
Towards an ESL Design Framework for Adaptive
and Fault-tolerant MPSoCs: MADNESS or not?

Emanuele Cannella∗, Lorenzo Di Gregorio†, Leandro Fiorin‡, Menno Lindwer§,
Paolo Meloni¶, Olaf Neugebauer‖, and Andy Pimentel∗∗

∗ Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
Email: cannella@liacs.nl

† Lantiq Deutschland GmbH, Neubiberg, Germany
Email: lorenzo.digregorio@lantiq.com

‡ ALaRI, Faculty of Informatics, University of Lugano, Switzerland
Email: fiorin@alari.ch

§ Silicon Hive BV, High Tech Campus 83, 5656 AG Eindhoven, The Netherlands
Email: menno.lindwer@siliconhive.com

¶ DIEE - Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
Email: paolo.meloni@diee.unica.it

‖ Informatik Centrum Dortmund, Joseph-von-Fraunhofer-Str. 20, Dortmund, Germany
Email: neugebauer@icd.de

∗∗ Computer Systems Architecture Group, Informatics Institute, University of Amsterdam, The Netherlands
Email: a.d.pimentel@uva.nl

Abstract—The MADNESS project aims at the definition of
innovative system-level design methodologies for embedded MP-
SoCs, extending the classic concept of design space exploration
in multi-application domains to cope with high heterogeneity,
technology scaling and system reliability.

The main goal of the project is to provide a framework able
to guide designers and researchers to the optimal composition of
embedded MPSoC architectures, according to the requirements
and the features of a given target application field. The proposed
approach will tackle the new challenges, related to both archi-
tecture and design methodologies, arising with the technology
scaling, the system reliability and the ever-growing computational
needs of modern applications.

The methodologies proposed with this project act at different
levels of the design flow, enhancing the state-of-the art with novel
features in system-level synthesis, architectural evaluation and
prototyping. Support for fault resilience and efficient adaptive
runtime management is introduced at hardware and middleware
level, and considered by the system-level synthesis as one of the
optimization factors to be taken into account.

This paper presents the first stable results obtained in the
MADNESS project, already demonstrating the effectiveness of
the proposed methods.

I. INTRODUCTION

Modern embedded systems, which are increasingly based
on Multi-Processor System-on-Chip (MPSoC) architectures,
usually integrate components provided by different parties,
very often exposing MPSoC designers to a high level of design
complexity. This complexity originates from the need of fitting
different computational tasks to specific kind of processing
elements, achieving an optimal exploitation of the different
types and degrees of parallelism available in the workload.
Moreover, irregular communication patterns between the tasks

often require the design of dedicated interconnect infrastruc-
tures, which optimally sustain communication among several
subsystems with different characteristics. The resulting level of
complexity exposes to the designer many degrees of freedom
which require ad-hoc design methodologies to be managed
for obtaining an efficient design [1]. The common practice
in this area consists of traversing the system-level design
space by means of an iterative process, known as Design
Space Exploration (DSE), which evaluates and refines different
candidate architectures to find an optimal solution.

To improve the overall productivity against chip level design
flows, effective system-level design flows need to take into
account, at early stages, a larger number of design variables as
well as more and higher complexity IP cores inside the design
space available to the designer. This need becomes particularly
striking when multiple applications are executed simultane-
ously, unpredictably interfering at runtime with each other and
demanding the guarantee of a given level of Quality of Service
(QoS). For certain application classes, the existing “static”
design of embedded processors needs to be extended by
including “dynamic” generation of the processor IP to match
configurable features with the demands of the prospective
applications. In addition, given the increasing complexity of
new systems, a certain degree of fault tolerance must be guar-
anteed, although constraints presented by embedded systems
design make approaches involving massive redundancy hardly
adoptable. These issues require the support inside modern
MPSoCs of a certain degree of adaptivity while the designer
must be able deal with challenges posed by modern technology
nodes, relying on accurate estimations of the hardware costs

of each candidate architectural solution.
In this paper, we present an overview of the system-level

design framework that is currently being developed within the
MADNESS project. Given the requirements and the features
of the targeted multimedia application field, this framework
is able to guide designers and researchers to the optimal
composition of an MPSoC architecture based on a Network-
on-Chip (NoC). Its aim is to tackle several new challenges,
related to both architecture and design methodologies, arising
with the technology scaling, the system reliability and the ever-
growing computational needs of modern applications.

In order to improve design predictability, the project aims at
advancing static analysis techniques in order to include system
behavior, and to exploit detailed and reliable emulation, based
on FPGA prototyping when evaluating different candidate
system configurations. When analyzing the emulation results,
variables strictly related to a prospective implementation phase
are taken into account, introducing “technology awareness”
inside the system level design process and improving the
“convergence”, i.e. the accuracy of the results that can be
predicted during the system-level design phase against those
eventually obtained after the on-silicon implementation.

Furthermore, this framework also considers continued avail-
ability of service, in addition to more traditional constraints
(typically, cost, performance, power consumption). Thus, it
accounts for fault recovery as one of the optimization factors
to be satisfied. As a consequence, it supports adaptive runtime
management techniques, tailoring the architectures under new
metrics posed by novel dynamic strategies and advanced
support for related communication issues.

The remainder of this paper is organized as follows. The
next section provides a brief overview of the MADNESS
framework, after which the subsequent sections provide more
details about the different parts of the framework. In sec-
tion III, the simulative DSE component of the framework
will be discussed. In Section IV, the FPGA-based evaluation
platform is described. Section V, provides more information
on the compilation toolchain and the hardware abstraction
layer used in the framework. Section VI discusses the support
for system adaptivity, after which Section VII describes the
fault tolerance issues addressed by the MADNESS framework.
Finally, Section VIII presents our conclusions.

II. THE MADNESS FRAMEWORK: OPTIMIZING
HETEROGENEOUS PLATFORMS

In figure 1, a block diagram of the MADNESS system-
level design framework is presented. The framework aims at
efficiently and effectively performing design space exploration
(DSE) to search for the optimal composition of a multimedia
NoC-based MPSoC architecture, operating on a library of
heterogeneous industrial-strength IP cores and exposing a large
number of degrees of freedom.

One of the main differences between the MADNESS project
and other project oriented toward application mapping is
that MADNESS’ target platform is not static. Rather, the
target platform consists of a library of IP blocks, mentioned

in figure 1 as Hardware Library, which are explored in
continuously varying configurations. The MADNESS project
employs a variety of IP building blocks, among which are
application-specific instruction-set processors (ASIPs), mem-
ories, interconnects, and adapters. This hardware IP library
includes industrial-strength blocks from Silicon Hive and
Lantiq. Some further blocks, such as a video motion processor,
are specifically developed for the MADNESS project. Each
architecture configuration is an abstract collection of target
IPs and interconnect structures. The decisions during the
optimization process are actually taken by a DSE engine,
represented by the box at the top of figure 1 and described
in detail in section III. The DSE engine iteratively selects one
among multiple sets of architecture instances and application
mappings, exploiting a specific layer for rapid and accurate
architectural evaluation. The DSE engine is based on enhanced
versions of several key elements from the Daedalus system-
level synthesis design flow [2]. More specifically, it deploys
the Sesame simulation environment [3] for simulative DSE
and uses the PNgen/ESPAM tools for parallel application code
generation [4]. As a consequence, the MADNESS framework,
like Daedalus, uses Kahn Process Networks (KPNs) [5] to
model parallel multimedia applications. As described later in
deeper detail, the Sesame simulation environment has been
extended in the scope of the MADNESS project to sup-
port DSE for MPSoCs sustaining multi-application dynamic
workloads as well as to include with novel techniques for
design space pruning including fault tolerance aspects. As a
further point of novelty, the project continuously develops an
evaluation layer which integrates a system-level synthesis flow
to rapidly evaluate selected design points using an FPGA-
based emulation and evaluation platform, described in further
detail in section IV. The framework allows to perform system
optimization by means of adequately interleaving a high-
level simulative design space exploration process with the
evaluation of selected design points synthesized on real FPGA-
based prototypes. Thus, the DSE engine can access an FPGA-
based environment for on-hardware prototyping, when needed
during the optimization process, in order to obtain a detailed
evaluation of a candidate architecture by actually executing
the target application on the implemented prototype.

In order to improve design predictability, the flow is
improved by annotating the emulation results on adequate
analytic “technology-aware” models (energy consumption, ex-
ecution time per frequency, area obstruction). This allows
to translate emulation results to a reliable evaluation of a
prospective ASIC implementation of the system on a given
technology, before actually performing all the effort-hungry
back-end fabrication steps.

In order to allow the execution of the target application
on the FPGA implementation of completely different design
points, featuring different kinds of processing elements and
interconnects, the framework includes a re-configurable com-
pilation toolchain, depicted in figure 1, which is capable of
re-targeting itself according to the design point specification.
Furthermore, a hardware abstraction layer (HAL) exposes to

Adapters
HDL

Memories
HDL

GPPs
HDL

NoC
HDL

Sync.
modules

HW blocks for
fault tolerance

HW blocks for
adaptivity

Hardware library

Middleware
support for
adaptivity

HAL
APIs

Software/middleware library

Middleware
support for fault

tolerance

Daedalus
Simulative DSE

Parallel application
code generation

System-
level

platform
description

Parallel
application

code

Reconfigurable toolchain

Application
binaries

HDL generation and synthesis Memory initialization

FPGA-based execution and performance evaluation

FPGA-based evaluation platform

Metrics for
system

optimization

ASIPs
HDL

Fig. 1. The MADNESS system-level design framework for adaptive and fault-tolerant MPSoCs.

the programmer a convenient set of APIs that can be used
to program the system without referring to specific low-level
details of the platform. The compilation toolchain automati-
cally links the appropriate implementation of the API included
in the HAL, according to the description of the design point
under evaluation. The compilation toolchain and the HAL are
described in further detail in section V.

Support for system adaptivity and fault tolerance, described
in sections VI and VII, has been introduced in the hardware
library by new or modified IPs and in the middleware by
a layer in charge of dynamically managing the system at
runtime. The implementation is biased toward low redundancy
and power consumption in order to meed the demands of the
embedded systems domain. Characteristics of the dynamic
behavior and of the resilience to faults can be taken into
account by the system-level synthesis during the architectural
optimization process, exploiting the mentioned extensions to
Sesame.

To allow the mentioned tools and methods to inter-operate
without or with minimal manual intervention, the IP-XACT
standard [6] was selected for exchanging abstract platform
instance descriptions between different tools. However, with
regard to this purpose, IP-XACT has shown a number of
shortcomings. As a result, several adaptations were made to
the IP-XACT standard, allowing us to capture the variability
of the target architectures and to capture the power and area
consequences of DSE design choices. Finally, in order to actu-
ally construct the heterogeneous platform instances needed for
FPGA-based evaluation, the MADNESS project has resulted
in novel approaches to automatically convert MADNESS IP-
XACT descriptions into RTL implementations of multi-ASIP
platform instances.

III. SIMULATIVE DSE

The MADNESS framework deploys the Sesame MPSoC
simulation framework [3] for simulative DSE. Sesame rec-
ognizes separate application and architecture models within
a system simulation. An application model, specified as a
KPN, describes the functional behavior of a (set of) concurrent
application(s). An architecture model defines architecture re-
sources and captures their performance constraints and power
consumption characteristics. Subsequently, using a mapping
model, an application model is explicitly mapped onto an ar-
chitecture model (i.e., the mapping specifies which application
tasks and communications are performed by which architec-
tural resources in an MPSoC), after which the application and
architecture models are co-simulated to study the performance
and power consumption consequences of the chosen mapping.

To actually search the design space for optimum design
points, Sesame utilizes heuristic search techniques, such as
multi-objective Genetic Algorithms (GAs). Such GAs prune
the design space by only performing a finite number of design-
point evaluations during the search, evaluating a population of
design points (solutions) over several iterations, called gener-
ations. With the help of genetic operators, a GA progresses
iteratively towards the best possible solutions.

A. Scenario-based DSE

Thus far, Sesame’s DSE was focused on the analysis of MP-
SoC architectures under a single, static application workload.
The current trend, however, is that application workloads exe-
cuting on embedded systems become more and more dynamic.
Not only is the behavior of a single application changing
over time, but the effect of the interactions between different
applications are also hard to predict. This dynamic behavior
can be classified and captured using so-called workload sce-
narios [7]. Workload scenarios make a distinction between two

aspects. First, intra-application scenarios describe the dynamic
behavior within applications. For example, a QoS mechanism
within a decoder application may dynamically lower the bit-
rate to save power while still meeting its deadlines. Second,
inter-application scenarios describe the interaction between
different applications that are concurrently executing on an
embedded system and contending for its system resources.

In the context of MADNESS, we have developed a novel
scenario-based DSE method that allows for capturing the dy-
namic behavior of multi-application workloads in the process
of system-level DSE [8]. An important problem that needs to
be solved by such scenario-based DSE is the rapid evaluation
of MPSoC design instances during the search through the MP-
SoC design space. Because the number of different workload
scenarios can be immense, it is infeasible to rapidly evaluate an
MPSoC design instance during DSE by exhaustively analyzing
(e.g., via simulation) all possible workload scenarios for that
particular design point. As a solution, a representative subset
of workload scenarios can be used to make the evaluation of
MPSoC design instances as fast as possible. The difficulty is
that the representativeness of a subset of workload scenarios
is dependent on the target MPSoC architecture. But since
the evaluated MPSoC architectures are not fixed during the
process of DSE, we need to simultaneously co-explore the
MPSoC design space and the workload scenario space to find
representative subsets of workload scenarios for those MPSoC
design instances that need to be evaluated. To this end, we
have developed a scenario-based DSE method combining a
multi-objective GA and a feature selection algorithm. The GA
is used to search the MPSoC design space, while the feature
selection algorithm dynamically selects a representative subset
of scenarios. This representative subset of scenarios is then
used to predict the quality of MPSoC design instances in the
GA as accurately as possible.

This scenario-based DSE is depicted in figure 2. As input,
the scenario-based DSE uses the application models that
need to be mapped onto the MPSoC, an MPSoC platform
model, a scenario database in which all possible application
scenarios are stored, and search parameters. As output, the
DSE produces candidate MPSoC design instances that perform
well when considering all the potential situations that can
occur in the specified dynamic multi-application workload.

B. Improving the DSE with domain-knowledge

For the mapping DSE performed by Sesame, a vector-based
mapping specification – specifying which application task or
communication channel is mapped onto which architectural
MPSoC resource – is quite useful (for example, a genetic
algorithm can use the vector as the genotype for a population
element). However, multiple specifications can describe the
same mapping. For example, mapping A : {1,0,1,2} and B :
{2,0,2,1} (where the i-th index indicates the target processor of
application task i) denote the same (duplicate) partitioning, and
therefore an equivalent mapping on a homogeneous platform.
This can be solved by using a normal form notation of
mappings, but here we introduce a mapping distance metric,

Application
Model

Application
Model

Application
Model

Architectural
ModelScenario

Database

Scenario-Based
Design Space

Exploration

Candidate
Designs

Parameters

MPSoC	
Explorer
(GA)

Trainer

Representative
scenario-subset	
selection
using

Feature	 Selection

Fig. 2. Scenario-based DSE.

δ, which can distinguish duplicate mappings and which is a
useful concept for improving the effectiveness of the GA-
based DSE (as will be explained below). The mapping distance
δ(p,q) is defined as the minimum number of task re-mappings
that is required to transform mapping p into mapping q. For
example, δ(A,B) = 0 and δ(A,C) = 2 if C : {0,1,2,1}. For
all duplicate mappings p and q, δ(p,q) = 0. Note that with
minor modifications, the distance metric can also be defined
for heterogeneous platforms (where duplicate mappings can
still occur on groups of processors with the same type).

With GAs (and evolutionary algorithms in general), there
is a delicate balance between convergence and population
diversity: some instances of GAs converge too quickly, while
others do not converge at all (or not sufficiently). In the
former case the achieved result is often a local optimum: the
population is insufficiently diverse due to selective pressure,
so that subsequent iterations of the GA do not introduce
new individuals in the population. On the other hand, when
diversity is too high, GAs do not converge sufficiently, causing
a kind of random walk through the search space. Diversity of a
GA is partially regulated by the rate of mutation of individuals.

To illustrate how the mapping distance can improve the
DSE, we show how it can improve the diversity within a GA
by untangling individuals in the population that are clustered
(too) close together. To this end, we use the distance metric
to identify the one population individual that (on average) has
the shortest distance to the other individuals in the population.
Subsequently, we remove this individual and replace it by a
new randomly generated individual. The experiment involves
a case-study where the design space consists of an 11-process
application mapped onto the 4-processor MPSoC. The opti-
mum design point is known (by exhaustive search) for this
particular design space. The results are shown in Figure 3.
On the x-axis, the quality of the search result is shown as a
percentile (a lower percentile indicates a result closer to the
optimum) while the y-axis shows the probability of achieving
a result with that quality. The red curve (bottom curve) shows
the results for random search, the green curve (middle curve)
refers to the results of an unmodified GA, and the blue curve
(top curve) shows the results of the GA in which the mapping
distance is used to improve diversity. Evidently, the mapping

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

RS
15-15-0-0.9-0.01-2

15-15-1-0.9-0.01

Quality of result (as percentile towards optimum)

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
re

su
lt

Random Search +
Standard GA x
GA with distance metric *

Fig. 3. Improving DSE using the mapping distance metric.

distance can help the GA to find better solutions.

IV. FPGA-BASED EVALUATION ENVIRONMENT

The design flow envisioned in MADNESS raises the need
for a fast and accurate evaluation environment. Such a tool
has to provide the upper layers of the design flow (i.e., the
simulative DSE) with feedback about the performance of any
requested candidate architectural configuration. To this aim,
within the project, a flexible and fast FPGA-based emulation
framework extending the work presented in [9] has been de-
veloped. It leverages a library of components, instantiates the
desired system configuration, specified through a system-level
specification file, and generates the hardware description files
for the FPGA synthesis and implementation, automating de-
sign steps that are usually very error-prone and effort-hungry.
The mentioned feedback, namely consisting of detailed and
precise event/cycle-based metrics, is obtained from the exe-
cution of the target software application (compiled and linked
with the proper toolchains and communication libraries) on the
candidate system configuration, implemented on FPGA and
adequately instrumented with counters and hardware probes.
Moreover, the prototyping environment provides support for
“technology awareness” within the DSE process, by coupling
the use of analytic models and FPGA-based fast emulation.
This allows to obtain early power and execution time figures
related to a prospective ASIC implementation, without the
need to perform long post-synthesis software simulations. The
FPGA emulation results are back-annotated using analytic
models for the estimation of the physical figures of interest.
Timing results (cycle counts) are evaluated according to the
modeled target ASIC operating frequencies and the evaluated
switching activity is translated into detailed power numbers.
Thus, the assumptions made at the system-level design phase
can be verified before the actual back-end implementation of
the system, increasing the overall convergence of the design
flow. The models included in the evaluation platform are built
by interpolation of layout-level experimental results obtained
after the ASIC implementation of the reference library IPs,
along the lines already defined for NoC building blocks in [10].
In the latter, the accuracy of the models is assessed to be higher

than 90% when complete topologies are considered, with
respect to post-layout analysis of real ASIC implementations.

A. Prototyping speed-up techniques

In those exploring iterations that require a detailed estima-
tion of the functional and physical features of the candidate
system-level configuration, emulation on FPGA is much faster
than low-level software-based simulation, especially when
complex systems are targeted. However, the achievable speed-
up is counterbalanced by the computational effort related to
the synthesis and implementation flow. In order to push on-
hardware prototyping one step further, we built tools that
implement on the FPGA a system configuration that is over-
dimensioned with the hardware resources necessary to emu-
late all the network topologies and processor configurations
included in a predefined set of design candidates. Then, at
runtime, each specific candidate design point is mapped on top
of the implemented hardware, exploiting dedicated software-
based configuration mechanisms. In this way, several emula-
tion steps can be performed after a single FPGA synthesis
and implementation run, resulting in a speed-up of the whole
topology selection process. The same kind of approach has
been applied at interconnection-level and at processor-level,
enriching two HDL generators included in the prototyping
environment, respectively in charge of creating the synthesiz-
able description of the network-on-chip topology and of the
processors instantiated in the system.

B. Fast NoC topology selection

Given a set of interconnection topologies to be emulated, we
identify and reconfigure what we call a worst case topology
(WCT). Specific hardware-software mechanisms have been
implemented to enable the possibility of mapping the topology
under test on top of the WCT, reconfiguring the connections
to avoid accounting for latencies introduced by the switching
elements that are not included in the topology to be emulated.
Establishing a direct zero-latency connection of two specific
ports of a generic NoC router has been made configurable
at runtime, by means of dedicated low-level C functions
automatically created by the HDL generator, resulting in the
creation of a combinational path bypassing a certain switch. To
this end, the hardware of the baseline reference NoC router
has been enriched to support runtime reconfiguration of the
routing strategy.

C. Fast ASIP configuration selection

The mentioned approach has been applied to the emulation
of Silicon Hive’s VLIW ASIPs. We provide the capability of
prototyping several instances of the Processor Architecture
Template on the same FPGA implementation. Each design
point is a different composition of substructures called Tem-
plate Building Blocks, namely issue slots (vertical datapaths
slices through the Processor Template, representing VLIW
ways), register files, function units (the hardware blocks
implementing the op-codes), logical memories and internal
interconnect structures (implementing the connectivity within

the processor). The enhanced HDL generation utility analyzes
the whole set of configurations under prototyping, synthesizes
the worst case configuration (WCC), and creates the config-
urable hardware and the software functions needed to map
each candidate configuration on top of the over-dimensioned
hardware. An instruction adapter is inserted in the processor
template to enable the execution of binaries compiled for a
given configuration under test on the WCC, taking care of
adequately manipulating and dispatching the instruction fields
through the over-dimensioned datapath.
The tables in figure 4 and 5 illustrate the impact of providing
fast reconfiguration for both ASIP and FPGA flows in terms
of FPGA device occupation and critical path degradation.
With respect to the ASIP DSE, data presented refers to
implementation of the largest configuration found in a pool
of 16 candidates versus the WCC supporting reconfiguration
for each candidate of the same pool. With respect to the
NoC topology selection, we report results obtained for two
DSE runs involving respectively 4 (DSE A) and 16 (DSE B)
topologies under prototyping (TUP in the figure).

Occupied Slices Slice Registers SLice LUTS

Largest TUP (DSE A) 17327(33%) 33,885(16%) 44673(21%)
WC (DSE A) 20627(39%) 41313(19%) 58862(28%)

Largest TUP (DSE B) 17397(33%) 34487(16%) 44926(21%)
WC (DSE B) 21815(42%) 44943(21%) 64696(31%)

Critical path

Slowest TUP (DSE A) 10,902
WC (DSE A) 10,902

Slowest TUP (DSE B) 10,976 ns
WC (DSE B) 11,307 ns

Fig. 4. Experimental results related with the hardware overhead introduced
by the support for fast NoC prototyping

Occupied Slices Slice Registers Slice LUTS

WCC 21278(41%) 6931(3%) 17951(8%)
Largest ASIP 19859(38%) 6923(3%) 16387(7%)

Critical path

WCC 9.817ns
Slowest ASIP 9.809ns

Fig. 5. Experimental results related with the hardware overhead introduced
by the support for fast ASIP prototyping

As may be noticed, the introduced device utilization over-
head is always limited and is controllable when the number
of candidate configurations increases. Results also show how
the critical path is almost insensitive to the introduction of the
support for rapid prototyping. Thus, the overhead reduction
mechanisms effectively allow accelerating the prototyping of
MPSoCs, without having a significant impact on the system
size and complexity that can be managed by the prototyping
platform. It was possible to implement systems including 32
RISC cores on commercial devices, showing the approach
to be compliant with significant system sizes. Future work

will involve the analysis of multi-FPGA techniques to further
increase the scalability of the prototyping method.

V. COMPILATION TOOLCHAIN AND HARDWARE
ABSTRACTION LAYER

This section describes the interaction between the DSE, the
compilation toolchain and the evaluation platform. Further, a
brief overview of the extensions to the available compilers
is given. Finally the key features of the hardware abstraction
layer and their integration in the compilation toolchain are
described.

A. Compilation toolchain

The DSE tool passes the sources for each process and
additional information like mapping and system description
to the compilation toolchain (see Figure 1). The compilation
toolchain takes care of the correct mapping between processes
and their corresponding compilers for each processor in an
automatic way. In order to determine the right compiler, the
user needs to pass an environment description to the compi-
lation toolchain. This description defines which compilers are
available and which options to use for each processor in the
system.

To meet the requirements of the framework, a hardware ab-
straction layer (HAL) is integrated in the compilation toolchain
in a retargetable manner.

B. Hardware abstraction layer

The MADNESS framework aims at generating an optimal
MPSoC for given hardware components and for a given appli-
cation. Therefore, the application developer does not know the
platform during the development process. Special processor-
dependent instructions cannot be exploited during system
generation. Even the realization of simple low-level functions
like communication or synchronization without knowledge of
the underlying processors and hardware components is im-
possible. For this reason, the MADNESS framework provides
a Hardware Abstraction Layer (HAL) which enables the de-
veloper to create portable and processor-dependent optimized
applications. The presented HAL consists of two parts, a fixed
part which covers the standard abilities of processors and a
generic processor-dependent part.

1) Standard abilities: Standard abilities include memory
access, communication or synchronization mechanisms. One
assumes that present and future processors support these
mechanisms. As a consequence MADNESS defines a fixed
set of standard functions which have to be implemented for
each available processor used in this framework.

2) Special abilities: The actual advantage of heterogeneous
multi-processor-systems is the composition of different spe-
cialized processors. To achieve the best performance one has to
take into account that the HAL has also to cover the processor-
dependent features. These features are called special ability
functions. This part of the HAL is generic and extensible by
the user without modifications of the used compilers. For each
specialized implementation, a standard ANSI-C implementa-
tion must be provided. Thus, the availability of a semantically

equivalent application, if the corresponding processor feature
is not available, is ensured.

3) HAL library: A special HAL library provides the
processor-dependent implementations. This library is inte-
grated in the compilation toolchain and enables compilers to
generate binaries for each processor. Additionally, new HAL
functions can be easily integrated without any changes to
existing tools.

VI. SUPPORT FOR SYSTEM ADAPTIVITY

The term system adaptivity refers to the ability of a system
to dynamically assign tasks of the application(s) running on
it to the resources available over time. This is an emerging
topic in MPSoC design due to recent evolutions in embedded
systems [11]. The main reasons for this trend are:
• applications are getting intrinsically dynamic: for in-

stance, a streaming application can lower its resolution
or its frame rate if the battery charge is running low;

• modern systems are open to new incoming applications,
which can not be analysed at design time: the workload
on such systems cannot be predicted;

• technology scaling below the 32-nm node is leading to
components which are more prone to temporal or even
permanent faults: in case of a malfunctioning system
component, the rest of the system should take over its
tasks (also see the next section).

The KPN model of computation (MoC), adopted in the
MADNESS framework to model multimedia applications for
mapping them onto the MPSoC, presents remarkably simple
operational semantics and distributed control, which allow for
a natural realization of system adaptivity mechanisms.

From an architectural point of view, the framework is
focused on tile-based NoC [12] systems. Among other advan-
tages, this choice is driven by the goal of system adaptivity.
NoC-based interconnects’ flexibility allows to overcome the
drawbacks exposed by point-to-point connections classically
used in multimedia. Point-to-point connections are typically
more efficient in terms of communication latency, but they
are intrinsically less efficient in supporting communication
patterns varying at runtime, unless full connectivity among all
the processors in the system is provided at design time, at the
price of making wiring and buffering of the whole communica-
tion structure rather complex. Moreover, NoC communication
infrastructures are physically and functionally more scalable
than shared-bus-based systems [13].

The starting assumption is that the target platform is
equipped with a heterogeneous set of cores interconnected
with a NoC. The application code must remain the same in
every possible mapping of the tasks to allow for system adap-
tivity. This fact implies that the used communication primitives
must be neither platform dependent nor mapping dependent.
An intermediate layer, or middleware, has been implemented
to refine such communication primitives, including mapping
related information, and to respect the KPN semantics on the
NoC-based MPSoC platform.

Fig. 6. Producer-consumer implementation: when using the VC and VRVC,
the producer receives back virtual tokens (a); when using R, it receives
requests (b).

A. Implementation of KPN semantics on NoCs

NoCs allow for system adaptivity but do not naturally match
the KPN semantics. In order to implement the KPN semantics
on our NoC-based platform, a flow-control policy must be
put in place. We propose the distribution of the KPN’s FIFO
buffer(s) on the producer and consumer sides, as shown in
figure 6. KPN processes communicate and synchronize using
these FIFO buffers, i.e. they must comply with the blocking
read and, in the special case of KPNs that we use (namely,
Polyhedral Process Networks [14]) blocking write behavior.
“Blocking read” means that a KPN process cannot execute if
there are no data tokens on its input FIFO. “Blocking write”
means that a process cannot write to a full output FIFO buffer.

Implementing the blocking write mechanism is challenging
in the considered system, since we want to target generic NoC
platforms, with no remote memory access. In this context, the
producer cannot directly access the status of the consumer
software FIFO. The basic requirement is that the producer
cannot send tokens to the consumer over the NoC if the remote
software FIFOs are full. Several approaches to guarantee this
behavior have been implemented and compared, which are
described below:
• Virtual Connector (VC): in this approach, for each chan-

nel of the KPN graph a virtual connector is instantiated
in the opposite direction (refer again to figure 6). The
consumer after reading one token sends back a virtual
token to the producer over the virtual connector. In this
way, the producer is acknowledged about the status of the
consumer FIFO buffers.

• Virtual Connector with Variable Rate (VRVC): this
approach differs from VC because the consumer can send
virtual tokens less frequently, namely after n consumed
tokens, with n that can be set from 1 to the size of the
consumer FIFO buffer.

• Request-based (R): in this case the producer stores the
output data token in its local FIFO, then sends all the
available tokens, in a packet, upon receiving a request
from the consumer. This approach has been previously
proposed in [15], targeting the Cell BE platform.

We implemented and evaluated all the approaches listed
above on a 2-by-2 NoC platform, using as case studies two

Fig. 7. Total execution time for different MW approaches.

Fig. 8. Slowdown for different MW approaches.

applications which show extremely different characteristics.
The first one is the Sobel filter, which is communication dom-
inant and has a complex KPN graph topology. The second is
an M-JPEG encoder, in which the computation/communication
ratio is much higher and the KPN graph topology is fairly sim-
ple. The results are shown in figure 7: for the communication-
dominant application (i.e. Sobel), the VC approach shows
better results, while in the M-JPEG case all of the approaches
show similar performances.

Figure 8 shows the comparison between the results obtained
on the target NoC platform, endowed with the proposed
middleware, and those obtained from custom point-to-point
platforms generated by the ESPAM tool [4]. In the systems
generated by ESPAM, a separate hardware FIFO is instantiated
for each channel of the KPN graph, leading to a much more
efficient communication because the platform matches the
KPN MoC semantics. It is noticeable that the price paid
for adaptivity and generality is quite high for communication
dominant applications, while it is almost negligible when the
computation/communication ratio is higher, as in the M-JPEG
case study. The reasons why the communication onto the
NoC platform is less efficient are mainly twofold. The first
reason is that in this implementation, several KPN channels
have to share the same physical channel (the NoC link). The
second reason is a consequence of the first one. In the NoC
case, the presence of only one physical link, being shared
between different KPN channels, poses the need for a flow-
control policy. To optimize for low hardware overhead, we
chose to implement the control flow at the middleware level,
based on software FIFOs on the producer and on the consumer
side. This requires additional memory copy operations to dis-

patch/multiplex the communication tokens to/from the correct
software FIFO. Such copies are unnecessary in the case of
adoption of multiple point-to-point connections with hardware
FIFOs. The significant overhead, which can be encountered
when mapping some kind of applications on a NoC, confirms
the need for a design optimization. As envisioned in the
MADNESS project, this optimization shall be done using
system-level design methodologies able to tailor the mapping
and the architecture to limit as much as possible the mentioned
overhead, while allowing for system adaptivity.

B. Middleware support for task migration

The middleware that was developed is capable of supporting
all possible mappings, since it is able to refine the generic KPN
primitives used in the KPN processes to mapping-dependent
primitives. This refinement process makes use of middleware
tables which include, among other useful information, the
source and destination tiles’ ID for each channel of the
KPN. A variety of mappings of the M-JPEG application
were successfully tested by replicating KPN tasks on different
MPSoC cores and by activating the tasks on the desired cores
and changing the middleware tables accordingly. Performing
this migration process at run-time currently is ongoing work.

VII. FAULT TOLERANCE

Applications of embedded systems increasingly require high
availability of the systems themselves, possibly accepting a
measure of graceful degradation. Moreover, increasing com-
plexity of the systems is reaching such levels that the prob-
ability that some manufacturing defect will escape end-of-
production testing or that faults will become evident during
normal operation has to be taken into account. Standard
approaches based on massive redundancy are not directly
applicable to embedded platforms, constrained by the need for
solutions having low cost and low power consumption. New
approaches are therefore needed.

The MADNESS project focuses on the development of fault
tolerant solutions which are not dependent on a technology-
related low-level fault model, but rather on technology-
abstracting functional-level error models. This approach allows
the development of a functionally identical system for two dif-
ferent implementation technologies - FPGA and ASIC - such
that the system’s evaluation on one technology be immediately
adoptable and credible for the other technology.

The fault tolerant approaches implemented focus on the
detection of run-time faults and on the use of reconfiguration
strategies at different levels. In the MADNESS framework,
three main types of components are taken into account, i.e.,
processing cores, storage elements, and the network-on-chip
(NoC). While for storage components standard fault tolerant
strategies based on error detecting and correcting codes are
adopted, for the NoC and the processing elements ad-hoc
strategies for fault detection and reconfiguration are being
developed.

C

C1

C3

C2

a) b)

Fork
TMR

Majority voter
TMR

Fig. 9. Triple modular redundancy adaptation pattern applied at KPN level.
KPN task C in (a) is replicated by three as shown in (b)

A. Fault detection

Detection of temporary and permanent run-time faults is
performed at two different levels. At architectural level, self-
checking strategies mainly based on error detecting and cor-
recting codes have been implemented for NoC’s components.
At the detection of permanent faults, the reconfiguration of
the communication system is initiated (as presented in Section
VII-B).

In the case of the processing elements, detection of faults
is performed at two levels. For non-critical applications, pre-
designed software testing routines are employed [16]. Software
routines are scheduled depending on the probability of having
hard errors in the processors, allowing therefore the detection
of permanent faults in the processing element or, depending
on the granularity of their microarchitecture, in part of it.
For this case, we allow the possibility of a (pre-defined)
limited error propagation. In the case of critical applications,
concurrent self-checking techniques have been implemented
at KPN application level, by transforming the original KPN
task graph accordingly to different levels of task redundancy
[17]. For example, Figure 9 shows the case of the triple
modular redundancy pattern, in which three parallel instances
of the KPN component are created on different cores along
with a module performing a fork on the task and a majority
voter component. The fork operation creates a copy of the
incoming message for each redundant instance and forwards
each copy to the input ports of those instances. The majority
voter component reads a token from all of its input ports and
finds out the most recurrent token and sends it to its output
connector, as well as signaling the core producing a faulty
token, if detected.

B. Reconfiguration strategies

Reconfiguration is implemented based on both architectural-
level design and on application-driven aspects.

1) Architectural-level strategy: For the NoC, whose correct
behavior is essential for supporting higher level reconfigu-
ration strategies, an architectural-level reconfiguration is em-
ployed. The on-chip communication network plays the impor-
tant role of supporting the exchanges of information between
nodes, and continuity of service is needed to guarantee the
possibility of executing correctly applications and high level
system services, such as system adaptivity and reconfiguration.

In order to be able to protect the NoC’s elements (i.e., net-
work interfaces (NIs) routers (or switches) and links) against
“soft” and “hard” faults, the architecture of their main com-
posing blocks (FIFOs, lookup tables, arbiters, etc) has been re-

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%
 s

ur
vi

va
bi

lit
y

of faults

FT
TMR

SECDED

Fig. 10. Survivability of the NI by varying the number of errors injected

designed by employing a combination of error detecting and
correcting code (ECC) and a limited architectural redundancy.
Codes are useful for detecting and correcting soft errors as
well as for identifying, by applying specific self-checking
policies, permanent faults in the components, initiating there-
fore their reconfiguration for using the provided architectural
redundancy. For example, Figure 10 compares the survivability
of the NI developed (FT) with those obtained using a standard
triple modular redundancy implementation (TMR), and one
using only detecting and correcting codes (SECDED) [18].
The solution implemented provides a survivability comparable
to the one obtained with TMR, while saving up to around 80%
in area and energy consumption with respect to it.

2) Application-level strategy: In order to tolerate permanent
failures in processing elements, and allowing a graceful degra-
dation of the system’s performance, the approach proposed in
the MADNESS project focuses on the online remapping of
the KPN tasks running on faulty processors. Task realloca-
tion represents an obliged choice in particular in embedded
systems, which can exploit the intrinsic availability of spare
computation resources in modern MPSoC platforms.

In order to find an optimal solution to mapping tasks onto
heterogeneous NoC multiprocessor systems, a method was
developed which, starting from a task graph, provides as output
the mapping of tasks onto tiles of the architecture. The method
is based on an integer linear programming (ILP) formulation
of the problem which is able to guarantee to find an optimal
solution, in term of minimum communication cost and total
computational time. Since the ILP solution is not scalable,
and the needed execution time will increase significantly with
the dimension of the NoC, the optimal solution also serves
as a good reference point to be used when comparing the
performances of heuristics-based solutions. Several heuristics
were proposed for the remapping of tasks in the presence
of run-time faults in different processing cores, obtaining a
performance degradation within 6% with respect to the optimal
remapping [19]. In order to support the migration of the tasks,
a hardware module integrated within the NI of each NoC’s
node is being implemented. In fact, differently from the case
of task migration for performance reasons in adaptive systems,
faulty processors would be unable to implement the migration

procedure, and an external fault tolerant module is needed to
support it.

VIII. CONCLUSIONS

In this paper, we presented the MADNESS system-level
design framework, together with some first stable results
obtained from the enrichment of a pre-existing system-level
synthesis tool with novel features. These results have been
obtained from the introduction of a concept for scenario-
based exploration and novel distance-based design pruning
techniques. The scenario-based exploration enables to consider
variable-workload applications, multi-application workloads
and faulty working conditions during the high-level synthesis.
The novel distance-based design pruning techniques improve
the search for optimal design points in the vast design space
composed by heterogeneous and NoC-based MPSoCs. A
significant speed-up of the accurate design point evaluation,
required for tuning high-level simulation models, has been
obtained within the mentioned system-level synthesis tool
by developing interfaces toward an FPGA-based evaluation
environment. The prototyping platform drastically reduces the
overhead in terms of emulation time due to the traversing of
the FPGA synthesis and implementation flow. Such features,
together with the use of a re-targeting compilation toolchain,
seamlessly reconfiguring itself to compile the target applica-
tion for different processors within each design point under
prototyping, enables the full exploitation of FPGA-prototyping
within the system-level DSE process. Hardware-middleware
strategies providing support for fault tolerance and adaptive
runtime management of the architecture resources have been
developed and successfully tested. Such strategies effectively
take profit from the flexibility available in NoC-based com-
munication structures and enable architectural DSE driven by
the requirements of different workload and fault scenarios,
allowing coexistence of different mapping configurations on
the architecture. The developed flow-control introduces, on the
other hand, a latency penalty that must be carefully controlled
and minimized. This confirms the need and the usefulness
of an optimization process able to take into account support
for adaptivity during system-level synthesis. So far, two years
of activity are still missing to the completion of the project.
Complete integration of the discussed methods is envisioned,
as well as the precise assessment of the approach on complex
and industrially-relevant case studies.

ACKNOWLEDGMENTS

A large number of people are responsible for, or have con-
tributed to, the work described in this paper. More specifically,
we would like to thank Prof. Todor Stefanov (Universiteit
Leiden), Roberta Piscitelli (Universiteit van Amsterdam), Prof.
Luigi Raffo, Sebastiano Pomata and Giuseppe Tuveri (Univer-
sità degli Studi di Cagliari), Prof. Peter Marwedel (Informatik
Centrum Dortmund), Prof. Mariagiovanna Sami, Umberto
Bondi and Onur Derin (Università della Svizzera Italiana).
The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 248424,
MADNESS Project, and by the Region of Sardinia, Young
Researchers Grant, PO Sardegna FSE 2007-2013, L.R.7/2007
”Promotion of the scientic research and technological innova-
tion in Sardinia”.

REFERENCES

[1] P. Marwedel, Embedded System Design. Kluwer/Springer, 2003.
[2] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas,

S. Polstra, and E. F. Deprettere, “A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,” in
Proc. of the Int. Conference on Hardware-Software Codesign and System
Synthesis (CODES+ISSS ’07), 2007, pp. 9–14.

[3] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Transactions on Computers, vol. 55, no. 2, pp. 99–112, 2006.

[4] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated
Multiprocessor System Design, Programming, and Implementation,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 27, no. 3, pp. 542–555, 2008.

[5] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of the IFIP Congress 74, 1974.

[6] IEEE Standard for IP-XACT, Standard Structure for Packaging, Inte-
grating, and Reusing IP within Tool Flows, IEEE Computer Society
and IEEE Standards Association Corporate Advisory Group, February
2010.

[7] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Ma-
magkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Van-
deputte, and K. D. Bosschere, “System-scenario-based design of dy-
namic embedded systems,” ACM Transactions on Design Automation of
Electronic Systems, vol. 14, no. 1, pp. 1–45, 2009.

[8] P. van Stralen and A. D. Pimentel, “Scenario-based design space
exploration of MPSoCs,” in Proc. of the IEEE International Conference
on Computer Design (ICCD ’10), Oct. 2010.

[9] P. Meloni, S. Secchi, and L. Raffo, “An fpga-based framework for
technology-aware prototyping of multicore embedded architectures,”
Embedded Systems Letters, IEEE, vol. 2, no. 1, pp. 5 –9, 2010.

[10] P. Meloni, I. Loi, F. Angiolini, S. M. Carta, M. Barbaro, L. Raffo, and
L. Benini, “Area and power modeling for networks-on-chip with layout
awareness,” VLSI DESIGN, vol. 2007, 2007.

[11] V. Nollet, D. Verkest, and H. Corporaal, “A safari through the mpsoc
run-time management jungle,” Signal Processing Systems, vol. 60, no. 2,
pp. 251–268, 2010.

[12] G. De Micheli and L. Benini, Networks on Chips: Technology and Tools.
Morgan Kaufmann, 2006.

[13] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, and L. Benini, “A layout-
aware analysis of networks-on-chip and traditional interconnects for
mpsocs,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 26, no. 3, pp. 421 –434, march 2007.

[14] S. Verdoolaege, Handbook on signal processing systems. Springer,
2010, ch. Polyhedral process networks.

[15] D. Nadezhkin, S. Meijer, T. Stefanov, and E. Deprettere, “Realizing
FIFO Communication When Mapping Kahn Process Networks onto the
Cell,” in Proceedings of the 9th International Workshop on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation, ser.
SAMOS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 308–317.

[16] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghu-
nathan, and S. Ravi, “Systematic software-based self-test for pipelined
processors,” in Proceedings of the 43rd annual Design Automation
Conference, ser. DAC ’06. New York, NY, USA: ACM, 2006, pp.
393–398.

[17] O. Derin, E. Diken, and L. Fiorin, “Middleware approach to achiev-
ing fault tolerance of kahn process networks on networks on chips,”
International Journal of Reconfigurable Computing, 2011.

[18] L. Fiorin, L. Micconi, and M. Sami, “Design of fault tolerant network
interfaces for nocs,” in Digital System Design Architectures, Methods
and Tools, 2011. DSD 2011. 14th Euromicro Conference on, aug. 2011.

[19] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping strategies
for fault-tolerant network-on-chip multiprocessors monitoring system
for nocs,” in Proceedings of the 2011 Fifth ACM/IEEE International
Symposium on Networks-on-Chip, ser. NOCS ’11, 2011.

