEs
is perfectly balanced, whereas in the other cases some GRAPE bears a higher
computational load from remote data.

4 Conclusions and future work

The efficient integration of hierarchical treecodes and hybrid architectures, con-
sisting of distributed parallel systems powered by GRAPE SPDs, could lead to
a very high performance environment for the solution of the N-body problem.
In order to assess the optimal configuration, we realised a performance model,
with which we can explore the parameter space of this problem. We validated
our model by simulating existing configurations and comparing our results to
real system measurements. We used our model to evaluate the performance of a
hybrid architecture, and highlighted that an efficient implementation of such ar-
chitecture is made difficult by an intrinsic high communication overhead. Issues
like latency hiding, or partial redistribution of work to remove load imbalance,
could help to solve this problem, and will be the object of further research. The
model would also benefit from an accurate parameterisation of load imbalance.
An experimental configuration realised according to those guidelines will allow
us to fine-tune our model, which in turn will give a feedback to improve the ac-



tual configuration, in the direction of finding the optimal interaction of software,
parallel host, and SPD.
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