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Abstract—Design space exploration (DSE) is a key ingredient
of system-level design, enabling designers to quickly prune the
set of possible designs and determine, e.g., the number of the
processing cores, the mapping of application tasks to cores, and
the core configuration such as the cache organization. High-level
performance estimation is a principle component of any system-
level DSE: it has to be fast and sufficiently precise. Modern out-of-
order architectures with caches pose a significant problem to this
performance estimation process, as no simple one-to-one mapping
of the number of cache misses and resulting cycle time exists.

We present a high-level cache performance-estimation frame-
work for out-of-order processors. Evaluation shows that our
prediction method is on average 15 times faster than cycle-
accurate simulation, while our estimates only show an average
error of below 3.5%, reduce the pessimism of a naive high-
level performance estimation by around 66%, and still maintain
a high fidelity. Our approach thus enables quick yet accurate
performance estimation and extends the applicability of system-
level DSE to out-of-order processors with caches.

I. INTRODUCTION
As the complexity of modern embedded systems increases,

the development of these systems becomes more and more
challenging. Design space exploration (DSE) methods are thus
used to cope with the increasing complexity, to speed-up the
development process and thus, to reduce the time-to-market.
Automated exploration tools quickly prune the set of possible
architectures and select the set of (pareto) optimal candidate
architectures according to multiple objectives, such as per-
formance, costs, size and power consumption. The system
specification automatically selected by the exploration tools
range from high-level information such as the number and the
type of the processing cores or the mapping of application tasks
to cores to more low-level specifications such as the cache
hierarchy configuration. As the pruning of the set of candidate
architectures is already required at an early development stage,
a high-level performance estimation of the target application
is necessary. Such an estimation has to fulfil two opposing
requirements: it has to be fast (to evaluate a sufficient set of
candidates) and precise (to select the correct candidates).

Caches are nowadays an integral component of most embed-
ded systems where performance is critical. On the downside,
caches require a significant amount of area on the chip and
can increase the system’s energy consumption [1]. Choosing
the right cache size and right cache parameters is thus a
paramount task of any DSE, and the aforementioned high-level
performance estimation must account for caches.

In case of processors with in-order execution, it is sufficient
to compute the number of hits and misses as a simple one-
to-one mapping from misses to cycles exist. To this end, an
abundance of cache miss estimation techniques, such as stack-
distance histograms and cache-miss equations, exist and fast

and accurate performance estimation is available.
In contrast, modern out-of-order architectures with caches

pose a significant problem to the performance estimation, as no
simple one-to-one mapping of the number of cache misses and
cycles exist: the actual address trace can change depending on
the selected cache configuration and pipelining of outstanding
memory requests change the average memory latency. A naive
estimation of the number of cycles to execute an application
purely based on the number of hits and misses (as valid for
in-order processors) thus provides unreliable results. Hybrid
approaches using source-code instrumentation and relatively
fast source-level simulation exist, but typically are limited
to in-order execution. Consequently, the currently available
performance estimation techniques are either precise (based
on slow cycle-accurate simulation) or fast (based on hit/miss
ratios), but not both at the same time.

We present a cache performance estimation framework for
out-of-order processors. The framework is split in two phases:
a setup phase and a DSE-phase. In the setup-phase, we perform
cycle-accurate simulations for two cache configurations, extract
stack-distance histograms and the memory-overlap of the target
application. This information serves as input for the DSE-phase
which is then used to quickly estimate the performance of the
target application for the candidate cache configurations. This
two-step approach thus enables quick yet accurate performance
estimation to be used for system-level DSE.

Our framework improves upon related work in the following
aspects: The framework is

• fast during the actual DSE using a two-phase approach,
• precise as it explicitly models the effect of out-of-order

execution on the memory performance, and
• agnostic of the target architecture as it only relies on

the existence of a cycle-accurate simulator, but does
not require an in-depth analysis of the hardware.

The paper is structured as follows: Section II reviews the
related work and Section III introduces the required terminol-
ogy and notation. In Section IV, we present the performance-
estimation framework and evaluate the proposed techniques in
Section V. Section VI concludes the paper.

II. RELATED WORK
The estimation of cache performance has been an intensive

subject of research in the past decades. We distinguish two types
of approaches: static analysis and simulation based approaches.

The two most prominent examples of the former type are
the cache-miss equations by Ghosh et al. [2], and the stack-
distance computation [3]. Cache-miss equations provide a high-
level representation of the cache behaviour. They are used in
compiler frameworks to estimate the effect of optimizations.
Estimation techniques based on the stack distance [3] provide
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more accuracy, but suffer from the memory overhead. Several
methods have been proposed to enable an efficient computa-
tion [4]–[7] or approximation [8] of the stack distance. Stack
distances and cache miss equations, however, only provide the
number of misses and hits for different cache configurations.
While this is sufficient for simple in-order architectures that
stall in case of a cache miss, the performance of out-of-order
architectures is not sufficiently described by this metric alone.

Simulation techniques provide an alternative to the static
analyses, but are either restricted to in-order processors [9]–
[11] or to the simulation of only one cache configuration at a
time, thus resulting in an unacceptable execution time [12].

A different set of performance estimation techniques is
source-level simulation based on instrumentation [13]–[15].
The source code is instrumented with memory access an-
notations and timing information, enabling the performance
estimation via source-code simulations instead of using a cycle-
accurate low-level simulator. These approaches thus still require
explicit cache simulation and do typically not take the effect
of out-of-order execution into account. Only recently, Plyaskin
et al. [16] presented a source-level simulation approach that
accounts for out-of-order execution behavior. However, this
approach still requires explicit cache simulation.

To the best of our knowledge, no fast and accurate high-
level performance estimation for out-of-order processors with
caches exist. DSE techniques thus either do not support these
systems or have to restrict precise performance estimation to a
small subset of the design space [17].

III. BACKGROUND AND NOTATION
In this section, we introduce the necessary notation and

concepts needed in the remainder of the paper. We assume a
target architecture with disjoint instruction and data caches that
are both connected to main memory via a shared bus.

A. Caches and Address Traces
We concentrate in the following on set-associative caches

with LRU replacement: i.e, caches that are partitioned into s
cache sets, where each memory block of size l (i.e., cache line
size is l) maps to exactly one of the cache sets. Each cache set
in turn may contain up to k different memory blocks at once,
where k is referred to as the associativity of the cache. The
cache size is thus given by l · s · k.

We will later on use the concept of a perfect cache, which
denotes a fully associative cache that is large enough to store
the complete data of a task/program. A perfect cache thus only
exhibits cold misses, but no conflict or capacity misses [5]. Note
that direct-mapped and fully associative caches are special cases
of set-associative caches with k = 1 or s = 1, respectively.

A cache configuration or cache setup ζ is a tuple (k, s)
consisting of the associativity and the number of cache sets. For
the sake of simplicity, we assume a fixed line size l throughout
the paper. The set of all cache setups is denoted by C with
the perfect cache pc as special instance of a cache setup, i.e.:
C = {(k, s)|(k, s) ∈ N)}∪ {pc}. Architectural restrictions or a
pre-selection of candidate cache setups allows us to reduce the
complete set of cache setups C and to focus only on a subset
C ⊂ C.

A cache address trace T of size n is an ordered sequence
[m1, . . . ,mn] of memory blocks mi ∈ M, where M is the set
of all memory blocks. The set of all traces is given by T. The
stack distance sds (s denotes the number of sets) [3] is the
number of distinct memory elements mapping to cache set s′

TABLE I. CACHE PARAMETERS AND DOMAINS

Line size l ∈ N
Associativity k ∈ N
Number of sets s ∈ N
Cache size l · s · k = CS ∈ N
Cache setup ζ = (k, s) ∈ C
Candidate cache setups C ∈ C
Perfect cache pc
Memory Latency γ ∈ N
Number of cycles on trace T cycζ,Tand cache setup ζ

accessed in between an access to a memory element that also
maps to s′and the previous access to the same memory element,
with ∞ denoting that there is no prior access:

sds : M× T → N ∪ {∞}
sds (ml, [m1, . . .ml−1]) ={ |{mj |i < j < l ∧ cs(ml) = cs(mj)}| if mi = ml

∧∀i<j<l : ml ̸= mj

∞ else
(1)

where cs(m) denotes the cache set to which memory element
m maps. The condition cs(ml) = cs(mj) thus ensures that the
stack distance of element ml only considers memory elements
that compete for the same cache set as ml.

Table I summarizes the definitions used throughout the pa-
per. To simplify the notation, we omit the subscripts whenever
the parameters are sufficiently defined by the context.

B. Stack Distance Histogram Computation
To derive the number of cache misses, we will later use

stack distance histograms [4]–[7] within our performance es-
timation framework. These stack distance histograms only de-
pend on the number of cache sets and the cache line size (which
we assume to be fixed). It is therefore sufficient to compute
one stack distance histogram per distinct number of cache sets,
irrespective of the associativity of the cache configuration. The
computation of several stack distance histograms for different
numbers of cache sets can be done in parallel.

Consider for example the following address trace
A,B,B′, A′, B′′, A′′︸ ︷︷ ︸

cold misses

, A,B,A′, B′, B,A′′

where we assume that all addresses map to distinct cache lines.
The first 6 accesses are thus cold misses in any cache setup and
have a stack distance of ∞.

In a fully-associative cache, three accesses have a stack
distance of 5 (A,B,B′), and two accesses have a stack distance
of 4 (A′, A′′). Only the last access to B has a stack distance
of 2. In case of the set-associative cache, we assume that all
references to A,A′, A′′ map to the same cache set, but to
distinct cache lines. The same holds for B,B′, B′′. Moreover,
we assume that A,B all map to distinct cache sets. Thus, to
determine e.g. the stack distance for A, only accesses to A,
A′, and A′′ need to be taken into account. The number of
cold misses is unchanged, five accesses have a stack distance
of 2 (A,B,A′, B′, A′′). The last access to B has a stack
distance of 1. This example shows that the stack distance can
significantly change if the cache setup changes.

IV. CACHE PERFORMANCE ESTIMATION
System-level DSE requires fast, yet precise estimation of

the execution time of the target application on the candidate
architecture. Exhaustive evaluation of all cache configurations
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using simulation is thus not an option; the simulation runs
would consume more time than budgeted for the complete DSE.

We propose a method that relies on a minimal number
of cache simulations needed to predict the performance of all
candidate cache setups from the set C, and a limited number
of trace analyses. We divide the set of candidate setups into q
congruent sets Cs, where q is the number of distinct numbers
of sets within C:

q = |{s|( , s) ∈ C}| (2)
Cs contains all candidate cache setups with s cache sets:

Cs = {ζ|ζ = ( , s) ∈ C} (3)
Instead of performing |C| simulations, our approach relies on
the results of only 2 simulations in total (one to extract the
address trace and one to estimate the memory overlap, a
performance metric explained in detail in Section IV-B) and
q trace analyses, which can be performed in parallel.

The first simulation assumes a perfect cache. This simu-
lation provides us with the number of cycles, cycpc, and the
address trace T . The second simulation is performed for a
reference setup ζ ′ ∈ C, as explained later on.

The q trace analyses are needed to compute a histogram of
the stack distances for a given s: Hs : N∞ → N

Hs(x) = |{i|sds(mi, T ) = x}| (4)
Using the histograms, the number of cold misses for cache
setup ζ = (k, s) is given by:

misscold
ζ = Hs(∞) (5)

The number of conflict or capacity misses by:

misswarm
ζ =

∑

k′≥k∧k′ ̸=∞
Hs(k

′) (6)

And the total number of misses is given by:
missζ = misscold

ζ + misswarm
ζ (7)

A. In-Order Execution
In an in-order processor, a cache miss means that the

processor stalls until this cache line is retrieved from main
memory. This means that the number of cycles required for
a given cache setup can be approximated as follows:

cycζ = cycpc + misswarm
ζ · γ (8)

Where γ is the nominal memory latency of the system.
For the sake of simplicity, we assume unrestricted and

immediate access to all potentially shared resources such as a
bus and only concentrate on the execution cycles of the target
application in isolation. Even though this assumption may be
considered a strong restriction, it allows us to focus on the
problem at hand and is common in the related work.

B. Out-of-Order Execution
Out-of-order processors do not stall in case of a cache

miss, but execute other instructions while waiting for data.
To fully exploit the advantages of out-of-order execution many
processors also allow multiple outstanding memory requests to
be handled simultaneously. Consequently, the effective memory
latency γ̂ is often significantly smaller than the actual time
to transport data from main memory to the cache; and the
number of cache misses alone is not sufficient to estimate the
performance anymore.

1) Illustrated Example: We illustrate the effect of out-
of-order execution on the memory latency with an example

Address trace
A B B’ A’ B” A” A B A’ B’ B A” Sum

DM M M M M M M M M M M M M
150 150 150 150 150 150 900

2 Way M M M M M M M M M M H M
150 150 150 150 150 0 100 850

Perfect M M M M M M H H H H H H
150 150 150 0 0 0 0 0 0 450

Fig. 1. Visualisation of the address trace and the number of hits (H), misses
(M) and the number of cycles for three different caches.

depicted in Figure 1. We assume two cache configurations: Con-
figuration 1 is a direct mapped cache with 2 sets; Configuration
2 has an associativity of 2 and also 2 sets. The second cache
is thus twice as large as the first one.

We consider the address given in Section III-B and we
assume again that all letters map to pairwise distinct cache sets,
but all the accented letters map to different cache lines (but the
same cache set). The cache is initially cold, i.e., empty, which
means that the first 6 accesses in this trace are all misses for all
cache configurations. The trace with corresponding hits, misses
and cycle counts is shown in Figure 1.

The memory latency is 100 cycles and two outstanding
memory requests can be overlayed with a combined memory
latency of 150 cycles (instead of 200 for an in-order processor).
Note that this is an oversimplification purely for the purpose of
the example. For the sake of simplicity, we also assume that if
two memory requests overlap they have to finish before another
request can start.

Although Figure 1 shows the entire address trace, for this
example we will only focus on the final part of the trace, since
the first 6 acceses are all cold misses. The processor with the
direct mapped cache has 6 cache misses and spends a total of
450 cycles waiting on memory. The average memory latency
is thus 75 cycles. The processor with the 2-way set associative
cache has only 5 cache misses but waits for a total of 400 cycles
for data. The average memory latency is thus 80 cycles.

The example illustrates the imprecision of Eq. (8) when
applied to out-of-order processors. The nominal latency γ is
100 cycles while we observe values of 75 and 80 cycles instead.
The naive estimation of the execution cycles is thus not valid for
DSE. Instead of the simple one-to-one mapping of the number
of misses and the execution time, the average memory latency
depends on the actual cache configuration.

2) Effective Memory Latency: As Eq. (8) is restricted to
in-order processors, we propose an adapted version for out-
of-order execution. We multiply the number of warm misses
misswarm

ζ of cache configuration ζ with the effective memory
latency γ̂ instead of the nominal latency γ:

cycζ = cycpc + misswarm
ζ · γ̂ζ (9)

Unfortunately, the effective memory latency is not constant,
but depends on the cache configuration as we have seen in the
example.

In the following, we show how we can compute an approxi-
mation of execution cycles cycζ for cache configuration ζ based
on the memory overlap, a metric which we compute using a
reference cache configuration ζ ′.

We first compute the miss-rate of the warm misses for the
reference configuration ζ ′

miss ratewarm
ζ′ =

(
misswarm

ζ′

n

)
(10)

where n is the size of the address trace, i.e., the number
of memory accesses, and the average number of cycles per
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Fig. 2. Overview of the framework. The text in bold represents input. The
boxes with thicker borders are generated data used in the DSE phase.

warm miss:
cycles misswarm

ζ′ = cycζ′ ·miss ratewarm
ζ′ (11)

where cycζ′ is obtaind via simulation with cache setup ζ ′.
Furthermore, we need the deviation (or error) in the number

of cycles when assuming the nominal memory latency γ:
errorζ′ =

(
cycpc + misswarm

ζ · γ
)
− cycζ′ (12)

The value errorζ thus provides the pessimism when using
Eq. (8). We note that the effective memory latency is always
upper bounded by the nominal memory latency, which means
that errorζ is always non-negative.

We now combine Eq. (12) and (11), i.e., the error and
the average number of cycles per warm miss for the reference
configuration ζ ′, to compute the memory overlap:

memory overlapζ′ =
errorζ′

cycles misswarm
ζ′

(13)

The memory overlap is an indicator for the number of memory
accesses that can happen simultaneously.

Using the memory overlap for ζ ′, we can approximate cycζ ,
for any ζ ∈ C, in an alternative fashion using Eq. (13):

cycζ ≈
cycpc + misswarm

ζ · γ
1 +miss ratewarm

ζ ·memory overlapζ′
(14)

We can now also approximate the effective memory latency γ̂ζ

for cache configuration ζ by rewriting Eq. (9) as follows:

γ̂ζ ≈

(
cycpc+misswarm

ζ ·γ
1+miss ratewarm

ζ ·memory overlap

)
− cycpc

misswarm
ζ

(15)

Since Eq. (14) only requires the number of cycles for the
perfect cache, the memory overlap for config ζ ′ and the number
of misses for config ζ, the only information specific to the cache
configuration ζ can thus be computed using the stack distances.
We note that γ = γ̂ holds if the error is zero.

It remains to be discussed how to select the reference
configuration ζ ′. We have seen that the maximal error typically
occurs for small setups (see Figure 1), along with the highest
number of misses. We therefore select the smallest cache setup
as the reference to compute the memory overlap, i.e. ζ ′ = ζmin

where we define the smallest cache setup as:
ζmin = (k, s) ∈ C (16)

with ∀(k′, s′) ∈ C : k · s ≤ k′ · s′

3) Example Revisited: We now revisit the example depicted
in Figure 1 to illustrate the presented concepts. The figure
shows that a run of the simulator with a perfect cache takes
450 cycles and the run of the simulator with a direct mapped
cache takes 900 cycles (i.e., cycζmin

). We see using Eq. (5)
and (6) that the execution with configuration 1, direct mapped,
results in 6 cold misses and 6 warm misses. Thus, the warm
miss-rate as given by Eq. (10) is 6

12 . Using the miss-rate, the
number of cycles obtained from simulation (i.e., cycζmin

) and
Eq. (11), we calculate the fraction of cycles associated with
the warm misses: 900 · 6

12 = 450. Furthermore, we calculate
the error using Eq. (12): (450 + 6 · 100) − 900 = 150 and
the memory overlap as described in Eq. (13): 150

450 = 1
3 . By

combining the memory overlap and the number of cycles of
the perfect cache, we calculate cycζ for cache configuration 1
using Eq. (14) as follows cyc1 ≈ 450+6·100

1+ 6
12 ·

1
3

= 900 which
provides an exact estimate (which was to be expected as we
have used configuration 1 as reference configuration).

Using the same stack distance histogram, we also calcu-
late that setup 2 results in 6 cold misses, 5 warm misses
and 1 hit. Using Eq. (10), we get the following miss-rate
miss ratewarm

2 = 5
12 and using Eq. (14), we estimate the

number of cycles as follows: cyc2 ≈ 450+5·100
1+ 5

12 ·
1
3

≈ 834, which
is only off by 16 cycles (error of less than 1.9%). Using the
naive approach from Eq. (8), we get the following estimate
cyc2 = 450+ 5 · 100 = 950 which is 100 cycles off (error rate
of 11.7%).

C. Framework
Our framework to estimate the cache performance consists

of two phases, the setup and the DSE phase, as shown in Fig-
ure 2. Within the setup phase, we perform the two simulations
of the target application. One simulation assuming a perfect
cache, and one assuming the minimal (i.e. reference) cache
configuration ζmin. These runs provide us with the number of
execution cycles for these two cache setups (cycpc, cycζmin

) and
the address trace. The address trace is then input to our stack
histogram computation, where we derive a stack histogram for
each set Cs (see Eq. (3)).

The last step within the setup phase consists of calculating
the miss statistics for the reference cache setup ζmin, i.e., the
miss-rate (Eq. (10)), the cycles per miss (Eq. (11)), the error
(Eq. (12)) and the memory overlap (Eq. (13)).

Input to the DSE phase is thus only: (i) the stack distance
histograms Hs, (ii) the number of cycles for the perfect cache
cycpc, and (iii) the memory overlap memory overlapζmin for
the minimal configuration. This information is sufficient to
estimate the number of cycles cycζ for any cache configuration
we are interested in within negligible time overhead using
Eq. (14).

V. EVALUATION
In this section, we evaluate the effectiveness of our per-

formance estimation framework. We focus in particular on (i)
the accuracy of our predictions and the improvement with
respect to the naive estimation from Eq. (8) (both in terms
of predicted misses and predicted cycles), (ii) the fidelity in
the predicted order of candidate configurations, and (iii) the
speed-up compared to the use of cycle-accurate simulation.

The design space, i.e., the set of candidate cache configu-
rations is as follows. We assume a line size of 32 bytes. The
size of the cache ranges from 1 to 32 kB with a range of the
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Fig. 3. Average missrate prediction error (over the complete range of cache
configurations). The error bars show the standard deviation.
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Fig. 4. Average error (over the complete range of cache configurations) in
the predicted cycle count. The lines show the improvement over the naive
prediction method from Eq. (8). Note that the right y-axis is in log scale.

associativity from 1 to 32. This results in 11 distinct numbers
of caches sets and thus the computation of 11 stack distance
histograms.

As benchmarks, we use the Mälardalen benchmark
suite [18] (except for bsort100 due to a segmentation fault and
sqrt which lacks a main-function), which gives 33 benchmarks
and thus 66 scenarios in total when separately considering
instruction and data caches. Due to space limitations, the graphs
in this section only show a representative selection of the
benchmarks, which contains the corner cases and spikes of the
results. This means that results for the missing benchmarks
lie in between those presented in the graphs. The gem5 [12],
[19] instruction set simulator (ISS) serves as the cycle-accurate
simulation within the framework (i.e. to obtain the cycle counts
for the perfect and minimal cache configuration) and provides
the cycle counts for all benchmarks and all cache configurations
to evaluate the precision of our estimates. The simulator models
a 32-bit ARMv7-A with a 5-stage pipeline which supports out-
of-order execution. All simulations have been performed on an
Intel QuadCore i7-2600.

A. Misses
Out-of-order execution may influence the actual address

trace, such that the order of accesses depends on the actual
cache set-up. We therefore first evaluate the number of misses
predicted by our method (which is based on the address trace
of the perfect cache) compared to the actual number of misses
derived by the simulation (assuming the specific cache setup).
We calculate the error using error =

∣∣∣1− misspc,ζ
missζ

∣∣∣ where
misspc,ζ is the number of misses predicted by the trace from
the perfect cache. The average error is shown in Figure 3. The
figure shows that the average error in the number of misses of
our estimation framework is below 5%. It also shows that the I-
cache is more strongly influenced by the out-of-order behaviour
than the D-cache. We note that in an in-order processor, the
order of the memory operations would not have changed and
we would have an error of 0%.

B. Validity
In Figure 4, we have visualized the average error in our

predicted number of cycles compared to the actual number
of cycles obtained using simulation. For readablity we have
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Fig. 5. Speed-up of our method compared to simulation.

omitted the error bars from Figure 4, which would have shown
an average standard deviation of 2%.

We calculate the error using error =
∣∣∣1− cycpc,ζ

cycζ

∣∣∣ where
cycpc,ζ is the number of cycles we predict. We have determined
the memory overlap using the smallest cache configuration
(ζmin) from our set of candidate configurations. This is a 1 kB
cache with associativity 1, i.e., direct mapped.

The figure shows that for most benchmarks our predictions
are close to the obtained values using simulation: From the 66
scenarios (of which only 34 are shown in the graphs due to the
limited space), only 4 exhibit an average error of more than 5%
and the majority (61) has an average error of below 3%. This
indicates that our framework yields good results in predicting
the number of required cycles.

The line graphs in Figure 4 show the improvement of our
estimations compared to the naive approach from Eq. (8) on
the secondary y-axis. From these results we can see that our
approach is on average a factor 3.95 better for the prediction
of the D-cache and a factor 6.95 for the I-cache.

The bars in Figure 4 show a large error of our predici-
tions for two benchmarks (matmult and nsichneu). We have
observed for these two benchmarks significant performance
differences for the minimal cache setup (ζmin) compared to
other cache setups (not shown). This results in a stark under-
or over-approximation of the memory overlap, which in turn
results in a larger error of our predictions. However, our
framework still improves over the naive approach.

Note that we are agnostic to the target architecture and did
not perform an in-depth analysis of the hardware. We only
require the availablity of a cycle-acurate ISS to predict the
number of required cycles.

C. Fidelity
As we have seen, our estimates are very close to the actual

number of misses and execution cycles, but not exact. However,
for early DSE it is often equally important to preserve the
fidelity than to have precise predictions [20]. To show the
fidelity of the results we use two common metrics: Spearman’s
ρ [21] and Kendall’s τ [22]. In short, Spearman’s ρ compares
the rank of elements between two datasets. Where a value of 1
means the ranks match and a value of −1 means the ranks are
reversed. Kendall’s τ compares the relation of one item in the
set to another. Again a value of 1 means the ordering matches
and a value of −1 means a reverse ordering.

For the I-cache, the average value of Spearman’s τ for the
whole benchmark suite is 0.994 with a standard deviation of
0.004. The average of Kendal’s ρ is 0.983 with a standard
deviation of 0.017. For the D-cache, the average of Spearman’s
ρ is 0.956 with a standard deviation of 0.038. The average of
Kendal’s τ is 0.924 with a standard deviation of 0.062.

Our method is an approximation and is subject to an error
margin, as can be seen from the figures. For cache setups that
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Fig. 6. DSE with our high-level estimation versus simulation-based DSE.

perform within 1% of each other, our method can therefore
not provide a proper judgement. This, however, is acceptable
for early DSE as other design-criteria (such as hardware costs
or energy consumption) are likely to outweigh such a minor
difference. To take this into account, we also investigated the
effect of allowing a 1% error in the number of calculated
cycles in the calculation of the fidelity metrics. This means
we allow shuffling of the ordering if the results are within
a 1% range of each other. For the I-cache predictions this
improves Spearman’s ρ to an average of 0.999 with a standard
deviation of 0.003 and Kendal’s τ to an average of 0.990 with
a standard deviation of 0.012. The D-cache experiments show
similar behaviour with Spearman’s ρ improved to an average
of 0.991 with a standard deviation of 0.015. Kendal’s τ is
improved to an average of 0.954 with a standard deviation
of 0.042. These results indicate that there are several cache
configurations with very similar performance.

D. Speed-up
Finally, we evaluate the execution time of our approach

compared to exhaustive simulation using gem5. We therefore
compare the total execution time of the simulation of the
36 cache setups with the execution time of our framework,
including both the setup-phase (executed once in total) and
DSE-phase (executed once for each cache setup). In Figure 5,
the speed-up of our approach is shown per benchmark. We have
measured speed-ups between 6x and 23x with an average of
15x. This shows that for all benchmarks, we are significantly
faster than a complete simulation of all cache configurations.

Figure 6 visualizes the point at which the overhead of the
setup-phase amortizes and our approach is faster than simu-
lation. The dotted blue line shows the normalized execution
time when exploring cache configurations using simulation. The
line with the upward pointing arrows represents the normalized
time our framework requires for the benchmark fir when pre-
dicting D-cache, i.e., the minimal speed-up. The line with the
downward pointing arrows represents the benchmark lms when
predicting I-cache, i.e., the maximum speedup. The break-
even points show the number of cache configurations where
the prediction using our framework and using the simulations
require the same execution time. The break-even points are at
6 cache configurations in case of fir and D-cache exploration,
and at 2 cache configurations in case of lms and I-cache
exploration. The average break-even point lies at 2.37, which
is to be expected as our framework requires two runs of
the simulator and limited additional overhead to compute the
metrics.

VI. CONCLUSION
In this paper, we have presented a framework to estimate

the performance of systems with out-of-order processors using

caches. Our framework consists of two phases: a setup and
a DSE phase. The setup-phase performs two cycle-accurate
simulations and a trace analysis to extract relevant information
metrics, after which the DSE-phase then derives accurate per-
formance estimations of the target application for architectures
with different cache setups within negligible execution time.
Evaluation has shown that the framework is precise both in
terms of estimated number of cache misses (average error
of less than 4%) and estimated execution cycles (average
error of less than 3.5%). Our framework improves upon a
naive estimation based purely on the number of misses by a
factor of 3.95 in case of I-caches and by a factor of 6.95 in
case of D-caches. The fidelity in the ordering of candidate
cache setups is near optimal with an error of around 5%.
We furthermore have observed an average speed-up of 15x
compared to cycle-accurate simulation, which represents the
only precise alternative. Our framework thus enables quick
yet accurate performance estimation for out-of-order processors
with caches to be used for system-level DSE.
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