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Abstract—VMODEX is an interactive visualization tool to 

support system-level Design Space Exploration (DSE). It provides 
insight into the search process of Multi-Objective Evolutionary 
Algorithms (MOEAs) that are typically used in the DSE process, 
and therefore it facilitates the analysis of the DSE results. In our 
tool, we provide several capabilities to be able to handle large 
design spaces and filter design points according to their objective 
values to see only preferred solutions. 

I. INTRODUCTION 
Modern embedded and reconfigurable systems come with 

contradictory design constraints. On one hand, these systems 
often target mass production and battery-based devices, and 
therefore should be cheap and power efficient. On the other 
hand, they need to achieve high (real-time) performance and 
flexibility. The complexity of these systems forces designers to 
simulate systems and their components early during the design 
process to explore the wide range of design choices. Such 
design space exploration (DSE), during which multiple criteria 
should be considered simultaneously, is called multi-objective 
DSE. Since objectives are often in conflict, there cannot be a 
single optimum solution, which simultaneously optimizes all 
objectives. Instead, a set of optimal solutions denoted as the 
Pareto optimal set or non-dominated set has to be found. This 
is the set of those solutions for which one objective cannot be 
improved further without causing a simultaneous degradation 
in at least one other objective. These optimal decisions provide 
the designer trade-offs between the design objectives. 

System-level simulation frameworks that are deployed for 
DSE, usually use independent application and architecture 
models. The application model describes the functional 
behavior of the system expressed as processes (computations) 
and channels (communications). The architecture model 
represents the hardware components in the system, such as 
processors, reconfigurable modules, memories, etc. Then, 
different mappings of processes and communication channels 
to various architectural components are evaluated by 
simulation to find the optimum mapping solutions. Each 
mapping decision taken in this step corresponds to a single 
point in the design space.  

In order to find a Pareto optimal set with respect to the 
design criteria, the designer should ideally evaluate and 
compare every single point in the design space. However, such 
an exhaustive search is infeasible, as in real-scale problems the 
design space is too large to be explored in an exhaustive 
manner. Therefore, heuristic search techniques, such as multi- 

objective Evolutionary Algorithms (MOEA), are often used to 
search the design space for optimum design points using only a 
finite number of design-point evaluations. As the searched 
design space still is vast, interpreting all evaluation data and 
understanding how the EA searches through or prunes the 
design space is cumbersome. Such analysis is, however, 
essential to the designer as it provides insight into the 
“landscape” of the design space (e.g., indicating which design 
parameters are more important than others). 

To illustrate the need for good analysis tools, Fig. 1 shows a 
sample of raw data generated by an EA. Here, each row 
represents an evaluated design point in which the values of 
objectives (processing time, energy consumption and cost) and 
the chromosome string are comma separated. The way that 
application tasks and their communications are mapped onto 
the architecture components is encoded in a string of digits, 
which is called the chromosome. It is evident that interpreting 
and analyzing the evaluated data in this format is not possible. 

 

 
Therefore, we have developed a novel interactive 

visualization tool, VMODEX (Visualization of Multi-Objective 
Design spacE eXploration), to understand how an evolutionary 
algorithm searches the design space, where the optimum design 
points are located, how design parameters influence each 
objective, and provides insight into the relationship between 
the different objectives. The main challenge that needs to be 
addressed by such a visualization environment is how the raw 
data (as illustrated in Fig. 1) can be represented in a visual 
form such that it is possible to analyze the data – in a single 
view – from different perspectives and for various aspects. To 
this end, this paper proposes a visualization approach in which 
we visualize the design space as a tree in which both design 
parameters and objectives are shown. 

The rest of the paper is organized as follows. Section II 
describes related work. Section III introduces techniques we 
have provided for visualizing multi-objective DSE. Section IV 
illustrates the benefits of using visualization in the DSE 
process. Finally, section V concludes the paper. 

Fig. 1. Example of raw data generated by an EA 



II. RELATED WORK 
In the field of computer architecture simulation, and 

especially in the area of system-level design space exploration, 
little research has been undertaken on visualization of 
simulation results in exploring alternative architectural 
solutions. Most of the visualization work in this area focuses 
on educational purposes (e.g., [1], [2]), or only provides some 
basic support for the visualization of simulation results in the 
form of 2D / 3D graphs. 

The work presented in [3] provides advanced and generic 
visualization support, but tries to do so for a wide range of 
computer system related information which may not 
necessarily be applicable to computer architecture simulations 
and in particular to design space exploration, with its own 
domain-specific requirements. 

In [4], an interactive visual tool is presented to visualize the 
results from system-level DSE experiments. The simulation 
results are visualized using a coordinated, multiple-view 
approach, which enables users to understand the information 
through different perspectives. But this tool does not provide 
any insight in the searching process as performed by e.g. a 
MOEA. For example, there is no way to find out which parts of 
the design space are not searched at all. 

III. DEMONSTRATION OVERVIEW  
A. Modeling the Design Space as a Tree  

As it is conceptually shown in Fig. 2, we model the design 
space as a tree. The tree has three sections: the Parameters 
section, Cost section and Design Points section. 

 
Fig. 2. Modeling the design space as a tree 

In the Parameters section, each level shows one parameter of 
the design space, such as the number of processors in the 
architecture platform. So, the number of levels in this section is 
equal to the total number of parameters in the design space. For 
example, in the tree illustrated in Fig. 2, the design space has 
four parameters: number of processors, processor type, number 
of memories and memory type. In this example, the platform 
architecture consists of two Application Specific Integrated 
Circuits (ASICs), two MicroBlazes (MBs), one Static RAM 
(SRAM) and one Dynamic RAM (DRAM). 

The design points’ section includes the design points 
searched by the MOEA. Here, a design point is defined as a 

specific instance of the architecture platform as well as a task 
and communication mapping. Each point is shown as a node, 
which is a child of its corresponding architecture. Design 
points are distributed in three levels: main Pareto, local Pareto 
and non-Pareto. 

The main Pareto level shows the global Pareto points found 
by the MOEA. The solutions at this level are better than all 
other solutions in the entire design space but they are non-
dominated by each other. On the other hand, each point, which 
is not part of the main Pareto set, is dominated by at least one 
main Pareto point. At the local Pareto level, the local Pareto 
points are shown. A design point is called a local Pareto point 
if within the design points with the same architecture (but with 
different mappings), there is no point dominating that one. 
However, in the entire design space, a design point might exist 
which dominates the local Pareto point. It is clear that all the 
main Pareto points are local Pareto points as well. However, 
not all the local Pareto points are main Pareto points and 
therefore we use a relation node at the main Pareto level to 
make a connection between them and the previous level. These 
nodes are labeled with “R” in Fig. 2. 

All the other design points are placed at the non-Pareto level. 
Each one becomes a child of a local Pareto point that 
dominates it. If a design point is dominated by more than one 
local Pareto point, we calculate the Euclidean distance (in the 
objective space) between the dominated point and each 
dominating local Pareto point and the design point becomes the 
child of the local Pareto point with the smallest distance. A 
smaller distance means that the points are more similar 
according to the objectives. 

For easier interpretation and better analysis of the design 
points, the children of a local Pareto point are categorized into 
three groups according to their Euclidian distance from their 
parent. The solutions, which are equivalent to the local Pareto 
point with respect to all objectives, are put under the “Zero” 
distance node. If the distance between a solution and its 
corresponding local Pareto point is more than a certain 
threshold (determined by the designer), it becomes a child of a 
“High” distance node, otherwise it becomes a child of a “Low” 
distance node. 

The color and thickness of edges show the Euclidean 
distance (in the objective space) from the nearest main Pareto 
point. The edges in the path from the root to the main Pareto 
points are the thickest and darkest since the distance is zero. As 
the distance increases the edges become thinner and lighter. 

B. Showing objectives in the tree 
 In this paper, we consider three objectives: processing time, 

energy consumption (i.e., power consumption times processing 
time) and architecture cost. The cost of each design point is 
dependent on the architectural components forming it. So, all 
solutions with the same architecture have the same cost. After 
the parameters section, the architecture cost can be computed 
since all components are known. Therefore, we add an extra 
section (Fig. 2) between the parameters section and design 
points section, which is called the cost section and shows the 
costs of the different architectures. Since the cost is an 
objective and not a design parameter, we represent it with a 



different shape; a circle. For a better view, the size of the circle 
becomes bigger as the cost increases.  

The other two objectives are dependent on the mapping and 
are therefore shown in a design point node. The size and color 
of the third dimension of a design point node shows the energy 
consumption. As the energy consumption increases, the size of 
the third dimension becomes bigger and its color becomes 
darker. The color of the node itself represents the processing 
time. Colors are varied from yellow to red with all color grades 
in between. Nodes with the lowest processing time are yellow 
and nodes with the highest processing time are red. 

Parameter nodes, however, do not represent single design 
points and therefore do not have the direct notion of processing 
time or energy consumption. For this reason, there are some 
options to color the parameter nodes: based on the average, 
minimum, or maximum of either processing time or energy 
consumption of the design points in their sub trees. The color 
of parameter nodes that have no data node (i.e., do not have 
any DSE data) is white. In Fig. 2, the minimum processing 
time is chosen for coloring parameter nodes. 

C. Benefits of Tree Visualization 
    Modeling the design space based on a tree structure, as 
presented in this paper, has the following benefits: 

Firstly, both the design space parameters and the objective 
values can be seen in one view. Therefore, it is easy to 
understand where the optimum design points are located and 
what objectives they have. Secondly, there is no limitation on 
the number of design variables since each parameter is located 
at one level of the tree. Therefore, modeling the design space 
as a tree enables us to easily visualize multivariate data. Lastly, 
it can easily be extended to show more than three objectives. 
Each node has some attributes like shape, orientation, size, 
color, transparency, texture, border, etc. Each attribute can be 
assigned to one objective. In this paper, only color and size are 
used to show objectives. 

D. Handling Large Trees 
In reality, DSE trees can become extremely large. Therefore, 

we provide the following techniques to handle large trees. 

    1) Satellite View: Satellite view, gives an overall, smaller 
scale view of the entire scene, which allows the user to 
navigate quickly across the view. It also enables the user to 
zoom in on certain parts of the scene to focus on certain nodes 
without losing track of the position in the entire scene. 
    2) Hiding Sub Trees without Exploration Data: Since some 
areas of the design space may not have been visited by the 
searching algorithm (e.g., they are not interesting enough so we 
do not have any evaluated design points for those parts), it is 
possible to hide the sub trees of the nodes that have no data. 
This way, the designer can focus on the sub trees which are 
more important and can easily see which parts of the tree are 
searched by the EA. 
    3) Hiding Uninteresting Sub Trees: If the designer is not 
interested in some parts of the tree, then he is able to hide them 
in order to make the tree smaller and pay more attention to 
other nodes. By double clicking on a node, its sub tree 

collapses and a blue triangle appears at the bottom of the node 
specifying that the children of the node are hidden. The size of 
the triangle represents the size of the sub tree. The bigger the 
triangle is, the more nodes in the sub tree exist. By double 
clicking again, the sub tree becomes visible and the blue 
triangle is removed. 
    4) Filtering: In some cases, the designer wants to consider 
only design points with some specific objective values. The 
value of each objective is controlled by a range slider bar, in 
which the designer can set upper and lower limits on that 
objective. Design points with objective values inside the 
selected ranges are visible and the others become invisible. 
Therefore, the designer has the ability to easily view only 
preferred design points. There is an option to view all design 
points that fall within the filtering conditions or to only show 
local Pareto points or only main Pareto points. 

E. Detailed information 
The DSE tree shows an overall view of the design space. For 

example, it shows where in the design space more design 
points have been evaluated or where the optimum design points 
(with respect to all objectives) are located. However, if the 
designer wants to know more about a specific design point, it is 
possible to select the design point to see more details. Two 
kinds of detailed information are provided for each design 
point: mapping decision and utilization. 

    1) Showing Mapping Decision: In our case, the application 
behavior is modeled as a process network. A process network 
is a computational model of the application and uses a directed 
graph notation, where each node represents a process and each 
edge represents a one-way FIFO communication channel 
between two processes. The Fig. 3a represents an example 
process network graph, which has five processes and six 
communication channels. 
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Fig. 3.  a) An example of process network   b) mapping decision visualization  

     We visualize the process network graph in a way that shows 
the mapping decisions as well. That means that it shows how 
the application is being mapped to the underlying architecture 
both in terms of processes and communication channels. The 
shape and the color of each node in the graph represent the type 
of the processor executing the corresponding process (i.e., a 
green rectangle for one processor type and a blue pentagon for 
another type). If there are multiple processors of the same type 
in the platform architecture, then they are differentiated using 
different variants of the same color such as light green and dark 
green. 

If two communicating processes are mapped onto the same 
processor, then their communications are done internally and 
therefore communication channel(s) between them are mapped 
onto the processor in question. In the process network graph, a 
solid line represents these internal communications with the 



same color as the corresponding processor. In the case that a 
channel is mapped onto an external memory, a dashed line is 
drawn with the color representing the memory type. Similar to 
the processors, memories with the same type are shown by a 
different variant of the same color.  

The Fig. 3b represents how our visualization model shows 
the process network graph from Fig. 3a. As can be seen in this 
figure, processes A, B, C and channels 1 and 2 are mapped to 
the same processor (ASIC_1). Process D is executed on the 
same processor type but on a different processor as process A 
(ASIC_2). The type of the processor executing process E is 
different from the others since it is shown with a blue pentagon 
(MB_2). Channels 3,4,5 and 6 are mapped to memories (not 
processors) as they are shown with dashed lines. Channels 3 
and 4 are mapped to the same memory (DRAM_1). Channel 6 
is mapped to another memory but with the same type 
(DRAM_2) and Channel 5 is mapped onto a different memory 
type because it has a different color (SRAM). 
   2) Showing Utilization: For showing utilization, the platform 
architecture is shown as a directed graph. Each node represents 
an architectural component and the edges show connectivity 
between components. Each node (component) is filled with its 
corresponding colour, which is discussed in the above section, 
in a way that the size of the coloured part represents the 
percentage of the time the corresponding component was busy.  

Fig. 4 shows an example of utilization visualization for a 
platform architecture consisting of two Application Specific 
Integrated Circuits (ASICs), two MicroBlazes (MBs), one 
Static RAM (SRAM) and two Dynamic RAMs (DRAM). 

 
Fig. 4. Utilization visualization 

In this example, the utilization of ASIC_1 and DRAM_1 is 
100% while for the Bus it is almost 75% and for the other 
components it is less than 50%. 

IV. EVALUATION 
VMODEX enables designers to easily and clearly 

understand the DSE process and analyse the results from 
different aspects. Due to the lack of the space, a detailed study 
of the design space exploration data for a particular design is 
not presented here. However, to illustrate the benefits of using 
our tool in the DSE process, in the following, we mention some 
interesting conclusions that a designer can immediately draw 
just by looking at the visualization and could not be made so 
easily by using only the raw data or traditional 2D/3D graphs. 

First of all, it shows which parts of the design space are not 
searched at all (no design point is evaluated there). As we 
mentioned before, nodes with a white colour and dashed line have 
no data. Furthermore, it illustrates which parts of the design 
space are searched more often by the EA (more design points 
are evaluated there). In these areas, the tree provides more 

nodes so the sub trees of the corresponding nodes are bigger.             
Moreover, it shows the parts of the design space that contain 
the main Pareto points. Therefore the designer can immediately 
recognize which combinations of architectural components 
yield optimum design points. Our visualization enables the user 
to see the design variables (architecture components) of the 
Pareto points and their objective values in one view. 
    Next, it points out the poor design points. By poor, we mean 
the distance (in objective space) between them and the nearest 
main Pareto point is big. The edges between them and their 
parents are thinner and lighter. 

As we mentioned before, for each architecture instance, the 
best design points with respect to the design criteria are located 
at the local Pareto level. Therefore, the designer can easily 
compare the best design points of different architecture 
instances with each other. 

By coloring the parameter nodes, it is possible to do some 
statistical analysis. The designer can compare different 
architectures (in terms of number and type of the processors 
and memories) according to the minimum, maximum or 
average of each of the design criteria. 

By visualizing the mapping decision, it is easy to investigate 
the influence of the different mappings on each objective. In 
addition, by visualizing the utilization, the effect of different 
mappings on the utilization of the architecture components can 
be easily compared. 

By using the filtering option, the designer can select to see 
only design points with desirable objective values and 
understand which parts of the design space contain the 
preferred design points. 

V. CONCLUSION 
In this paper, we presented a visualization tool, VMODEX, 

which helps designers to understand the search behavior in 
MOEA based design space exploration as well as to gain 
insight into the landscape of the design space. That is, 
understanding the characteristics of the optimum design points 
with respect to the design criteria, the relationships between 
design parameters and their effects on the objectives, the 
effects of mapping decisions on the design criteria and the 
correlations among multiple objectives.  

In our tool, we provide several capabilities to be able to 
handle large design spaces and filter design points according to 
their objective values to see only preferred solutions. Besides, 
we discussed some of the interesting conclusions that can be 
immediately drawn by looking at our visualizations.  
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