
Des Autom Embed Syst
DOI 10.1007/s10617-016-9179-z

A hierarchical run-time adaptive resource allocation
framework for large-scale MPSoC systems

Wei Quan1,2 · Andy D. Pimentel1

Received: 25 November 2015 / Accepted: 22 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In the embedded computer system domain,MPSoC systems have become increas-
ingly popular due to the ever-increasing performance demands of modern embedded
applications. The number of processing elements in these MPSoCs also steadily increases.
Whereas current MPSoCs still contain a limited number of processing elements, future
MPSoCs will feature tens up to hundreds of (heterogeneous) processing elements that are
all integrated on a single chip. On these future large-scale MPSoC systems, the mapping of
applications onto the hardware resources plays an important role to fully explore the par-
allelism of applications. In this article, a hierarchical run-time adaptive resource allocation
framework which uses an intelligent task remapping approach is proposed to improve the
system performance for large-scale MPSoCs.

Keywords Embedded systems · KPN ·MPSoC · Task mapping · Simulation

1 Introduction

The ever-increasing performance requirements of embedded applications stimulate the devel-
opment of MPSoC systems in the embedded systems domain. These MPSoC systems, such
as most of current smart-phones, digital televisions, set-tops, etc., are often heterogeneous
systems containing programmable processor cores for flexible application support as well as
dedicated processing elements for achieving power and performance goals. The number of
processing elements in these MPSoCs also steadily increases because of the never-ending

B Wei Quan
quanwei02@gmail.com

Andy D. Pimentel
a.d.pimentel@uva.nl

1 University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
2 Present Address: National University of Defense Technology, Yanwachi Main Street 47,

Changsha 410073, Hunan, China

123

W. Quan, A. D. Pimentel

performance demands of embedded applications. Whereas current MPSoCs still contain a
limited number of processing elements, future MPSoCs will feature tens up to hundreds of
(heterogeneous) processing elements that are all integrated on a single chip to handle the
next generation of embedded applications like real-time physics, artificial intelligence, 3D
rendering effects and so on [14].

Besides the performance requirements, the dynamismand complexity of applicationwork-
loads executed on embedded systems are also rapidly increasing. Today’s MPSoC systems
often require supporting a growing number of applications and standards, where multiple
applications can run simultaneously. For each single application, there may also be differ-
ent execution modes (or program phases) with different computational and communication
requirements. For example, in Software Defined Radio appliances a radio may change its
behaviour according to resource availability, such as the LongTermEvolution (LTE) standard
which uses adaptive modulation and coding to dynamically adjust modulation schemes and
transport block sizes based on channel conditions. As a consequence, the behaviour of appli-
cation workloads executing on future embedded systems can change dramatically over time.
To improve the Quality of Service (QoS like performance, precision, energy consumption,
etc.) for future embedded systems under such dynamic and complex application workloads,
system adaptivity is very important. Future embedded systems will need to continuously
customize their underlying system at run time according to the application workload at hand
and the state of the system itself.

The combination of the above trends in both application and architecture of embedded
systems lead to the research of this work on adaptive large-scale MPSoC-based embedded
systems. There are a number of technology enablers toward adaptive systems. For exam-
ple, there has been significant research attention on techniques for dynamically re-mapping
application tasks to different processing resources [2,3,16]. But they are rarely considered for
large-scale heterogeneous MPSoCs. Other examples are techniques for dynamically chang-
ing systemparameters such as done in dynamic frequency and voltage scaling, and techniques
for dynamically reconfiguring processing components for accelerating application tasks (e.g.,
[5,43]) or network components to customize the network to a specific application workload
(e.g. [42]). However, these techniques need additional hardware supports on the system.

The design of future large-scale MPSoC systems is still an open research question. A
very popular prototype is the tile-based scalable system [8,19,20,31,41,44]. In this work,
we consider the tile-based MPSoC system as our target system. To increase the adaptivity of
future tile-based large-scale heterogeneous MPSoC systems, we propose a Scenario-based
Hierarchical run-time Adaptive Resource Allocation (SHARA) framework. This framework
takes advantages of the state-of-the-art solutions for modern adaptive heterogeneousMPSoC
systems where the system adaptivity is achieved by adaptively adjusting the mapping of
applications to the underlying hardware resources which is optimised at design time. More
specifically, we reconsider themethod in the state-of-the-art solutions that allows for dynami-
cally reconfiguring the system at run time based on pre-optimized system configurations, such
as task mappings derived at design time [17,25,27,29,31,37,45], and extend it by solving the
issues of scalability as introduced in [25] and blind adaptivity (a system reconfiguration that
should not have happened because of its large overhead actually happened) that are usually
existed in these solutions for our target large-scale heterogeneous MPSoC system.

The contributions of this work can be summarized as follows:
(1) Traditionally, run-time managers are either centralized or distributed. However, as a

centralized approach comes with a performance bottleneck and a distributed approach leads
to a high complexity, both approaches do not fulfill the requirements of large-scale embedded
systems [31]. To overcome this problem, a hierarchical resource management mechanism is

123

A Hierarchical Run-time Adaptive Resource...

implemented in our frameworkwhere a global resourcemanager takes charge of theworkload
distribution among tiles and the local resource manager in each tile optimises the resource
allocation for the assigned applications.

(2) To handle the complex and dynamic application workloads for the target MPSoC sys-
tem, we propose a hybrid approach for mapping applications to the underlying resources.
Similar to the above-mentioned state-of-the-art solutions for modern adaptive MPSoC sys-
tems, there are two stages in our approach aswell. Thefirst stage is the design-timepreparation
stage where application mappings are optimised by our Design Space Exploration (DSE)
approach. The second stage is the run-time mapping re-optimisation stage. Our proposed
hybrid approach is able to solve the scalability problem of most existing solutions.

(3) For the purpose of avoiding a blind system adaptivity as mentioned above, a self-
adaptive scheduler is presented for adaptivity throttling. The scheduler tries to predictwhether
or not reconfiguration of the system actually is beneficial when system execution environment
changed.According to the prediction, the systemwill either be reconfigured or not. It is able to
improve the system’s efficiency as compared to MPSoCs that do not provide such intelligent
reconfiguration control.

The remainder of this article is organized as follows. Section 2 gives some prerequisites
for this article. Section 3 describes the hierarchical resource management mechanism on
the target MPSoC system and Sect. 4 provides a detailed description of our SHARA frame-
work. Section 5 introduces the experimental environment and presents the results of our
experiments. Section 6 discusses related work, after which Sect. 7 concludes the article.

2 Prerequisites

2.1 Application and architecture model

In this work, we target the multimedia application domain. For this reason, we use the Kahn
Process Network (KPN) model of computation [12] to specify application behaviour since
thismodel of computation fitswell to the streaming behaviour ofmultimedia applications. In a
KPN, an application is described as a network of concurrent processes that are interconnected
via FIFO channels. This means that an application can be represented as a directed graph
K PN = (P, F) where P is set of processes (tasks)1 pi in the application and fi j ∈ F
represents the FIFO channel between two processes pi and p j .

As introduced in the previous section, the workload of MPSoC systems are increasingly
dynamic. Here, we use the concept of scenario [6,22] to capture the application dynamism on
our targetMPSoC system.There are two different kinds of scenarios: inter-application scenar-
ios describe the simultaneously running applications in the system, while intra-application
scenarios define the different execution modes for each application. The combination of
these inter- and intra-application scenarios are called workload scenarios [27], and specify
the application workload in terms of the different applications that are concurrently executing
and the mode of each application as shown in Fig. 1. We denote S as the set of all possible
workload scenarios for the target applications. For a number of n target applications where
each application has m execution modes, the total number of possible workload scenarios
in S is (m + 1)n − 1. Each workload scenario si ∈ S is described as a set of KPN graphs,
si = (..., K PNk

j , ...)where K PNk
j is the graph of app

k
j (application j, mode k) that is active

in scenario si . Combining the KPN graphs in a workload scenario, the graph of a whole

1 We use the terms process and task interchangeably in this article.

123

W. Quan, A. D. Pimentel

Mode-mnMode-m1Mode-m0

Mode-1
Mode-0Mode-1

Mode-0

Mode-1
Mode-0

t0

t1

t3

t2

t4

APP-0

t0

t1

t3

t2

APP-n

t0 t2
t1

APP-1

……

… … …

……Active Mode-0 Non-Active Active Mode-mk

Workload Scenario s

t0

t1

t3

t2

t4

APP-0 (Mode-0)

…… t0 t3

t2

APP-n (Mode-mk)

Fig. 1 Definition of a workload scenario

workload scenario can be expressed as si = (Ti ,Ci) where Ti is set of tasks in the scenario
si and Ci represents the set of communication channel between two communicating tasks.
Each element in Ti and Ci , noted as tkmi and ckni respectively, represents the m − th task and
the n − th communication channel in application appk which is active in workload scenario
si .

Our target MPSoC architecture is illustrated in Fig. 2. This MPSoC is composed of four
identical tiles. In each tile, there are four heterogeneous processing elements connected to a
shared memory by bus. Note that the communication in our target system has multiple levels
like the intra-processor communication by buffers, intra-tile communication by a shared bus
and inter-tile communication by a simple mesh Network-on-Chip (NoC) similar to [31]. The
reason for considering this type of MPSoC architecture is that the architecture of a tile in
our target system can be designed by current state-of-the-art MPSoC design approaches like
the work from [23]. Also this kind of layered architecture could reduce the communication
congestion that might happen in a large-scale NoC. The target architecture of our large-scale
MPSoC system can be modelled as a graph MPSoC = (PE,M), where PE is the set of
processing elements used in the architecture and M is a multiset of pairsmi j = (pei , pe j) ∈
PE × PE representing a buffered communication medium (like a Bus, NoC, etc.) between
processors pei and pe j . However, our proposed approach is not limited to the architecture we
assumed here. It can be applied to other architectures as long as the system can be (virtually)
divided into identical tiles.

2.2 Task mapping

The task mapping defines the binding of the components in a workload scenario (including
the tasks and the communication channels) to the underlying architecture resources. Given
a workload scenario and a target MPSoC, a correct mapping is a pair of unique assignments

123

A Hierarchical Run-time Adaptive Resource...

TILE2

MEM2 NC2

BUS

P20 P21 P22 P23

TILE3

NC3 MEM3

BUS

P30 P31 P32 P33

TILE0

P00 P03

BUS

MEM0

P01 P02

NC0

TILE1

P10 P13

BUS

NC1

P11 P12

MEM1NoC

N
oC

NoC

N
oC

Fig. 2 The architecture of the target MPSoC system

(µ : T → PE , η : C → M) such that it satisfies ∀c ∈ C, src(η(c)) = µ(src(c)) ∧
dst (η(c)) = µ(dst (c)). For each workload scenario si ∈ S, the possible task mappings
are denoted as T Mi with each single mapping tm j

i ∈ T Mi complying with the mapping
constraint. In this work, we assume that the task mapping of applications on the target
system only can be changed by task migration during system reconfiguration. Under these
definitions, the computation cost of task tkmi ∈ Ti and the communication cost of ckni ∈ Ci

in workload scenario si under the task mapping of tm j
i is represented as etkmi j and eckni j

respectively.
Our objective in this work is to improve the system performance by adaptively reconfig-

uring the target system based on dynamically derived mappings for each detected workload
scenario. It includes: firstly deriving a spatial and temporal optimised task mapping for each
newly detected workload scenario on the target MPSoC system and secondly reconfiguring
the system according to the newly derived mapping when the reconfiguration is predicted
to be beneficial. Assuming a sequence of application scenarios need to be execution on the
target system, our objective is to minimize the total execution time of the system, in other
words, to maximize the throughput for target application scenarios.

3 Hierarchical resource management on the target MPSoC system

From the perspective of the control mechanism for system resource management, it can be
divided into three categories [31,38]: (1) centralised resource management, (2) distributed
resource management and (3) the combination of two previous methods. On modernMPSoC
systems where a limited number of processing elements are present, centralised approaches

123

W. Quan, A. D. Pimentel

Global
Manager

Local
Manager

PE PE PE...

Local
Manager

PE PE PE...

Local
Manager

PE PE PE...

...

Fig. 3 The hierarchical resource management on the target MPSoC system

are usually considered because of their effectiveness and simplicity [18]. However, when the
system scales, a centralised approach often suffers from its performance bottleneck as heavy
communication might happen during resource reallocation when the number of processing
elements is very large. To avoid this problem, distributed resource management approaches
have been proposed [1,13,33]. However, these distributed approaches are usually complex
and not easy to implement. Most importantly, this kind of approaches can only find a local
optimal resource allocation solution. Consequently, a trade-off solution that combines the
centralised and distributed resource management is commonly considered in multi-/many
core systems [31]. For our target large-scale MPSoC system, we also adopt this hybrid
approach where the control structure is hierarchically organised as in Fig. 3. The Global
Manager (GM) takes charge of workload partition among tiles and each Local Manager
(LM) optimises the resource allocation inside a tile for the assigned applications. This control
mechanismcan be implemented on the target systemby either dedicated hardware (controller)
or software. Currently, in the experiments of thiswork, we simulate ourmanagers as hardware
controllerswith dedicated control channels. Itmeans that the inter-controller communications
will be done in dedicated communication channels with low overhead. Consequently, the
system can response quickly by either reconfiguring the system or keeping unchanged when
the workload scenario active on the target system changes. However, if these managers are
implemented in software and directly executed on the processors in the target architecture by
dividing tiles into a master tile and multiple slave tiles between tiles and a master processor
and slave processors inside a tile. In this case, the communication between managers is done
by the data channels between processors. Even though, this software implementation can
save hardware resources comparing to the dedicated hardware managers, it will degrade the
system performance because a larger overhead for computing new task mapping and a lower
effective adaptivity throttling.

According to the above-mentioned control mechanism, a scenario-based hierarchical run-
time adaptive resource allocation framework is proposed to adaptively reallocate the hardware
resources on our target tile-based MPSoC systems. Note that this framework is not limited
to the architecture we considered in this work, as tiles can be virtually divided on a target
system. Taking a general NoC-basedMPSoC system as illustrated in Fig. 4 as an example, the
entire system can be firstly divided into identical tiles and then controlled by our approach.
The details of our proposed SHARA framework will be explained in the following section.

To decide which implementation (hardware or software) of the above mentioned con-
trollers is better for the target system, a designer should consider several factors like the

123

A Hierarchical Run-time Adaptive Resource...

Virtual Tile Virtual Tile

Virtual Tile Virtual Tile

R R R

R R R

R R R

P P P

P

P

P P

P P

R R R

P P P

R

R

R

P

P

P

R

P

Fig. 4 An example of dividing a MPSoC into virtual tiles

costs, the performance requirements and the design complexity. For a system that needs to
support hard real-time applications, hardware controllers with dedicated control channels
are the best choice. As the unpredictable delay of software controllers (control channels and
data channels are shared) will make the system unable to satisfy the hard real-time require-
ments. In our framework, the global manager takes charge of workload partition among
tiles according to our tile-level load balance algorithm using the static mapping information.
The control logic of this global manager is quite simple. The memory usage for storing
the static mapping information explored at design time depends on the size of the target
applications and architecture. Normally, hundreds of kilo bytes are big enough for storing
the mapping information. The local manager of our framework uses the static mapping and
the application/architecture related information (e.g. task execution time on a processors) to
do mapping optimisation by our processor-level mapping algorithm. The complexity of this
algorithm is much higher (2 orders of magnitude) than the algorithm adopted in the global
manager. For the hardware implementation of a local manager, the resource usage will be
higher compared to a global manager but far more less than a real processor. The memory
consumption of a local manager is also larger than the global manager as more information
needs to be stored, which means a few mega bytes maybe required. To keep up with the
processor execution without introducing too much overhead, a local manager should be bet-
ter to keep a similar frequency with the processors on the system and the global manager can
have a lower operating frequency (1 order of magnitude). Even though the complexity of a
local manager is far more less than a processor, keeping its frequency similar to the proces-
sors on the system can save a lot of time for the global manager. As the global manager
needs local managers to calculate the mapping performance during its workload partition
process.

123

W. Quan, A. D. Pimentel

4 Scenario-based hierarchical run-time adaptive resource allocation
framework

When considering dynamic resource reallocation on aMPSoC system, three steps are needed.
The first step is to decide when the resources reallocation should be triggered. For example,
it could be a scenario change, a different QoS requirement, a system fault and so on. The
second step is to derive a new resource scheme based on the detected trigger. After that,
the third step is the actual system reconfiguration. The system reconfiguration in this work
only changes the mappings of tasks (both computational and communicating tasks) to the
hardware components in the target MPSoC. Figure 5 shows a high-level workflow of our
SHARA framework. In this work, the trigger of the resource allocation events is the change
of workload scenario on the target MPSoC system. At run time, the GM will continuously
monitor the execution of workload scenarios on the target MPSoC system. When a new
workload scenario is detected, the system will enter the resource reallocation stage. In this
stage, the GM will try to redistribute the applications in the detected workload scenario
according to the utilisation of each tile and the resource usage of each application in the
system. Based on the new workload distribution and the potential reconfiguration benefit,
the global scheduler in the GM will start a global workload scheduling. In each tile, if the
workload (applications) allocated by the GM is different with its previous workload, the
local scheduler of the LM will adaptively reconfigure the hardware resources based on the
mapping optimised in the LM and the corresponding reconfiguration benefit.

In this article, we mainly focus on the last two steps of dynamic resource reallocation
on our target MPSoC system as mentioned above. To derive a new mapping for a workload
scenario on the targetMPSoC system, we propose a scalable run-time taskmapping approach
which hierarchically maps the applications onto the tile-based MPSoC system. Normally,
after deriving a new mapping for the new workload scenario, system reconfiguration should
be done by the resource schedulers under the new generated mapping scheme. However, this
is not always beneficial, like a very short execution duration for the new workload scenario,
as its unignorable cost which in our case mainly comes from the task migration on the target
system can’t be ignored at run time. If the schedulers still reconfigure the target system
when it is not beneficial, this will lead to the problem of blind adaptivity as introduced at
the start of this article. To solve this problem, we propose an adaptivity throttling technique
in the resource schedulers of the system which is able to smartly decide whether a system
reconfiguration is suitable.

Global Manager (GM)

Scenario
Detection

new scenario ? Workload
Partition

Y

N

Local Manager (LM)

Mapping
Optimisation

new workload ?

G
lobal

S
cheduling

Local
Scheduling

Fig. 5 A high-level workflow of SHARA framework

123

A Hierarchical Run-time Adaptive Resource...

App-0 App-1 App-m...

Tile Tile Tile...

Workload
Scenario s

Target MPSoC

Workload Scenario s

Target MPSoC

...

Target MPSoC

App-0 App-1 App-m...
Workload Scenario s

Traditional Solution
Solution in

[Quan and Pimentel 2013a] Solution in SHARA

Fig. 6 Divide-and-conquer solution for complex task mapping problem

4.1 Scalable run-time task mapping in SHARA

To overcome the shortcomings of pure static [4,11,15] and dynamic [21,36] task mapping
algorithms, hybrid (semi-static) approaches havebecome increasingly popular in recent years.
Usually, in this kind of approaches, multiple mapping solutions are found at design time
and applied at run time based on the current state of the system. However, these methods
typically still suffer from scalability issues when the number of workload scenarios becomes
very large as they need to find and store one or more optimal task mappings per scenario at
design time (to be used at run time). One solution to address this problem is by reducing the
number of workload scenarios by means of clustering [6,27]. However, these methods still
suffer from an additional problem of searching for optimal mappings of (clustered) workload
scenarios at design time: it should already been known at design time which applications can
execute on the target platform. This implies that extending the system with a new application
would require to redo the entire design-timemapping preparation for all (clustered) workload
scenarios.

In our SHARA framework, we address the complex task mapping problem on our tile-
based heterogeneous MPSoC system using the idea of a hybrid task mapping technique
proposed in our previous work [25] which prepares partial task mappings for workload
scenarios at design time and completes the mappings for the entire scenario at run time. This
task mapping approach was proposed for a small-scale heterogeneous MPSoC system. It
solves the scalability problem with regard to the number of tasks in the mapping problem.
However the complexity of a task mapping problem not only depends on the number of
application tasks but also on the number of target processing elements2. In this work, we
solve this problem by taking advantage of both the MPSoC architecture and its hierarchical
control mechanism as shown in Fig. 6. For our tile-based MPSoC system, we made a few
assumptions for our task mapping approach. An entire application can only be mapped to a
single tile to reduce the communication overhead between tasks inside an application. Each
processor in our target MPSoC system can run more than one task at the same time. It means
that multiple tasks (scheduled by FCFS policy) can be mapped onto the same processor.
As each tile has the same architecture in our target MPSoC system, compared with the
approach used in [25]. We can further simplify the design-time mapping optimising problem

2 The number of possible mappings of a mapping problem where m tasks need to be mapped onto n hetero-
geneous processing elements is nm .

123

W. Quan, A. D. Pimentel

by considering only a partial target architecture (i.e., a tile) to limit the number of processing
elements in themapping problem. The problem of how to further optimise the entire mapping
for the target workload scenario and the target MPSoC system will be solved at run time by
light-weight heuristics. The details of our proposed task mapping approach will be explained
in the following subsections.

4.1.1 Design-time mapping optimisation

At design time, a performance-optimized task mapping (and, if needed, also a power-
optimized mapping) for each execution mode of each application in isolation is determined
by using state-of-the-art scenario-awareDesign SpaceExploration (DSE) techniques [26,40].
Note that the target architecture in this optimisation process is the tile architecture inside the
targetMPSoC system asmentioned above. This greatly reduces the complexity of each single
task mapping problem. By using this approach, the time needed for finding the pre-optimised
task mappings and the memory usage for storing these mappings on the system have been
significantly reduced. For example, when considering n target applications with each m exe-
cution modes, the number of mappings that need to be optimized and stored is m ∗ n in our
case. This number is greatly reduced compared to the (m+ 1)n − 1 mappings that need to be
optimized and stored in the case of performing mapping preparation for complete workload
scenarios. Moreover, if a new application needs to be supported on the target MPSoC sys-
tem, this would only require providing the pre-optimized mappings of this new application
to our SHARAwithout redoing the entire process of design-time mapping preparation for all
possible (new) workload scenarios. Also there is no need to redo the design time mapping
optimisation with the architecture scaling of the target MPSoC system, i.e. a larger number
of tiles in the target MPSoC.

In each task mapping problem, the communication channels in each application are auto-
matically mapped onto fastest available communication medium in the architecture based
on the mapping of two communicating tasks. For example, if two communicating tasks are
mapping onto the same processing elements, then the communication channel between these
two tasks will be mapped onto the inner buffer of the processing element automatically.
Figure 7 shows the mapping of an application on the tile architecture we considered in our
MPSoC system. At design time, the mappings that need to be explored are expressed as what
is shown in the mid-part of Fig. 7. These mappings will be stored in the local memory of the
GM. Besides the performance optimised mapping for each execution mode of each isolated
application, the execution time of each task on each processor in a tile, the communication
time between tasks on different communication channels of the target system and the migrat-
ing data size between processors for each task should also be analysed at design time and
stored on the target system for mapping optimisation and adaptivity throttling.

4.1.2 Tile-level workload partition

As the mappings prepared at design time are optimised targeting the hardware resources
inside a tile. To fully utilise the resources of our target MPSoC system where multiple
identical tiles are present, the application level parallelism in a workload scenario will be
addressed in the GM by means of workload partition. When the workload scenario on the
target system changes, the mapping of applications (application to tile) in this new scenario
may be adjusted by using a load balancing heuristic as shown in Algorithm 1. It means that
the workload partition is triggered by the change of the workload scenario on the target

123

A Hierarchical Run-time Adaptive Resource...

t0

t1

t3

t2

t4

APP-i (Mode-j)

P0 P3

BUS

MEM

P1 P2

NC

TILE

t0 t1 t2 t3 t4

p0 p1 p2 p3

0 0 2 1 1

App info

Tile info

Mapping
explored at
design time

Mapping
with tile info.

t0 t1 t2 t3 t4

App info

p10 p11 p12 p13

Tile1 info

10 10 12 11 11

Fig. 7 A simple example of encoded task mapping

Algorithm 1: The heuristic of workload partition in the GM
Input: (µold ,ηold), MPSoC
Output: (µnew ,ηnew)
1: (µnew ,ηnew) = = (µold ,ηold);
2: U = tileUsage((µnew ,ηnew), MPSoC);
3: Umax ′ = max(U); Umax = +∞;
4: Umin′ = Umin = min(U);
5: while Umax ′ < Umax :
6: Umax = Umax ′
7: Umin = Umin′
8: appumin = getMinApp(tile with Umax)
9: (µ∗,η∗) = getOptMapping(appumin);
10: (µapp ,ηapp) = app2Tile((µ∗,η∗), tile with Umin);
11: (µnew ,ηnew) = change((µapp ,ηapp), (µnew ,ηnew));
12: U = tileUsage((µnew ,ηnew), MPSoC);
13: Umax ′ = max(U);
14: Umin′ = min(U);
* recover to the mapping that satisfies the condition in line 5 *\
15: recover2Prev((µnew ,ηnew));
16: return (µnew ,ηnew);

MPSoC system. For a newly detected workload scenario, the utilisation of each tile will be
calculated using the application/system information in the function of line 2 based on the
current/oldmapping on the system. The actual workload partition process starts from line 5 to
line 14 in Algorithm 1. In each iteration of this process, if the maximal resource usage among
tiles can be reduced, the application with smallest resource consumption (line 8) on the tile
with maximal resource utilisation will be reallocated onto the tile with minimal resource
utilisation. It means that the algorithm tries to gradually balance the system by migrating
applications from overloaded tiles to lightly-loaded tiles. When an application is reallocated

123

W. Quan, A. D. Pimentel

to a different tile, its pre-optimised mapping will be used on the new tile as shown in line 9 of
Algorithm 1. This process will continue until the workloads on the system are well balanced.
As the task migration overhead will greatly influence the system performance as can be seen
in the experiment section, this algorithm tries to balance the system workload with a minimal
number of task migrations among tiles to reduce the tile-level task migration overhead.

4.1.3 Processor-level task mapping optimisation

After the entire new workload scenario is reallocated by the GM, each tile on the target
MPSoC system might need to execute a new tile-level scenario. In the workload partition
process, it only focuses on the total resource consumption of a complete application. The
task mapping of an application on the resources inside a tile is either generated from the
pre-optimised mappings stored on the system or the mapping preserved from the previous
workload scenario. However, simply merging per-application mappings might not be good
enough with regard to the optimising goal like the performance objective considered in
this work. After the GM finished the workload scheduling, the LM in the tile where the
new workload has to be executed will further optimise the task mapping derived from the
workload partition heuristic in the GM. In each LM, we adopt the EIM algorithm proposed in
[25] without considering the energy constraint which generates mappings with good quality
in system throughput to further optimise the mapping for the new workload. The pseudocode
of this algorithm is outlined in Algorithm 2. It benefits from both the high mapping quality of
the design-time static task mapping approaches and the efficiency of the run-time dynamic
task mapping approaches. Under this heuristic, for a workload with only a single application
active, the EIM algorithm directly outputs the corresponding pre-optimised mapping (the
mapping for the particular execution mode of the active application) stored on the system
memory as the final mapping. However, for a workload scenario where multiple applications
are active simultaneously, it will further iteratively optimise the merged mapping derived in
theGMby changing themapping of tasks on overloaded processors to light loaded processors.
It is a greedy algorithm and aims at improving the mapping performance by minimizing the
maximal processor usage and processor usage variation among processors in a tile. The
algorithm iteratively reduces these two objectives by unloading a task or task bundles from
the most heavy loaded processor (under the new mapping) to other processors.

Figure 8 shows a simple example of mapping a workload scenario onto our target MPSoC
system using our proposed task mapping approach. In this example, a workload scenario

Algorithm 2: Modefied EIM algorithm
Input: K PNappactive , MPSoC , scenario_id(si)
Output: (µ, η) /*new mapping
1: (µ, η) = getInitMapping(si); /* merge the optimised mapping of each application*/
2: if singleAppActive(si) == true:
3: return (µ, η);
4: else:
5: U = peUsage(K PNappactive , MPSoC , µ, η);
6: Mp = maxPUsage(U); /* maximal usage among processors*/
7: Vp = varPUsage(U); /* processor usage variation*/
8: if Mp or Vp is reduced
9: goto line5
10: else
11: return (µ, η)

123

A Hierarchical Run-time Adaptive Resource...

0 0 2 1 1

Default mapping

App0

1 1 0 3App1

2 2

App2 3 0 2

App3

2 2 3App4

00 00 02 01 01

Workload partition

App0

11 11 10 13App1

32 32

App2 23 20 22

App3

32 32 33App4

Empty MPSoC APP to TILE

tile0

tile1

tile2

tile3

tile3

Task to PE

00 00 02 01 01

Mapping optimisation

App0

11 11 10 13App1

30 33

App2 23 20 22

App3

32 32 31App4

Fig. 8 A simple example of mapping a workload scenario on the target MPSoC system

with five applications is mapped on the empty tile-based MPSoC system. When the GM
in SHARA detects the new workload scenario, it will allocate these new applications onto
tiles available in the target system by the tile-level workload partition algorithm. After that,
each LM starts to further optimise the mapping of applications that are allocated on the
corresponding tile. As only one application is active on tile0 to tile2, the LM on these
three tiles will not further optimise the default mapping as it has already been optimised
at design time. However, the mapping of applications on tile3 is further optimised by the
EIM algorithm to improve the mapping quality. This hierarchical task mapping approach of
our SHARA framework can greatly simplify the computational complexity comparing to the
exhaustive mapping exploration approach not only on the number of mappings need to be
explored for all target possible application scenarios as mentioned in Sect. 4.1.1 but also on
the complexity of computing each mapping solution. For each single mapping solution, the
complexity of the exhaustive approach depends on both the number of tasks in the target
application scenario and the number of processors in a tile of our target MPSoC system
(under the assumption that the tasks of an application can only be mapped onto a single tile).
However, our mapping exploration approach only needs to consider the number of tasks
of each application in isolation and the number of processors in a tile. With regard to the
quality of mappings derived from our approach and the statically optimised mapping of the
exhaustive approach (with an acceptable mapping exploration time like a few hours), the
mapping quality of our approach is very close to the later one (under 10 % performance loss
in average for our tested application scenarios in the experiment section).

4.2 Adaptivity Throttling for System Reconfiguration

In current scenario-aware adaptive MPSoCs, the system will typically be reconfigured (i.e.,
the task mapping will be adapted) when a new workload scenario appears on the system,
irrespective of the trade-off between reconfiguration costs and benefits. This implies that
task migration might occur during this reconfiguration process of which its cost cannot be

123

W. Quan, A. D. Pimentel

Adaptivity Throtlling

p p' u c

Scenario Duration
Prediction Model

Scenario
execution

history

Reconfiguration Cost
Prediction Model

Arch.
info

App.
info

Old&New Mapping

Performance Prediction
Model

App.
info

Arch.
info

Old&New Mapping

(p-p')*u > c

Statistics

Yes Reconfigure the
system under the

new mapping

Keep the system
under the old

mapping

No

Fig. 9 Adaptivity throttling mechanism in SHARA

ignored, especially for heterogeneous MPSoC systems and those cases where the duration
of workload scenarios are relatively short.

Let’s assume that the new workload scenario needs to finish u units of work. Under the
current/old task mapping, the target MPSoC system requires p units of time to finish a
single unit of this work. However, if this new scenario is executing under the new mapping
optimised at run time, the execution time of a single unit work of this scenario will be
reduced to p′. Consequently, for the target u units of work, the execution time saved by
reallocating the system resources under the new mapping before execution for this scenario
is∆p = (p−p′)×n. However, this time reduction comes at the cost of taskmigration between
processors and the computational overhead system manager like the SHARA itself (i.e., the
time needed for determining the new mapping and deriving the reconfiguration decision).
Here we assume this time cost is c. Under these assumptions, it is evident that only if ∆p
is larger than c—implying that the system actually benefits from the reconfiguration—then
the system should re-map the application tasks to improve system efficiency, and otherwise
not. This can be seen as throttling the adaptivity. Although a similar trade-off for costs and
benefits of reconfiguration can be made in terms of power consumption, we will focus on
performance in the remainder of the discussion. To make the adaptivity support in MPSoC
systems more effective, the resource scheduler should be capable of explicitly making these
reconfiguration decisions (i.e., provide support for adaptivity throttling) whenever workload
scenarios change.

Figure 9 give an overview of the adaptivity throttling implementation in the SHARA
framework. It is used for adaptively determining system reconfiguration decisions when
workload scenario changes. To determine a reconfiguration decision, three parameters are

123

A Hierarchical Run-time Adaptive Resource...

required: the performance improvement of re-mapping tasks (p− p′), the scenario execution
duration (u), and the reconfiguration cost (c). These three parameters are, however, unknown
before the system reconfiguration. As a consequence, prediction models should be used to
predict each of these values. Figure 9 illustrates how to derive a suitable reconfiguration
decision based on the outcome of the prediction models (i.e, ∆p > c). In this figure, the
information about the target applications and hardware architecture used in the performance
prediction model as well as the reconfiguration cost prediction model are prepared at design
time as mentioned in Sect. 4.1.1.

The prediction models used for adaptivity throttling cannot be computationally intensive
as they have to efficiently make a reconfiguration decision at run time. For the performance
and reconfiguration cost prediction, simple analytical models are used in our SHARA frame-
work. However, different with these two parameters, the scenario execution duration is a
dynamic parameter which could be heavily influenced by user behaviour or system execu-
tion environment. It can’t be predicted simply by analytical models. For the prediction of such
kind of parameters, a history-based predictor is commonly used which predicts the future
behaviour based on the history information. The details of these predictors in our SHARA
framework are introduced as follows.

4.2.1 Mapping performance prediction

Our target MPSoC system consists of several homogeneous tiles. Each tile has a typical
heterogeneous MPSoC architecture. For this kind of system, we can apply the same perfor-
mance analytic model to the different tiles in our target MPSoC. The LM of each tile has an
instance of the performance model. In this work, we use a simple linear analytic model to
predict the performance of different task mappings for workload scenarios targeting our tile
architecture.

As our target applications belong to the domain of streaming applications that continuously
process an incoming stream of data elements. To capture the duration (u) of a workload
scenario in this case, we use the concept of scenario frames to define the workload of
active applications. Here, we define one scenario frame as the time it takes for each active
application within a specific workload scenario to process at least a single unit (frame) of data
(e.g., processing a single MP3 frame, an H264 frame, etc.). Consequently, the performance
(in scenario execution time for one scenario frame) of a workload scenario si under mapping
tm j

i can be calculated by Eq. 1

p j
i = max

(
pki j

)
(1)

where pki j represents the frame execution time of appk which is active in si under mapping

tm j
i .
According to the pre-stored application/architecture information, the performance of each

active application pki j is predicted by Eq. 2.

pki j = CCk
i j + BKk

i j (2a)

CCk
i j =

∑

0≤m<t

etkmi j +
∑

0≤n<l

eckni j (2b)

BKk
i j =

∑

q ̸=k

∑

tqsi ∈T qk
i j

etqsi j +
∑

q ̸=k

∑

cqsi ∈Cqk
i j

ecqsi j (2c)

123

W. Quan, A. D. Pimentel

where CCk
i j represents a conservative estimate (no concurrency is taken into account) of

the total execution time of appk in scenario si under mapping tm j
i of all t tasks and l

communications in appk . BKk
i j is the total time of tasks tqsi ∈ T qk

i j and communications

cqsi ∈ Cqk
i j from other active applications different with appk . Here, T

qk
i j and Cqk

i j is the set

of tasks and communications from appq that have the same mapping (under tm j
i) with any

task and communication of appk respectively.

4.3 Reconfiguration cost prediction

The reconfiguration cost on our target MPSoC system includes two part: the computational
overhead in the GM/LMof our SHARA framework and the taskmigration cost during system
reconfiguration. The overhead of GM/LM is determined by means of measurements and the
task migration cost is calculated by Eq. 3b. The model of task migration cost prediction is
a simple linear analytic model. The reason behind this model is based on the task migration
mechanismwe implemented on the targetMPSoC systemwhere a task recreation [28] mech-
anism is considered in our system. During task migration, the migrating task will be killed
on the original processor and the task state information (and task binary code if needed) will
be transferred to the destination processor. The destination processor will load the binary
code and state information to restore the task. Here, we label the computational overhead in
SHARA asComp and the taskmigration cost asCMig. Consequently, for a certain workload
scenario si where the old detected task mapping is tm j

i and the new generated mapping is

tm j ′
i , it’s reconfiguration cost can be derived by the following equation. Notice that, in our

MPSoC system, there are two levels of system reconfiguration: the tile-level system recon-
figuration and processor-level system reconfiguration. Consequently, to calculate the cost of
tile-level system reconfiguration, the parameter Comp and CMig represents the computa-
tional overhead in the GM and the inter-tile task migration respectively. For processor-level
system reconfiguration cost prediction, they are the computational overhead of the LM and
the intra-tile task migration in the corresponding tile. This model is used in both the GM
and each LM as a reconfiguration decision has to be predicted at both the inter- and intra-tile
level.

c j j
′

i = Comp j j ′
i + CMig j j ′

i (3a)

CMig j j ′
i =

⎛

⎜⎝
∑

tk∈T j j ′
i

msk

⎞

⎟⎠
/

rcomm (3b)

where T j j ′
i is the set of tasks in workload scenario si that need to be migrated from mapping

tm j
i to tm

j ′
i , msk represents the amount of migrating data for task tk , and rcomm is the speed

communication channel used for data transferring on the system.

4.4 Scenario duration prediction

For the purpose of scenario duration prediction, we use the scenario execution history infor-
mation to predict the future execution behaviour ofworkload scenarios.Actually, the accuracy
of this predictor highly depends on the target application domain. For example, in a periodic
system, the scenario execution behaviour is easy to predict by typical history-based predictors
such as last value predictor, table-based predictor and the Statistical Metric Model (SMM)

123

A Hierarchical Run-time Adaptive Resource...

LM3GM

New mapping scheme

11 11 10 13

App1

02 02

App2

23 20 22

App3

32 32 31

App4

Old Workload Scenario

00 00 02 01 01

App0

11 11 10 13

App1

30 33

App2

23 20 22

App3

32 32 31

App4

Workload partition

New Workload Scenario

11 11 10 13

App1

30 33

App2

23 20 22

App3

32 32 31

App4

Adaptivity throttling in GM

Tile-level reconfiguration decision

Mapping optimisation

New optimised mapping

32 32 33App4

Reserved mapping

32 32 31App4

Adaptivity throttling in LM

processor-level reconfiguration decision

Fig. 10 Hierarchical adaptivity throttling in SHARA

[30]. However, in our multi-media application domain, the workload scenarios usually has a
random execution duration behaviour. It is hard to use these predictors to accurately predict
the scenario execution duration. Further more, these predictors especially the table-based
predictor and the SMM need to consume a certain amount of system memory at run time
to record the history information for each workload scenario. In this work, we assume a
large number workload scenarios will be executed on the target system. If such predictors
are adopted, the memory usage will be a big concern on our MPSoC system. Consequently,
we only use the average scenario duration of previous executions of a workload scenario
as the future execution duration value. And this average scenario duration information will
be updated by the GM after the workload scenario actually finished its execution. This sim-
ple scenario duration predictor is initialised in the GM. When a new workload scenario is
detected, the GM will predict a scenario duration for tile-level adaptivity throttling and send
this predicted value to each LM for processor-level adaptivity throttling.

4.5 Hierarchical adaptivity throttling in SHARA

Using the introduced adaptivity throttling mechanism, a hierarchical scheduling policy
is implemented in the SHARA framework where the GM actually schedules the system
resources at tile level for new workload scenarios based on the tile-level reconfiguration
decision and each LM schedules the resources inside the tile according to processor-level
reconfiguration decision. Figure 10 shows how this hierarchical adaptivity throttling approach

123

W. Quan, A. D. Pimentel

works in our SHARA framework. To derive a tile-level reconfiguration decision using the
adaptivity throttlingmechanism in the GM, those parameters needed for predicting the recon-
figuration benefits should target the whole complete workload scenario on the target system.
The performance improvement prediction in the GM happens after a new mapping is gener-
ated by theworkload partition algorithm. TheGMwill firstly send the correspondingmapping
information to the LM in each tile. After each LM predicted the performance in that tile, it
will send back the performance information to the GM. The system performance of a whole
workload scenario is then determined by the GM using Eq. 2. The tile-level reconfigura-
tion cost depends on both the computational overhead in the GM and the task migration cost
between tiles via theNoC. In the example of Fig. 10, the possible taskmigration cost concerns
migrating application App3 from tile3 to tile0. In each LM, the performance prediction only
focuses on the workloads that are allocated to the tile by the GM and the reconfiguration cost
includes the computational overhead in itself and the possible task migrations (like the third
task of App4) inside a tile via the local shared bus. With regard to the scenario execution
duration prediction, the GM and each LM use the same prediction.

In this work, we limit the number of processors in our target architecture to demonstrate
the effectiveness of our proposed approach. The number of processors can be increased as
long as the architecture is under our assumption (processors can be divided into identical
tiles). For example, we can increase the number of processors in a tile and also the number
of tiles in the architecture without any change to our framework. However, if a large number
of totally different processors need to be considered, the hybrid task mapping approach
in this work will not work well anymore. As it is timing unacceptable to explore optimal
mappings for applications under hundreds of processors at design time. Consequently, the
tile-level workload partition strategy and the processor-level task mapping algorithm should
be adjusted accordingly. For the tile-level workload partition, new approaches should be
considered to evaluate the resource usage of an application to balance the utilisation of tiles.
With regard to the processor-level taskmapping algorithms, on-the-fly run-time taskmapping
approaches like Bin Packing algorithms can be considered to derive a mapping in a short
time without using statically optimised mappings. For adaptivity throttling, a new mapping
performance predictor like the worst-case performance evaluation can be considered before
an actual mapping is derived by the mapping algorithm.

5 Experiments

5.1 Experiment setup

To illustrate the effectivity of our SHARA framework, we deploy the system-level MPSoC
simulation framework from the work of [28] which is based on the open source Sesame
simulator [24]. This Sesame-based modeling and simulation environment facilitates efficient
performance analysis of embedded (media) systems architectures. The most important fea-
ture of this simulator for this work is its ability to support the simulation of run-time system
reconfiguration of MPSoC systems. This makes the modeling and simulation of our SHARA
instance in this simulator relatively easy. In our experiments, we adapt a dedicated imple-
mentation of our SHARA framework on the target architecture model. It means that the GM
and the LMs are separately integrated into the system by dedicated hardwares where the GM
is connected to each LM via dedicated channel and each LM located in each tile can control
the hardware resources inside a tile through dedicated control channels.

123

A Hierarchical Run-time Adaptive Resource...

In our experiments, we would like to show how our SHARA framework improves the
system performance by applying the hierarchical task mapping and adaptivity throttling.
The actual functionality of the applications is not very important for this purpose. Therefore,
synthetic streaming applications are considered to simplify the simulation process.We use 16
synthetic streaming applications with each application containing only 1 execution mode. In
this case, the total number ofworkload scenarios is 65535 (216–1). Thenumber of tasks in each
application ranges from 4 to 8. We assume that each task can be executed on each processor
of the target MPSoC using the corresponding pre-compiled code. The task execution time
and migration data size of each task on each processor have been randomly generated and
range between 1000 and 100,000 time units (simulation cycles) and between 5K and 50K
Bytes respectively. Communications between tasks range from 100 to 10,000 Bytes in size.
In our experiments, we assume that all target applications are firstly loaded onto the same tile
(tile0) with their pre-optimised mappings as an initial state of the system. For generating test
scenario sequences in our experiments, we developed a scenario generator in which some
parameters like the number of scenarios, the execution duration of scenarios (e.g. [1100]
frames) are used for generating random scenario sequences.

5.2 Experimental results

As introduced in the Sect. 4.1.2, the algorithm used in our GM (we refer to it as SC in
this experiment) for tile-level workload partition tries to balance the workload among tiles
with minimal inter-tile task migration. In the first experiment, we compare it with a load
balancing algorithm [27] (noted as BF) to show the effect of our algorithm for reducing
the task migration cost while achieving a well balanced system at tile level. In this BF
algorithm, the active applications of the new workload scenario will be sorted in resource
consumption descending order. And then the applications under this descending order will
be gradually allocated to the tile with minimal resource utilisation (the resource utilisation
of tiles will be recalculated after each allocation) under the pre-optimised mapping. In this
experiment, we do not consider a further mapping optimisation in the LM of each tile and
also the adaptivity throttling ability of our SHARA has been deactivated. It means that the
system will only optimise the mapping of a newly detected workload scenario by workload
partition in the GM. After that, the system will be reconfigured based on the new mapping to
execute the new workload scenario. We randomly generate 10,000 workload scenarios and
each workload scenario only execute for 1 scenario f rame as a scenario sequence. Figure 11

Fig. 11 Comparison of two load balancing algorithms for tile-level workload partition

123

W. Quan, A. D. Pimentel

gives the results of executing 10 such scenario sequences under these two algorithms where
BF-NOMIGCOST and SC-NOMIGCOST represent the results without considering the tile-
level system reconfiguration cost by using BF and SC respectively. From the results, we
can clearly see that our algorithm has similar performance compared with BF if we ignore
the reconfiguration cost. However, when the cost of system reconfiguration is taken into
consideration, our algorithm performs much better than BF as the BF algorithm does not
take the previous position of each application into account for workload distribution. In this
experiment, the task migration cost comes from migrating an application from one tile to
another tile. This tile-level task migration overhead is very heavy as slow communication
channels between tiles will be used for taskmigrations. To reduce the tile-level taskmigration
overhead, the workload partition algorithm in the GM should keep the number of tile-level
task migration as low as possible.

After investigating the mapping quality and tile-level reconfiguration cost by applying the
global task mapping optimisation in the GM, we further study the hierarchical mapping opti-
misation approach of our SHARA framework in the second experiment. In this experiment,
we still ignore the adaptivity throttling ability of our framework (task migration happens
when the newly derived mapping is different with the old mapping). We select two workload
scenarios S16 and S4 as our target scenarios to show how the scenario execution time is influ-
enced by system reconfiguration. The scenario S16, in which all the target applications are
active, is the most complex workload scenario of all possible scenarios. And S4 is a scenario
where only four applications are active. In this experiment, our hierarchical mapping optimi-
sation approach (as it contains two steps of mapping optimisation in the GM and LMs, here
we label it asGM−LM) is compared to three other approachesNGM−NLM,NGM−LM and
GM−NLM. The NGM−NLM approach does not contain any mapping optimisation process.
It means that, in this approach, the mapping in the initial state of the target system is directly
used for executing the target two workload scenarios. TheGM−NLM and NGM− LM only
considers the tile-level and process-level mapping optimisation for the target scenarios from
the initial system state respectively. In this experiment, we assume that the systemwill be trig-
gered for reconfiguration when the first workload scenario is detected on the system. For the
target two workload scenarios S16 and S4, they are separately executed for a single scenario
frame directly from the initial system state (all target applications are loaded onto tile0).
The results of this experiment are illustrated in Fig. 12. In this figure, the x-axis represents
different states of the two target scenarios where for example S16-NOCOST and S16−COST
are executing the scenario S16 without and with considering all system reconfiguration cost

Fig. 12 Performance comparison of different task optimisation approaches

123

A Hierarchical Run-time Adaptive Resource...

Fig. 13 System reconfiguration cost in S16 − COST and S4 − COST

(both tile-level and process-level) respectively. Here, the results of ∗−NOCOST is derived by
directly executing the corresponding scenario for a single frame under themapping optimised
by the various approaches.

If we only consider the quality of the mapping (∗ − NOCOST) derived from different
approaches, from the experimental results, we notice that the mapping optimisation in the
GM ismore important comparedwith the optimisation in the LMs. Compared to the approach
of NGM−NLM, the other three approaches NGM− LM, GM−NLM and GM−LM improve
the scenario performance by 17, 121 and 220 % respectively in S16 − NOCOST and 3, 26
and 26 % in S4 − NOCOST. In the complex scenario case S16, the GM and LMs are able
to greatly improve the mapping quality. However, when the scenario is relatively simple
like S4 where the resource contention is not critical, the performance improvement is not
that apparent anymore especially the improvement from the optimisation by the LMs. When
taking the system reconfiguration cost into consideration, we can see from the results shown
in Fig. 12 that the system reconfiguration cost which contains both the taskmigration cost and
the computational overhead in theGMandLMswill dominate the execution time of scenarios
if the scenario duration (number of scenario f rames) is very short. In our test cases, as we
set the execution duration of each scenario to one scenario f rame, consequently the final
performance (reconfiguration cost included) of NGM−NLM is much better than the other
three approaches. To further understand where the system reconfiguration cost comes from,
we zoom into the scenario execution time of S16−COST and S4−COST in Fig. 13. In this
figure, the symbols of EXE, OGM, OGC, OLM and OLC respectively represent the actual
execution time of the target scenario under the mapping optimised by the corresponding
approach, the overhead of inter-tile (global) task migration, the computational overhead of
the GM, the overhead of intra-tile (local) task migration and the computational overhead
of LMs. Note that, as the LMs in our system work in parallel, the OLM (the overhead of
intra-tile task migration) and the OLC (the computational overhead of LM) come from the
tile where the intra-tile task migration cost and the computational overhead in the LM in
total is the maximal among tiles. From Fig. 13, we clearly see that when the GM takes part
in the mapping optimisation process, the system reconfiguration cost mainly comes from
the task migration between tiles. Considering the processor-level system reconfiguration, the
overhead is dominated by the computational cost in LMs especially when the number of tasks
that are allocated to the tile is very large. The reason behind that can be explained as follows.
In our experiment, the mapping used for further optimisation in each tile is merged from
the pre-optimised mapping of each application. This original mapping normally is already

123

W. Quan, A. D. Pimentel

Fig. 14 The influence of scenario duration to final system performance under different approaches

well balanced among processors in each tile. The algorithm used in each LM will take a
relatively large time to further improve the mapping quality with only a few tasks that need
to be migrated among processors.

From the second experiment, we can see that if the scenario execution duration is very
short, the system should not be reconfigured as the large system reconfiguration cost will neu-
tralize the performance improvement by run-time task mapping optimisation. Consequently,
in the third experiment, we would like to show how the system performance is influenced by
the scenario execution duration in our target large-scale MPSoC system. For this purpose, we
investigate the workload scenario S16 of the second experiment with a gradually increasing
scenario execution duration. In this experiment, we use the complete SHARA framework
(the adaptivity throttling is enabled) for run-time resource allocation and compare it with the
three approaches NGM−NLM, GM−NLM and GM−LM considered in the second exper-
iment. Figure 14 shows the total execution time including the system reconfiguration cost
of different scenario durations under different resource allocation approaches. Clearly, as
the NGM−NLM does not need application remapping, the total execution time increases
linearly with the scenario duration (in scenario f rames). Similar behaviour can be found
in GM−NLM and GM−LM. However, as the system is reconfigured according to the corre-
sponding optimised mapping at the beginning of the scenario S16, the total execution time
has a slower increase with the scenario duration under these two approaches compared to
NGM−NLM. As the mapping quality derived by GM−LM is better than the one derived by
GM−NLM, the total execution time of the former approach has an even slower increase with
scenario duration. From these three approaches, we can see that the NGM−NLM has the
best performance when the scenario duration is small (for example, under 15 scenario frames
in our test case) as it avoids the system reconfiguration cost. However, with the increase of
scenario execution duration, it is increasingly outperformed by GM−NLM and GM−LM.

By using the adaptivity throttling ability of our SHARA framework, we are able to solve
the drawback of the other approaches. When the scenario execution duration is small, the
system will be kept unchanged to avoid unnecessary system reconfigurations. On the other
hand, when the scenario execution duration is large, the system will be reconfigured to the
mapping optimised by SHARA. In this experiment, the scenario duration predictor has been
deactivated3 to exclude its influence for deriving a reconfiguration decision which will be
further studied in the next experiment. The results of using our complete SHARA framework
shown in Fig. 14 verify the ability of improving the system performance by our hierarchical

3 We directly use the actual execution duration of the target workload scenario for reconfiguration prediction.

123

A Hierarchical Run-time Adaptive Resource...

adaptivity throttling approach on the target large-scale MPSoC system. When the scenario
duration of scenario S16 is lower than 11, SHARA is very close to NGM−NLM. After that, it
is very close to GM−LM. This also reflects the fact that the overhead of adaptivity throttling
is small enough to be ignored. However, notice that, from 11 to 15 in the x-axis of Fig. 14, the
results of SHARA are close toGM−LM. If the predictionmodels used for adaptivity throttling
in SHARA are absolutely accurate, these points should have been close to NGM−NLM.
The prediction models used for adaptivity throttling in our framework are relatively simple
first-order models. For the performance prediction model, the prediction error is 15.5 % in
average for our target workload scenarios. With regard to the reconfiguration cost prediction
model, there is no prediction error in our experiments as our simulator directly use the task
migration cost model in Sect. 4.3 and the run-time computational overhead of our framework
is directly mearsured. Currently, we do not have a hardware platform to implement our
framework, the task migration cost prediction error can not be mearsured. For the scenario
duration prediction, the average scenario duration is adopted in our framework. This approach
has a good performance for scenarios with a stable execution behavior. However, when the
execution duration of a scenario varies greatly, the prediction error will be very large. And
this will greatly influence the performance of the adaptivity throttling. Considering all the
factors together, in this specific experiment, there is 8 % prediction error for whether the
system needs to be reconfigured.

In the fourth experiment, we apply our proposed SHARA framework in more complex
scenario cases on the target MPSoC system to test its performance when scenario duration
prediction is considered and compare the results with two approaches STATIC and again
GMLM. In the STATIC approach, all applications are statically mapped (i.e., no run-time
mapping takes place) using a mapping which has shown to be optimal on average for all
possible workload scenarios. The GMLM is similar to a normally used approach in small
scaleMPSoCswhere the systemwill always be reconfigured based on the optimisedmapping
when a newworkload scenario is detected. Tomodel dynamic application behaviour over time
(e.g. due to user behaviour), we generate three kinds of workload scenario sequences. Each
sequence is generated in two steps. The first step is to randomly choose a workload scenario
from all the possible workload scenarios. For each selected workload scenario, it will appear
in the scenario sequence for multiple times. The second step is to generate the duration in
scenario frames for each appearance of the selectedworkload scenario. In this experiment, we
model totally random user behaviour to show the performance of our approach in extreme
cases. For this purpose, the scenario duration is generated by a random generator with a
certain average scenario duration (number of scenario f rames). This process iterates until
a pre-defined total frame number (10,000 frames in our case) has been achieved for each
scenario sequence. Our three target scenario sequences seq10, seq100 and seq10 − 100
in Fig. 15 are distinguished by the average number of scenario frames set for the random
scenario duration generator where an average frame number of 10, 100 and 10 to 100 (the
average frame number set for the generator in each iteration is also randomly derived from
10 to 100) are used for generating the three kinds of sequence respectively.

The results of each kind of scenario sequence shown in Fig. 15 are averaged over five ran-
domly generated different sequences. From this figure, we can see that our SHARA approach
has a good trade off between STATIC and GMLM. When the average number of scenario
frames for each workload scenario is small like seq10, the GMLM approach where a system
reconfiguration alway happens when a new scenario is detected has the worst performance.
However, it has the best performance when the average scenario frame is large like seq100
as in this case the system reconfiguration cost is covered by the performance improvement
because of system reconfiguration. If the average number of scenario frames becomes even

123

W. Quan, A. D. Pimentel

Fig. 15 Performance of SHARA in more complex scenario cases

larger, the gap between STATIC and GMLM, SHARA will also increase. Comparing SHARA
with GMLM, in the case of seq100, our SHARA approach suffers from both the reconfigu-
ration prediction overhead and error system reconfiguration prediction which mainly caused
by the prediction error in mapping performance and task migration cost as mentioned in the
third experiment. In the case of seq10− 100, the scenario duration predictor also influences
the prediction of system reconfiguration. However, as the system performance degradation
caused by errors in the system reconfiguration prediction in SHARA is almost equal to the
unnecessary reconfiguration overhead inGMLM when the average scenario duration is short,
our SHARA shows a similar performance with GMLM. The problem of how to improve the
system performance by optimising the prediction accuracy of our predictors used for adap-
tivity throttling will be further studied in future work. Overall, our approach can get a trade
off between STATIC and GMLM in different scenario situations. It means that in the case
of workload scenarios with small execution duration, our SHARA’s performance is close to
STATIC (the best solution in this case). On the other hand, for workload scenarios with large
execution duration, our SHARA’s performance is close to GMLM (the best solution in this
case).

In our last experiment, we compare our SHARA resource management approach with a
classic light-weight mapping algorithm—First Fit Bin Packing (FFBP) [9] on a system that
contains more tiles than the system considered in the previous experiments. The new system
has 16 tiles connected by a 2-D mesh NoC similar to the one in Fig. 2. For this system, we
duplicate the applications in our previous experiments to 64 applications (each application
task has a different execution time on each processor). With these applications, we generate
three kinds of scenario sequence seq1 , seq100 and seq500 (each scenario only active for
1, 100 and 500 frames in each appearance) using the method in the last experiment.But in
this experiment, we considered a total number of 100,000 frames for each scenario sequence.
Under these scenario sequences, we compare the performance (total scenario execution time)
of our SHARA with FFBP. The results (normalised to FFBP) of this experiment is shown in
Fig. 16. From this figure, we can see that our SHARA approach has a good performance under
seq100 and seq500 but a bad performance under seq1. This is similar to the results shown
in the fourth experiment. When the scenario execution duration is large enough to cover the
system reconfiguration overhead, our approach can have a good performance. However, as
the size of the target system considered in this experiment is large, the system reconfiguration
overhead especially the overhead of the global manager is heavy. Therefore, the performance
improvement over FFBP is not remarkable. The global manager in our SHARA framework

123

A Hierarchical Run-time Adaptive Resource...

0.85

0.90

0.95

1.00

1.05

1.10

seq1 seq100 seq500

No
rm

al
ise

d
to

ta
l s

ce
na

rio
 e

xe
cu

!o
n

!m
e

in
 si

m
ul

a!
on

 cy
cle

s

Scenario sequence

FFBP SHARA

Fig. 16 Performance comparison between SHARA and FFBP on a larger tile-based system

may become a bottleneck as the size of the system scale. This problem will be considered in
our future work.

Regarding to the run-time system storage consumption of our SHARA framework, several
assumptions should be mentioned. On our target MPSoC system, we store all the design-time
prepared information in the localmemory of theGM. For storing the pre-optimisedmappings,
we assume that the mapping information of each task and each communication channel
between tasks is stored in one byte. In our target synthetic streaming applications, there are
88 tasks and 67 communication channels in total. Consequently, to store the pre-optimised
mappings, thememory usage is 155 bytes. Beside the pre-optimisedmappings, in our SHARA
framework, we also need to store the application/system information and the average scenario
execution history information. Here, we assume that each piece of this information needs one
word of memory. Consequently, for storing the application/system information, 1408 bytes
of memory are required. With regard to the average scenario execution history information,
as each workload scenario needs one word to store the information, the total memory usage
is 256 K B. This memory consumption can be reduced by using smaller memory bits to
record the execution history information of each workload scenario.

6 Related research

In recent years, much research has been performed for increasing the system adaptivity by
using dynamic run-time task remapping to achieve better performance or save energy con-
sumption [34,35,39]. Among these research, the hybrid task mapping approach is commonly
used which combines the design-time preparation with the run-time dynamic mapping policy
to do task reallocation. For example, Mariani et al. [17] proposed a run-time management
framework in which Pareto-fronts with system configuration points for different applica-
tions are determined during design-time DSE, after which heuristics are used to dynamically
select a proper system configuration at run time. In [45], a fast and light-weight priority
based heuristic is used to select near-optimal configurations explored at design time for the
active applications according to the available platform resources. Reference [37] proposes
DSE strategies that perform exploration in view of optimizing throughput and energy con-
sumption by considering a generic platform. The design points derived from the DSE will
be selected efficiently at run time. In [32], Schranzhofer et al. proposed static and dynamic
task mapping approaches for probabilistic applications based on static and dynamic power

123

W. Quan, A. D. Pimentel

components. Statically pre-computed template mappings for each execution probability are
stored on the system and applied at run time, allowing the system to adapt to changing envi-
ronment conditions. Based on this work, Ref. [10] presents an extension that considers only
the static mapping and takes into account the communication and reconfiguration energy
component.

Even though these hybrid task mapping approaches can greatly improve the adaptivity
for small scale MPSoC system with only a certain number of scenarios or applications
need to be supported. Most of them still lack of scalability when the task mapping problem
becomes complex in large-scale system with a huge number applications. To solve this
problem, several distributed resource management approach for large-scale MPSoC systems
or many-core systems have been proposed like the work in [1,7]. In [7], the authors proposed
a new concept - invasive computing - for resource management on a heterogeneous, tile-
based manycore system. This invasive computing technique uses a multi-agent management
layer underpinned by distributed runtime and OS services to support a flexible resource
management. The agent of each application executing in the system tries to increase the
speedup of its application by acquiring additional cores from the nearby regions. Reference
[1] presents a scheme for run- time application mapping in a distributed manner using agents
targeting adaptive NoC-based heterogeneous multi-processor systems. Compared to these
approaches, our approach uses a hierarchical resource management approach and explicitly
studies the influence of system reconfiguration for run-time resource allocation. Recently,
Ref. [31] also proposed a scenario-based run-time mapping approach for many-core systems
which is very similar to ourwork. In their approach, the execution scenarios are combined into
a finite state machine and the transitions between scenarios are limited in the pre-determined
states. However, we do not have such kind of limitations and consequently more complex
run-time situations can be considered in our work.

7 Conclusion

In this article, we proposed a scenario-based hierarchical run-time adaptive resource allo-
cation framework to increase the adaptivity of large-scale heterogeneous MPSoC systems
where a large number of scenarios or applications need to be supported. The SHARA frame-
work adopts a hierarchical resource allocation mechanism to reduce the complexity of the
task mapping problem at run time. In this framework, the system resources are allocated
as tiles which could be either real tiles in a tiled system or virtual tiles virtually divided
on a system in a global resource management view. Inside each tile, the actual hardware
resources will be local allocated to the workload active on it. By using this framework on
a large-scale heterogeneous MPSoC system, it is able to support large number of workload
scenarios with each of them running under a near optimal mappings derived by our proposed
hybrid task mapping approach. In this hybrid approach, optimal (or near optimal) mappings
targeting the optimising goal like system performance in this work of each application will
be explored at design time and used at run-time by heuristics for further optimisation. For
a new workload scenario, after deriving a new mapping, a self-adaptive scheduling policy
(adaptivity throttling) will be applied for actual system reconfiguration based on the scenario
execution history behaviour. It is helpful to avoid unnecessary system reconfiguration in the
case when the reconfiguration is not beneficial. By using this scheduling approach, the sys-
tem can adapt its behaviour according to the user behaviour. Experiment results confirm the
effectiveness of our SHARA framework. In our future work, we will firstly try to implement

123

A Hierarchical Run-time Adaptive Resource...

our SHARA framework on a real large-scale MPSoC platform and investigate some real-
world multi-media applications to improve the efficiency of our SHARA framework. After
that, we will also study the possibility of extending our framework for power management
on large-scale MPSoC systems. For this purpose, new hierarchical task mapping approaches
for minimizing the system’s energy consumption are required. Also the adaptivity throttling
machenism should target the trade off between the energy overhead and benefit of a system
reconfiguration.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Al Faruque MA, Krist R, Henkel J (2008) Adam: run-time agent-based distributed application mapping
for on-chip communication. In: Proceedings of DAC’08, pp 760–765. doi:10.1145/1391469.1391664

2. Bertozzi S, Acquaviva A, Bertozzi D, Poggiali A (2006) Supporting task migration in multi-processor
systems-on-chip: A feasibility study. In: Proceedings of the design, automation and test in Europe, 2006.
DATE ’06, vol 1, pp 1–6. doi:10.1109/DATE.2006.243952

3. Cannella E, Derin O, Meloni P, Tuveri G, Stefanov T (2012) Adaptivity support for mpsocs based on
process migration in polyhedral process networks. VLSI Des 2(2–2):2. doi:10.1155/2012/987209

4. Castrillon J, Tretter A, Leupers R, Ascheid G (2012) Communication-aware mapping of kpn applications
onto heterogeneous mpsocs. In: Proceedings of the 49th annual design automation conference, DAC’12,
pp 1266–1271. ACM, New York. doi:10.1145/2228360.2228597

5. Compton K, Hauck S (2002) Reconfigurable computing: a survey of systems and software. ACMComput
Surv 34(2):171–210. doi:10.1145/508352.508353

6. Gheorghita SV, PalkovicM,Hamers J, Vandecappelle A,Mamagkakis S, Basten T, Eeckhout L, Corporaal
H, Catthoor F, Vandeputte F, Bosschere KD (2009) System-scenario-based design of dynamic embedded
systems. ACM Trans Des Autom Electr Syst 14(1):3

7. Henkel J, Herkersdorf A, Bauer L, Wild T, Hubner M, Pujari R, Grudnitsky A, Heisswolf J, Zaib A,
Vogel B, Lari V, Kobbe S (2012) Invasive manycore architectures. In: Design automation conference
(ASP-DAC), 2012 17th Asia and South Pacific, pp 193–200. doi:10.1109/ASPDAC.2012.6164944

8. Howard J, Dighe S, Hoskote Y, Vangal S, Finan D, Ruhl G, Jenkins D, Wilson H, Borkar N, Schrom G,
Pailet F, Jain S, Jacob T, Yada S, Marella S, Salihundam P, Erraguntla V, KonowM, Riepen M, Droege G,
Lindemann J, Gries M, Apel T, Henriss K, Lund-Larsen T, Steibl S, Borkar S, De V, Van Der Wijngaart
R, Mattson T (2010) A 48-core ia-32 message-passing processor with dvfs in 45nm cmos. In: 2010 IEEE
International solid-state circuits conference digest of technical papers (ISSCC), pp 108–109. doi:10.1109/
ISSCC.2010.5434077

9. Huang J, Raabe A, Buckl C, Knoll A (2011) A workflow for runtime adaptive task allocation on hetero-
geneous mpsocs. In: Proceedings of DATE’11, pp 1119–1134

10. Hussien A, Eltawil A, Amin R, Martin J (2011) Energy aware task mapping algorithm for heterogeneous
mpsoc based architectures. In: 2011 IEEE 29th international conference on computer design (ICCD), pp
449–450. doi:10.1109/ICCD.2011.6081444

11. Javaid H, Parameswaran S (2009) A design flow for application specific heterogeneous pipelined mul-
tiprocessor systems. In: Proceedings of the 46th annual design automation conference, DAC’09, pp
250–253. ACM, New York. doi:10.1145/1629911.1629979

12. Kahn G (1974) The semantics of a simple language for parallel programming. In: Information processing,
pp 471–475. North Holland, Amsterdam

13. Kobbe S, Bauer L, Lohmann D, Schröder-Preikschat W, Henkel J (2011) Distrm: Distributed resource
management for on-chipmany-core systems. In: Proceedings of the seventh IEEE/ACM/IFIP international
conference on hardware/software codesign and system synthesis, CODES+ISSS ’11, pp 119–128. ACM,
New York. doi:10.1145/2039370.2039392

14. Manferdelli J, Govindaraju N, Crall C (2008) Challenges and opportunities in many-core computing.
Proc IEEE 96(5):808–815. doi:10.1109/JPROC.2008.917730

123

W. Quan, A. D. Pimentel

15. Manolache S, Eles P, Peng Z (2008) Task mapping and priority assignment for soft real-time applications
under deadline miss ratio constraints. ACM Trans Embed Comput Syst 7(2):19:1–19:35. doi:10.1145/
1331331.1331343

16. Marchesan Almeida G, Sassatelli G, Benoit P, Saint-Jean N, Varyani S, Torres L, Robert M (2009) An
adaptive message passing mpsoc framework. Int J Reconfig Comput

17. Mariani G, Avasare P, Vanmeerbeeck G, Ykman-Couvreur C, Palermo G, Silvano C, Zaccaria V (2010)
An industrial design space exploration framework for supporting run-time resource management on
multi-core systems. In: Proceeedings of DATE’10, pp 196–201

18. Mariani G, Avasare P, Vanmeerbeeck G, Ykman-Couvreur C, Palermo G, Silvano C, Zaccaria V (2010)
An industrial design space exploration framework for supporting run-time resourcemanagement onmulti-
core systems. In: Design, automation test in europe conference exhibition (DATE), 2010, pp 196–201.
doi:10.1109/DATE.2010.5457211

19. Mattson TG, Riepen M, Lehnig T, Brett P, Haas W, Kennedy P, Howard J, Vangal S, Borkar N, Ruhl
G, Dighe S (2010) The 48-core scc processor: The programmer’s view. In: Proceedings of the 2010
ACM/IEEE international conference for high performance computing, networking, storage and analysis,
SC ’10, pp 1–11. IEEE Computer Society, Washington, DC. doi:10.1109/SC.2010.53

20. Melpignano D, Benini L, Flamand E, Jego B, Lepley T, Haugou G, Clermidy F, Dutoit D (2012) Platform
2012, a many-core computing accelerator for embedded socs: Performance evaluation of visual analytics
applications. In: Proceedings of the 49th annual design automation conference, DAC ’12, pp 1137–1142.
ACM, New York. doi:10.1145/2228360.2228568

21. Nollet V, Avasare P, Eeckhaut H, Verkest D, Corporaal H (2008) Run-time management of a mpsoc
containing fpga fabric tiles. IEEE Trans Very Large Scale Integr (VLSI) Syst 16(1):24–33. doi:10.1109/
TVLSI.2007.912097

22. Paul JM, Thomas DE, Bobrek A (2006) Scenario-oriented design for single-chip heterogeneous multi-
processors. IEEE Trans VLSI Syst 14(8):868–880. doi:10.1109/TVLSI.2006.878474

23. Pimentel A, Erbas C, Polstra S (2006) A systematic approach to exploring embedded system architectures
at multiple abstraction levels. IEEE Trans Comput 55(2):99–112. doi:10.1109/TC.2006.16

24. Pimentel AD, Erbas C, Polstra S (2006) A systematic approach to exploring embedded system architec-
tures at multiple abstraction levels. IEEE Trans Comput 55(2):99–112

25. QuanW, Pimentel A (2013) An iterative multi-application mapping algorithm for heterogeneous mpsocs.
In: 2013 IEEE 11th symposium on embedded systems for real-time multimedia (ESTIMedia), pp 115–
124. doi:10.1109/ESTIMedia.2013.6704510

26. Quan W, Pimentel A (2014) Towards exploring vast mpsoc mapping design spaces using a bias-elitist
evolutionary approach. In: 2014 17th Euromicro conference on digital system design (DSD), pp 655–658.
doi:10.1109/DSD.2014.46

27. Quan W, Pimentel AD (2013) A scenario-based run-time task mapping algorithm for mpsocs. In: Pro-
ceedings of the 50th annual design automation conference, DAC’13, pp 131:1–131:6. ACM, New York.
doi:10.1145/2463209.2488895

28. Quan W, Pimentel AD (2014) A system-level simulation framework for evaluating task migration in
mpsocs. In: Proceedings of the 2014 international conference on compilers, architecture and synthesis
for embedded systems, CASES ’14, pp 13:1–13:9. ACM, New York. doi:10.1145/2656106.2656111

29. Quan W, Pimentel AD (2015) A hybrid task mapping algorithm for heterogeneous mpsocs. ACM Trans
Embed Comput Syst 14(1):14:1–14:25. doi:10.1145/2680542

30. Sarikaya R, Isci C, Buyuktosunoglu A (2013) Runtime application behavior prediction using a statistical
metric model. IEEE Trans Comput 62(3):575–588. doi:10.1109/TC.2012.25

31. Schor L, Bacivarov I, Rai D, Yang H, Kang SH, Thiele L (2012) Scenario-based design flow for mapping
streaming applications onto on-chip many-core systems. In: Proceedings of the 2012 international con-
ference on compilers, architectures and synthesis for embedded systems, CASES’12, pp 71–80. ACM,
New York. doi:10.1145/2380403.2380422

32. Schranzhofer A, Chen JJ, Thiele L (2010) Dynamic power-aware mapping of applications onto hetero-
geneous mpsoc platforms. IEEE Trans Ind Inform 6(4):692–707. doi:10.1109/TII.2010.2062192

33. Shabbir A, Kumar A, Mesman B, Corporaal H (2011) Distributed resource management for concurrent
execution ofmultimedia applications onmpsoc platforms. In: 2011 international conference on embedded
computer systems (SAMOS), pp 132–139. doi:10.1109/SAMOS.2011.6045454

34. Shafique M, Henkel J (2013) Agent-based distributed power management for kilo-core processors. In:
2013 IEEE/ACMInternational conference on computer-aided design (ICCAD), pp 153–160. doi:10.1109/
ICCAD.2013.6691112

35. Shafique M, Vogel B, Henkel J (2013) Self-adaptive hybrid dynamic power management for many-core
systems. In: Design, automation test in europe conference exhibition (DATE), 2013, pp 51–56. doi:10.
7873/DATE.2013.025

123

A Hierarchical Run-time Adaptive Resource...

36. Shojaei H, Ghamarian AH, Basten T, Geilen M, Stuijk S, Hoes R (2009) A parameterized compositional
multi-dimensionalmultiple-choice knapsack heuristic for cmp run-timemanagement. In: 46thACM/IEEE
design automation conference, 2009. DAC’09, pp 917–922

37. Singh AK, Kumar A, Srikanthan T (2013) Accelerating throughput-aware runtime mapping for hetero-
geneous mpsocs. ACM Trans Des Autom Electron Syst 18(1):9:1–9:29. doi:10.1145/2390191.2390200

38. Singh AK, Shafique M, Kumar A, Henkel J (2013) Mapping on multi/many-core systems: survey of
current and emerging trends. In: Proceedings of the 50th annual design automation conference, DAC ’13,
pp 1:1–1:10. ACM, New York. doi:10.1145/2463209.2488734

39. Somu Muthukaruppan T, Pathania A, Mitra T (2014) Price theory based power management for hetero-
geneous multi-cores. SIGARCH Comput Archit News 42(1):161–176. doi:10.1145/2654822.2541974

40. van Stralen P, Pimentel AD (2010) Scenario-based design space exploration of mpsocs. In: Proceedings
of IEEE ICCD’10, pp 305–312

41. Vangal S, Howard J, Ruhl G, Dighe S,Wilson H, Tschanz J, Finan D, Singh A, Jacob T, Jain S, Erraguntla
V, Roberts C, Hoskote Y, Borkar N, Borkar S (2008) An 80-tile sub-100-w teraflops processor in 65-nm
cmos. IEEE J Solid State Circuits 43(1):29–41. doi:10.1109/JSSC.2007.910957

42. Vassiliadis S, Sourdis I (2006) Flux networks: Interconnects on demand. In: International conference
on embedded computer systems: architectures, modeling and simulation, 2006. IC-SAMOS 2006, pp
160–167. doi:10.1109/ICSAMOS.2006.300823

43. Vassiliadis S, Wong S, Gaydadjiev G, Bertels K, Kuzmanov G, Panainte EM (2004) The molen polymor-
phic processor. IEEE Trans Comput 53(11):1363–1375. doi:10.1109/TC.2004.104

44. Wentzlaff D, Griffin P, Hoffmann H, Bao L, Edwards B, Ramey C, Mattina M, Miao CC, Brown JF III,
Agarwal A (2007) On-chip interconnection architecture of the tile processor. IEEE Micro 27(5):15–31.
doi:10.1109/MM.2007.89

45. Ykman-Couvreur C, Avasare P, Mariani G, Palermo G, Silvano C, Zaccaria V (2011) Linking run-time
resourcemanagement of embeddedmulti-core platformswith automateddesign-time exploration.Comput
Digit Tech IET 5(2):123–135. doi:10.1049/iet-cdt.2010.0030

123

