
Interleaving Methods for Hybrid System-level
MPSoC Design Space Exploration

Roberta Piscitelli and Andy D. Pimentel
Computer Systems Architecture group, Informatics Institute, University of Amsterdam, The Netherlands

Email: {r.piscitelli,a.d.pimentel}@uva.nl

Abstract—System-level design space exploration (DSE), which
is performed early in the design process, is of eminent importance
to the design of complex multi-processor embedded system archi-
tectures. During system-level DSE, system parameters like, e.g.,
the number and type of processors, the type and size of memories,
or the mapping of application tasks to architectural resources,
are considered. Simulation-based DSE, in which different design
instances are evaluated using system-level simulations, typically
are computationally costly. Even using high-level simulations
and efficient exploration algorithms, the simulation time to
evaluate design points forms a real bottleneck in such DSE.
Therefore, the vast design space that needs to be searched
requires effective design space pruning techniques. This paper
presents and studies different strategies for interleaving fast but
less accurate analytical performance estimations with slower but
more accurate simulations during DSE. By interleaving these
analytical estimations with simulations, our hybrid approach
significantly reduces the number of simulations that are needed
during the process of DSE. Experimental results have demon-
strated that such hybrid DSE is a promising technique that can
yield solutions of similar quality as compared to simulation-based
DSE but only at a fraction of the execution time.

I. INTRODUCTION

Platform based design of heterogeneous multi-processor
system-on-chip (MPSoC) systems is becoming today’s pre-
dominant design paradigm in the embedded systems domain
[18]. In contrast to more traditional design paradigms, plat-
form based design shortens design time by eliminating the
effort of the low-level design and implementation of system
components. A platform based design environment typically
consists of a fixed, parameterizable platform or a set of
(parameterizable) components that can be combined in specific
ways to compose a platform. The parameters make it possible
to adjust platforms and individual components to the required
application domain and platform design requirements. How-
ever, as the number of possible system candidates increases ex-
ponentially with the number of parameters, traditional design
space exploration (DSE) methods fall short. As a consequence,
there has been a recent increase of research attention focusing
on efficient and effective system-level exploration techniques
to identify those parameters that result in an optimal system.

System parameters in system-level DSE typically include
the number and type of processors in the system, the sizes
of the different memories in the system, or the mapping of
application tasks to the underlying architectural resources.
A multi-dimensional design space – the so-called parameter
space – can be constructed by using each parameter type

as an axis of the design space. The design criteria for a
system can usually be translated to one or multiple objectives,
like power consumption, system performance or cost. The
parameter space maps onto the objective space by associating
objective values to each point in the parameter space. If the
complete objective space were given, then a designer could
easily select those system candidates that meet the design
requirements or that are optimal in some pre-defined way. In
practice, however, it is infeasible to obtain a representation of
the objective space that is both accurate and complete.

State-of-the-art solutions for system-level DSE are essen-
tially composed of two elements: the evaluation of a single
design point in the design space in terms of objective values
like performance and power consumption, and a mechanism
for traversing the design space to search for an optimal (set
of) design point(s). To evaluate a single design point, roughly
three approaches are available: 1) performing measurements
on a (prototype) implementation, 2) simulation-based mea-
surements and 3) estimations based on some kind of analyt-
ical model. Each of these methods has different properties
with respect to evaluation time and accuracy. Evaluation of
prototype implementations provides the highest accuracy, but
long development and/or synthesis times prohibit evaluation of
many design options. Analytical estimations are considered the
fastest, but accuracy is limited since they are typically unable
to sufficiently capture particular intricate system behavior.
Simulation-based evaluation fills up the range in between
these two extremes: both highly accurate (but slower) and
fast (but less accurate) simulation techniques are available.
This trade-off between accuracy and speed is very important,
especially for early system-level DSE in which the design
space that needs to be explored is vast and some accuracy
can often be traded for efficiency to cope with these large
design spaces. Current DSE efforts typically use simulation
or analytical models to evaluate single design points together
with a heuristic search method [6] to search the design space.
These DSE methods search the design space using only a
finite number of design-point evaluations, not guaranteeing
to find the absolute optimum in the design space, but they
reduce the design space to a set of design candidates that meet
certain requirements or are close to the optimum with respect
to certain objectives.

Our focus is on system-level mapping DSE, where mapping
involves two aspects: 1) allocation and 2) binding. Alloca-
tion deals with selecting the architectural components in the

Design Space
Exploration

(NSGAII)
SESAME

simulation

mapping

Analytical
estimation

Application

Fig. 1. Driving experiments with the expected throughput.

MPSoC platform architecture that will be involved in the
execution of the application workload (i.e., not all platform
components need to be used). Subsequently, the binding spec-
ifies which application task or application communication is
performed by which MPSoC component. As mentioned above,
state-of-the-art DSE approaches typically use either simulation
or an analytical model to evaluate mappings, where simulative
approaches prohibit the evaluation of many design options
due to the higher evaluation performance costs and analytical
approaches suffer from accuracy issues. This paper deals with
a new, hybrid form of DSE, which has recently been proposed
in [17], combining simulations with analytical estimations to
prune the design space in terms of application mappings that
need to be evaluated using simulation. To this end, the DSE
technique uses an analytical model that estimates the expected
throughput of an application (which is a natural performance
metric in our case given our target application domain which is
multimedia and streaming applications) given a certain archi-
tectural configuration and application-to-architecture mapping.
In the majority of the search iterations of the DSE process, the
throughput estimation avoids the use of simulations to evaluate
the design points. However, since the analytical estimations
may in some case be less accurate, the analytical estimations
still need to be interleaved with simulative evaluations in
order to ensure that the DSE process is steered into the right
direction. In this paper, we study different techniques for
interleaving these analytical and simulative evaluations in our
hybrid DSE. We will demonstrate that by properly interleaving
the analytical and simulative estimations, significant efficiency
improvements can be obtained while still producing similar
solutions in terms of quality as compared to pure simulation-
based DSE.

The remainder of the paper is organized as follows. The
next section briefly describes how the throughput analysis
is combined with simulation in the DSE process. Section 3
proposes a range of different interleaving methods techniques.
In section 4, we present a number of experiments in which
we compare the different interleaving methods for our hybrid
DSE. Section 5 describes related work, after which Section 6
concludes the paper.

II. HYBRID DESIGN SPACE EXPLORATION

In Figure 1, the hybrid DSE framework is shown. The
framework adopts an approach in which the DSE process inter-

leaves simulations with analytical throughput analysis, where
both types of evaluation deploy the same initial application
model. The throughput analysis is used to quickly predict
the performance consequences of different design points as
represented by the application mapping on the underlying
architecture. Evidently, the aim is to interleave these fast ana-
lytical evaluations with the slower simulative evaluations in a
way such that most evaluations are performed analytically. As
a consequence, such an approach could significantly improve
the efficiency of the DSE process, allowing for searching a
much larger design space.

Applications in our DSE framework are modeled using
Kahn Process Networks (KPNs) [8], in which parallel pro-
cesses communicate with each other via unbounded FIFO
channels. As will described later on, before performing an-
alytical throughput analysis for such a KPN, we first need
to perform some transformations to the application graph of
the KPN in order to take into account mapping decisions.
The subsequent throughput analysis – performed on the trans-
formed KPN – is fast and allows for capturing the throughput
trend for different mappings in a reasonable accurate fashion
[17]. The analysis requires the process workloads WPi

as a
parameter for the throughput modeling. The workload WPi

of an application process Pi denotes the number of time
units that are required to execute a single invocation of the
process, i.e., the pure computational workload, excluding the
communication. It should be provided by the designer who
can obtain it, for example, by executing the process once on
the target platform, or by using an instruction set simulator.

However, as will also be shown later on, the analytical
throughput model may encounter accuracy problems when the
(transformed) application graph is cyclic. Addressing these
problems by improving the accuracy of the analytical model in
case of cycles through e.g. using fixed-point iterative solutions
would be possible, but this would defeat our purpose. It would
significantly slow down our analytical estimations, possibly
making them even slower than fast system-level simulations
like those performed by our Sesame framework (as discussed
below). Therefore, we have chosen for an alternative solution.
To correct the accuracy errors during DSE, we interleave the
throughput estimation with fast system-level simulations.

To evaluate design points by means of simulation, we
deploy the Sesame simulation framework [16]. Sesame en-
ables rapid performance evaluation of different MPSoC ar-
chitecture designs, application to architecture mappings, and
hardware/software partitionings with a typical accuracy of 5%
compared to the real implementation [16], [13]. In Sesame,
MPSoC system models are comprised of separate application
and architecture models, which are linked together by a map-
ping model. This mapping model specifies what application
tasks and communications are implemented by what archi-
tectural resources. This mapping step has been implemented
using trace-driven co-simulation of the application and archi-
tecture models. In this approach, traces with computational
and communication events generated by an application model
and consumed by an architecture model are an abstract

node
0

node
1

node
2

node
3

node
4

node
5

node
0

node
1,3

node
2

node
4

node
6,7

node
8

cycle:{[1,3],[2]}

node
6

nodes mapped into
the same processor

node
7

node
8

Fig. 2. Process merging in an example Kahn Process network.

representation of the workload imposed on the architecture.
The interleaving of analytical and simulative evaluations in

the DSE process is determined by the value of a function φ:
φ = 1 implies that simulative evaluation is used and otherwise
analytical evaluation is performed. The setting of φ is done
according to specific switching criteria chosen in the DSE
process. Exactly this function φ and the switching criteria are
the topic of study in this paper, as will be further explained
explained in Section 3.

In our DSE framework, we use the widely-used NSGAII
Genetic Algorithm (GA) [3] to actually search through the
mapping design space. This results in a hybrid DSE method
with the following steps:

1) Generate an initial population of unique mappings.
2) Transform the application KPN according to the map-

pings in the population and build the corresponding
merged KPNs.

3) Perform the static throughput analysis for the merged
KPN graphs and identify the best mappings based on
the highest estimated throughput.

4) In case of φ = 1, we interleave the throughput analysis
with real simulation, in order to correct the ranking in
the NSGAII GA.

5) Verify the stopping criterion. If the mapping population
within the NSGAII algorithm remains unchanged or
a maximum number of iterations has been performed,
the algorithm stops. Otherwise, change the mapping
population using NSGAII’s genetic operators, and restart
from the third step.

We perform the analytical throughput analysis at the KPN
level [17]. As the performance of a KPN is mapping depen-
dent, the mapping needs to be represented inside the KPN
itself. To this end, merging transformations are applied to
the KPN to reflect the mapping of the different processes.
Consequently, if two processes are mapped onto the same
architectural component, they are merged into a single process
in the KPN, as is illustrated in Figure 2. Figure 2 shows the
initial example KPN consisting of nine processes. Performing
throughput analysis of this KPN assumes that each process is
mapped onto a different processor and each KPN channel is
mapped onto a unique communication memory in the MPSoC
(i.e., all the connections are point-to-point connections). The
transformed KPN subsequently reflects the decisions that,
respectively, KPN processes 1,3 and 6,7 are mapped onto
a single processor. Subsequently, to assess the performance

0.00E+00	

1.00E-‐01	

2.00E-‐01	

3.00E-‐01	

4.00E-‐01	

5.00E-‐01	

6.00E-‐01	

7.00E-‐01	

8.00E-‐01	

9.00E-‐01	

1.00E+00	

44
47
21
25
38
	

11
11
11
25
38
	

15
14
35
73
21
	

11
11
11
75
28
	

11
11
11
15
85
	

11
11
85
58
72
	

33
14
81
81
48
	

88
84
81
81
48
	

11
14
81
81
48
	

88
22
81
22
44
	

57
81
11
75
71
	

11
11
11
75
71
	

11
11
11
75
71
	

44
44
42
22
88
	

88
22
81
41
44
	

11
11
11
26
77
	

58
85
85
51
11
	

44
47
21
11
11
	

58
85
11
11
11
	

11
11
11
11
11
	

no
rm

al
iz
ed

	 ra
nk

in
g	

mapping	

H264	 normalized	 ranking	
Sesame	

analy8cal	 es8ma8on	

Fig. 3. Ranking a GA population using analytical estimation and
Sesame simulation.

of such a mapping decision, we perform throughput analysis
on the transformed KPN. This throughput analysis relies on
calculating the throughput τPi

of a process (i.e., node) Pi

for all KPN processes and propagation of the lowest process
throughput to the sink process. Here, we use a depth first
search to determine the order of the processes for propagating
throughputs. For more details about the throughput analysis,
the interested reader is referred to [17].

It is possible that the aforementioned merging transfor-
mation to account for mapping decisions might introduce
cycles in the transformed KPN. As shown in Figure 2, if
processes 1,3 are mapped onto the same processor, this results
in a cycle containing process 2 and the merged process 1, 3.
For nodes 6, 7 the resulting merged node does not generate
any cycle. Cycles in a KPN are responsible for sequential
execution of some of the processes involved in the cycle.
The sequential execution can vary from a single initial delay
to a delay at each execution of some of the processes. For
accurate throughput modeling, these cycles must be taken
into account. Since we use a conservative approximation to
estimate the performance in case of cycles, the analytical
throughput analysis may present inaccuracies in case cycles
are introduced in the transformed KPN, especially when there
are many and/or complex cycles [17].

To demonstrate these inaccuracies, please consider Figure
3. For a DSE experiment with a H264 decoder application,
this graph shows a snapshot of a single GA search iteration.
More specifically, it shows the performance ranking of the
design points (i.e. mappings) in the population of the search
iteration when evaluating them either using Sesame or analyt-
ical estimation. The y-axis shows the normalized performance
and the x-axis shows the different design points in the GA
population, where the integer strings refer to the processor
identifiers the application processes are mapped on. E.g., a
string ”1111112677” means that tasks 1 to 6 are mapped
on processor 1, task 7 is mapped on processor 2, etc. The
design points on the x-axis have been ordered according to the
performance estimation as obtained by Sesame. This implies
that the Sesame-based ranking of the population shows a
monotonically increasing curve. However, as this is not true

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

50	 100	 150	 200	 250	 300	 350	 400	 450	 500	

Ti
m
e	
un

its
	 (s
ec
on

ds
)	

	

genera2ons	 used	 in	 DSE	 	
	

S_mp3	
t_mp3	
S_h264	
t_h264	
S_sobel	
t_sobel	
S_mp3	
t_mp3	
S_h264	
t_h264	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	

50
	

10
0	

15
0	

20
0	

25
0	

30
0	

35
0	

40
0	

45
0	

50
0	

se
co
nd

s	

genera2ons	

Magnified	 view	 of	 the	 sta2c	 analysis	

t_mp3	

t_mjpeg	

t_h264	

t_sobel	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	

50
	

10
0	

15
0	

20
0	

25
0	

30
0	

35
0	

40
0	

45
0	

50
0	

se
co
nd

s	

genera2ons	

Magnified	 view	 of	 the	 sta2c	 analysis	

t_mp3	

t_h264	

t_sobel	

Fig. 4. DSE times using different methods.

for the curve of the analytical estimations, this ranking clearly
shows prediction errors.

III. INTERLEAVING METHODS

Using analytical throughput estimation as fitness function
during DSE can yield significant efficiency improvements. To
demonstrate this, Figure 4 shows the wall-clock times for a
DSE experiment, using a NSGAII GA, for a heterogeneous
8-processor MPSoC and three multimedia applications: an
Mp3 decoder, a H264 decoder, and a Sobel filter for edge
detection in images. The curves labeled with an ”S ” prefix
show the DSE times when only using Sesame simulations, as
a function of the number of generations used in NSGAII. The
curves with a ”t ” prefix show the results of exclusively using
static throughput estimation during DSE. Clearly, the DSE
based on analytical throughput analysis can be three orders
of magnitude faster than simulation-based DSE. Avoiding
simulation-based evaluations by replacing them with analytical
evaluations therefore appears to be a promising technique for
optimizing the DSE process.

The question that remains open is how to exactly perform
the interleaving between analytical and simulative evaluations.
Here, the ratio between the number of analytical and sim-
ulative evaluations plays an important role as this provides
a valuable accuracy-performance trade-off. In addition, the
decision of when (in time) to perform a simulative evaluation
instead of an analytical estimation is an important factor in
the interleaving strategy. In the remainder of this section, we
will propose different strategies for interleaving analytical and
simulative evaluations, which subsequently will be assessed in
the next section.

A. Fixed-frequency interleaving

This is the simplest form of interleaving in which a fixed
frequency k is chosen such that every k-th search iteration
is performed using simulation-based evaluation instead of
analytical estimation. For example, in case of 100 search
iterations and k = 10, every 10th search iteration is performed

using Sesame simulation, thereby reducing the number of sim-
ulations by 90% (9 out of 10 search iterations are performed
using analyticcal estimation).

B. Switching method based on the bisection of the generation
space

In this method, we divide the iteration space of the DSE
according to the number of generations of the genetic algo-
rithm used (NSGAII in our case). We switch from one method
to the other (from simulation to analytical estimation, or vice
versa) according to the number of generations executed by the
genetic algorithm, as illustrated in Figure 5. More specifically,
φ = 1 if cgen == K, where cgen is the current search
iteration and ngen is the total number of DSE generations.

0

simulation analytical estimation

K
n_gen

Fig. 5. NSGAII generation space using the
bisection method.

C. Temperature-based interleaving

This method is inspired by the simulated annealing tech-
nique. That is, the probability of performing a Sesame simu-
lation increases with the number of generations examined in
the genetic algorithm. More specifically,

φ = 1 if U([0, 1]) >= T

where T = cgen

ngen

where U([0, 1]) is a uniform random distribution, and the
temperature T is given by the ratio between the current
generation cgen and the total number of generations ngen used
for the design space exploration.

D. Population-property based interleaving

The last method we propose is based on the properties of
the population in each generation of the genetic algorithm. It
bases the decision on whether to use simulation or analytical
estimation on the percentage of design points in the genetic
algorithm’s population that contains a cycle in the generated
mapping. More specifically, the decision is based on the
following algorithm:

for di ∈ population do
verify if di generates a cycle
if di contains a cycle then

ncycles++;
end if

end for
if ncycles

npop
× 100 >= K then

φ = 1;
end if

where npop is the number of mappings in the population and
the threshold value K is a chosen proportion of the population.

IV. EXPERIMENTAL RESULTS

To evaluate the different interleaving methods, we have
experimented with a DSE case study for a heterogeneous
MPSoC platform consisting of up to 8 processors (intercon-
nected by a crossbar) of possibly different types: MIPS, ARM
or StrongARM. The DSE experiment is performed for three
multimedia applications: an Mp3 decoder, a H264 decoder, and
a Sobel filter for edge detection in images. The exploration
considers two optimization objectives, namely performance
(execution time) and system cost, and has been implemented
using a NSGAII genetic algorithm performing 200 search
iterations. Since genetic algorithms are stochastic processes,
all results are averages from 10 execution runs.

To quantify the quality of the obtained Pareto fronts for
the different interleaving methods, we consider two aspects:
how close the found solutions are to a reference Pareto front
and the spread of the solutions along the Pareto front. To this
end, we use the hypervolume (HV) and ∇ metrics. The HV
metric [20] measures the hypervolume of the objective space
covered by members of a Pareto optimal set and a reference
point. It represents the size of the region dominated by the
solutions in the Pareto optimal set. The reference point can
simply be found by constructing a vector of worst objective
values. The hypervolume metric is interesting because it is
sensitive to the closeness of solutions to the true Pareto optimal
set as well as the distribution of solutions across the objective
space. The hypervolume value is calculated by summing the
volume of hyper-rectangles constructing the hypervolume. A
Pareto optimal set with a large value for the hypervolume is
desirable [19].

The normalized ∇ metric [5] measures the spread of solu-
tions. It refers to the area of a rectangle formed by the two
extreme solutions in the objective space, thus a bigger value
spans a larger portion and therefore is better. The ∇ metric
calculates the volume of a hyperbox formed by the extreme
objective values observed in the Pareto optimal set:

∇ =
M∏

m=1

(fmax
m − fmin

m) (1)

Where M is the number of objectives, (fmax
m and fmin

m)
the maximum and respectively minimum values of the mth

objective in the Pareto optimal set. A bigger value spans a
larger portion and therefore is better.

For the HV and ∇ metrics, we use relative values. That
is, we relate the HV and ∇ values for our hybrid DSE
experiments against those from a reference Pareto front. The
reference Pareto fronts – one for each application – were
obtained by combining the Pareto optimal solutions from 10
runs of Sesame-based DSE. This implies that, e.g., a HV (∇)
value of 1.0 means that the experiment in question yields the
same HV (∇) value as the reference Pareto front.

In Figure 6, the average hypervolume (HV) and relative
spread (∇) values (averaged over 10 runs) are shown for
the different DSE methods applied to the Mp3 decoder,

H264 decoder, and Sobel filter applications. The Sesame-
only results (left-most bars) form the baseline for our hybrid
DSE experiments. These results are averages for a single run
(averaged over 10 separate runs) of Sesame-based DSE. So,
no hybrid DSE and interleaving are performed in this case,
and it solely compares a single simulation-only DSE run to the
reference Pareto front. The remaining bars show the results for
the various hybrid DSE approaches. The label Bisection12-K
refers to the bisection-based interleaving method in which the
DSE start with simulation and switches to analytical estimation
after K generations. Here, we have experimented with K
values that equal to 25, 50, · · · , 175 and ngen = 200.
Similarly, the label Bisection21-K refers to the same bisection-
based interleaving but then starting with analytical estimations
followed by simulations. The label Pop-based-K subsequently
refers to the population based interleaving method with a
certain K value. In our case, we have varied K from 10% up
to 90%. The fixed-frequency based interleaving method has
been applied with K values of 1%, 2%, 3%, 5%, and 10%,
as indicated by the labels in Figure 6.

A number of observations can be made from Figure 6.
Looking at the hypervolume, it is clear that hybrid DSE
methods are capable of obtaining Pareto fronts with similar
HV values as Sesame-only DSE, but at a fraction of the
execution time (which will be shown later on). The spread
of solutions (∇) in the obtained Pareto fronts, however, is
highly dependent on the interleaving method as well as on
the application under study. The population-based method and
fixed-frequency approach with very low simulation frequencies
clearly exhibit poorer ∇ values. To a lesser extent this is also
true for the bisection-based method where the DSE starts with
simulations and ends with analytical estimations.

There is no clear winner among the hybrid DSE methods,
but looking at the HV/∇ combination, the fixed-frequency
interleaving with K = 10% seems to perform slightly better
than the other methods. Overall, the fixed-frequency interleav-
ing with K ≥ 3% and the bisection-based approach where
the DSE starts with analytical estimations and ends with
simulations (i.e., Bisection21) appear to outperform the other
hybrid DSE methods.

In Figure 7, the execution times for the different DSE
experiments are shown. As can be seen, a Sesame-only DSE
experiment of 200 search iterations can take up to several
thousands of seconds (like for Mp3). However, by interleav-
ing simulations with analytical estimations most hybrid DSE
techniques can significantly reduce the execution time of the
DSE experiments. Only temperature-based interleaving fails to
substantially improve the DSE execution times as it still uses
a relative high number of simulations. The population-based
interleaving yields the highest performance improvements.
But, as shown in Figure 6, the quality of the Pareto fronts
of this interleaving technique is fairly poor in terms of spread
of solutions. The fixed-frequency interleaving with K = 10%
reduces the execution time of the DSE by a factor 4, while
a Bisection21 interleaving with K = 100 yields a 6 to 8
times performance improvement. We note that these time

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Se
sa
me
-‐o
nly
	

Bis
ec
6o
n1
2-‐
25
	

Bis
ec
6o
n1
2-‐
50
	

Bis
ec
6o
n1
2-‐
75
	

Bis
ec
6o
n1
2-‐
10
0	

Bis
ec
6o
n1
2-‐
12
5	

Bis
ec
6o
n1
2-‐
15
0	

Bis
ec
6o
n1
2-‐
17
5	

Bis
ec
6o
n2
1-‐
25
	

Bis
ec
6o
n2
1-‐
50
	

Bis
ec
6o
n2
1-‐
75
	

Bis
ec
6o
n2
1-‐
10
0	

Bis
ec
6o
n2
1-‐
12
5	

Bis
ec
6o
n2
1-‐
15
0	

Bis
ec
6o
n2
1-‐
17
5	

Po
p-‐
ba
se
d-‐
10
	

Po
p-‐
ba
se
d-‐
20
	

Po
p-‐
ba
se
d-‐
30
	

Po
p-‐
ba
se
d-‐
40
	

Po
p-‐
ba
se
d-‐
50
	

Po
p-‐
ba
se
d-‐
60
	

Po
p-‐
ba
se
d-‐
70
	

Po
p-‐
ba
se
d-‐
80
	

Po
p-‐
ba
se
d-‐
90
	

Te
mp
er
atu
re
-‐b
as
ed
	

Fix
ed
-‐fr
eq
ue
nc
y1
0%
	

Fix
ed
-‐fr
eq
ue
nc
y5
%	

Fix
ed
-‐fr
eq
ue
nc
y3
%	

Fix
ed
-‐fr
eq
ue
nc
y2
%	

Fix
ed
-‐fr
eq
ue
nc
y1
%	

H264	 hypervolume	 rela6ve	 spread	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Se
sa
me
-‐o
nly
	

Bis
ec
6o
n1
2-‐
25
	

Bis
ec
6o
n1
2-‐
50
	

Bis
ec
6o
n1
2-‐
75
	

Bis
ec
6o
n1
2-‐
10
0	

Bis
ec
6o
n1
2-‐
12
5	

Bis
ec
6o
n1
2-‐
15
0	

Bis
ec
6o
n1
2-‐
17
5	

Bis
ec
6o
n2
1-‐
25
	

Bis
ec
6o
n2
1-‐
50
	

Bis
ec
6o
n2
1-‐
75
	

Bis
ec
6o
n2
1-‐
10
0	

Bis
ec
6o
n2
1-‐
12
5	

Bis
ec
6o
n2
1-‐
15
0	

Bis
ec
6o
n2
1-‐
17
5	

Po
p-‐
ba
se
d-‐
10
	

Po
p-‐
ba
se
d-‐
20
	

Po
p-‐
ba
se
d-‐
30
	

Po
p-‐
ba
se
d-‐
40
	

Po
p-‐
ba
se
d-‐
50
	

Po
p-‐
ba
se
d-‐
60
	

Po
p-‐
ba
se
d-‐
70
	

Po
p-‐
ba
se
d-‐
80
	

Po
p-‐
ba
se
d-‐
90
	

Te
mp
er
atu
re
-‐b
as
ed
	

Fix
ed
-‐fr
eq
ue
nc
y1
0%
	

Fix
ed
-‐fr
eq
ue
nc
y5
%	

Fix
ed
-‐fr
eq
ue
nc
y3
%	

Fix
ed
-‐fr
eq
ue
nc
y2
%	

Fix
ed
-‐fr
eq
ue
nc
y1
%	

MP3	
	

hypervolume	 rela6ve	 spread	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Se
sa
me
-‐o
nly
	

Bis
ec
6o
n1
2-‐
25
	

Bis
ec
6o
n1
2-‐
50
	

Bis
ec
6o
n1
2-‐
75
	

Bis
ec
6o
n1
2-‐
10
0	

Bis
ec
6o
n1
2-‐
12
5	

Bis
ec
6o
n1
2-‐
15
0	

Bis
ec
6o
n1
2-‐
17
5	

Bis
ec
6o
n2
1-‐
25
	

Bis
ec
6o
n2
1-‐
50
	

Bis
ec
6o
n2
1-‐
75
	

Bis
ec
6o
n2
1-‐
10
0	

Bis
ec
6o
n2
1-‐
12
5	

Bis
ec
6o
n2
1-‐
15
0	

Bis
ec
6o
n2
1-‐
17
5	

Po
p-‐
ba
se
d-‐
10
	

Po
p-‐
ba
se
d-‐
20
	

Po
p-‐
ba
se
d-‐
30
	

Po
p-‐
ba
se
d-‐
40
	

Po
p-‐
ba
se
d-‐
50
	

Po
p-‐
ba
se
d-‐
60
	

Po
p-‐
ba
se
d-‐
70
	

Po
p-‐
ba
se
d-‐
80
	

Po
p-‐
ba
se
d-‐
90
	

Te
mp
er
atu
re
-‐b
as
ed
	

Fix
ed
-‐fr
eq
ue
nc
y1
0%
	

Fix
ed
-‐fr
eq
ue
nc
y5
%	

Fix
ed
-‐fr
eq
ue
nc
y3
%	

Fix
ed
-‐fr
eq
ue
nc
y2
%	

Fix
ed
-‐fr
eq
ue
nc
y1
%	

Sobel	 hypervolume	 rela6ve	 spread	

Fig. 6. Average hypervolume and ∇ values for the different DSE methods applied to the Mp3 decoder, H264 decoder, and
Sobel filter applications.

savings could have also been used for performing more search
iterations, thereby possibly improving the search results. We
have not done this in this paper (we considered the number of
search iterations to be fixed), but this is considered as future
work.

V. RELATED WORK

Current state-of-the-art in system-level DSE often deploys
population-based Monte Carlo-like optimization algorithms
like hill climbing, simulated annealing, ant colony optimiza-
tion, or genetic algorithms. By adjusting the parameters, or
by modifying the algorithm to include domain-specific knowl-
edge, these algorithms can be customized for different DSE
problems to increase the effectivity of the search [14], [2].
Another promising approach is based on meta-model assisted

optimizations, which combines simple and approximate mod-
els with more expensive simulation techniques [11], [15], [4],
[1], [10]. In [4], the authors use meta-models as a pre-selection
criterion to exclude the less promising configurations from the
exploration. In [10], meta-models are used to identify the best
set of experiments to be performed to improve the accuracy
of the model itself. In [11], an iterative DSE methodology
is proposed exploiting the statistical properties of the design
space to infer, by means of a correlation-based analytic model,
the design points to be analyzed with low-level simulations.
The knowledge of a few design points is used to predict the
expected improvement of unknown configurations. However,
these meta-models usually have design space parameters rel-
ative to the micro-architecture of design instances, while they

0	

200	

400	

600	

800	

1000	

1200	

1400	

Se
sa
me
-‐o
nly
	

Bis
ec
5o
n1
2-‐
25
	

Bis
ec
5o
n1
2-‐
50
	

Bis
ec
5o
n1
2-‐
75
	

Bis
ec
5o
n1
2-‐
10
0	

Bis
ec
5o
n1
2-‐
12
5	

Bis
ec
5o
n1
2-‐
15
0	

Bis
ec
5o
n1
2-‐
17
5	

Bis
ec
5o
n2
1-‐
25
	

Bis
ec
5o
n2
1-‐
50
	

Bis
ec
5o
n2
1-‐
75
	

Bis
ec
5o
n2
1-‐
10
0	

Bis
ec
5o
n2
1-‐
12
5	

Bis
ec
5o
n2
1-‐
15
0	

Bis
ec
5o
n2
1-‐
17
5	

Po
p-‐
ba
se
d-‐
10
	

Po
p-‐
ba
se
d-‐
20
	

Po
p-‐
ba
se
d-‐
30
	

Po
p-‐
ba
se
d-‐
40
	

Po
p-‐
ba
se
d-‐
50
	

Po
p-‐
ba
se
d-‐
60
	

Po
p-‐
ba
se
d-‐
70
	

Po
p-‐
ba
se
d-‐
80
	

Po
p-‐
ba
se
d-‐
90
	

Te
mp
er
atu
re
-‐b
as
ed
	

Fix
ed
-‐fr
eq
ue
nc
y1
0%
	

Fix
ed
-‐fr
eq
ue
nc
y5
%	

Fix
ed
-‐fr
eq
ue
nc
y3
%	

Fix
ed
-‐fr
eq
ue
nc
y2
%	

Fix
ed
-‐fr
eq
ue
nc
y1
%	

Se
co
nd

s	

H264	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

Se
sa
me
-‐o
nly
	

Bis
ec
4o
n1
2-‐
25
	

Bis
ec
4o
n1
2-‐
50
	

Bis
ec
4o
n1
2-‐
75
	

Bis
ec
4o
n1
2-‐
10
0	

Bis
ec
4o
n1
2-‐
12
5	

Bis
ec
4o
n1
2-‐
15
0	

Bis
ec
4o
n1
2-‐
17
5	

Bis
ec
4o
n2
1-‐
25
	

Bis
ec
4o
n2
1-‐
50
	

Bis
ec
4o
n2
1-‐
75
	

Bis
ec
4o
n2
1-‐
10
0	

Bis
ec
4o
n2
1-‐
12
5	

Bis
ec
4o
n2
1-‐
15
0	

Bis
ec
4o
n2
1-‐
17
5	

Po
p-‐
ba
se
d-‐
10
	

Po
p-‐
ba
se
d-‐
20
	

Po
p-‐
ba
se
d-‐
30
	

Po
p-‐
ba
se
d-‐
40
	

Po
p-‐
ba
se
d-‐
50
	

Po
p-‐
ba
se
d-‐
60
	

Po
p-‐
ba
se
d-‐
70
	

Po
p-‐
ba
se
d-‐
80
	

Po
p-‐
ba
se
d-‐
90
	

Te
mp
er
atu
re
-‐b
as
ed
	

Fix
ed
-‐fr
eq
ue
nc
y1
0%
	

Fix
ed
-‐fr
eq
ue
nc
y5
%	

Fix
ed
-‐fr
eq
ue
nc
y3
%	

Fix
ed
-‐fr
eq
ue
nc
y2
%	

Fix
ed
-‐fr
eq
ue
nc
y1
%	

Se
co
nd

s	

MP3	

0	

200	

400	

600	

800	

1000	

1200	

1400	

Se
sa
me
-‐o
nly
	

Bis
ec
5o
n1
2-‐
25
	

Bis
ec
5o
n1
2-‐
50
	

Bis
ec
5o
n1
2-‐
75
	

Bis
ec
5o
n1
2-‐
10
0	

Bis
ec
5o
n1
2-‐
12
5	

Bis
ec
5o
n1
2-‐
15
0	

Bis
ec
5o
n1
2-‐
17
5	

Bis
ec
5o
n2
1-‐
25
	

Bis
ec
5o
n2
1-‐
50
	

Bis
ec
5o
n2
1-‐
75
	

Bis
ec
5o
n2
1-‐
10
0	

Bis
ec
5o
n2
1-‐
12
5	

Bis
ec
5o
n2
1-‐
15
0	

Bis
ec
5o
n2
1-‐
17
5	

Po
p-‐
ba
se
d-‐
10
	

Po
p-‐
ba
se
d-‐
20
	

Po
p-‐
ba
se
d-‐
30
	

Po
p-‐
ba
se
d-‐
40
	

Po
p-‐
ba
se
d-‐
50
	

Po
p-‐
ba
se
d-‐
60
	

Po
p-‐
ba
se
d-‐
70
	

Po
p-‐
ba
se
d-‐
80
	

Po
p-‐
ba
se
d-‐
90
	

Te
mp
er
atu
re
-‐b
as
ed
	

Fix
ed
-‐fr
eq
ue
nc
y1
0%
	

Fix
ed
-‐fr
eq
ue
nc
y5
%	

Fix
ed
-‐fr
eq
ue
nc
y3
%	

Fix
ed
-‐fr
eq
ue
nc
y2
%	

Fix
ed
-‐fr
eq
ue
nc
y1
%	

Se
co
nd

s	

Sobel	

Fig. 7. Execution times for the different DSE methods.

do not address the problem of e.g. topological mapping of
an application on the underlying MPSoC architecture. While
micro-architecture parameters like cache size typically affect
the system performance in a predictable, often linear, fashion,
the resource binding of the application graph to the architec-
tural platform presents a much less predictable performance.

A second class of design space pruning is based on hi-
erarchical DSE (e.g., [7], [12], [9], [5]). In this approach,
DSE is first performed using analytical or symbolic models
to quickly find the interesting parts in the design space, after
which simulation-based DSE is performed to more accurately
search for the optimal design points. The main drawback of
this method is that if the first step is not accurate enough, it
may not produce the best set of design points to simulate. In
our approach, the pruning and simulation phases are integrated
to avoid this problem.

VI. CONCLUSION

In this paper, we have studied a pruning technique to reduce
the simulation overhead in system-level MPSoC design space
exploration (DSE). More specifically, we have proposed and

examined different strategies for interleaving fast but less accu-
rate analytical performance estimations with slower but more
accurate simulations. Experimental results have demonstrated
that such hybrid DSE is a promising technique that can yield
solutions of similar quality as compared to simulation-based
DSE but only at a fraction of the execution time.

ACKNOWLEDGMENT

This research has been supported by the European Commu-
nitys Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 248424, MADNESS Project.

REFERENCES

[1] G. Ascia, V. Catania, A. G. Di Nuovo, M. Palesi, and D. Patti. Efficient
design space exploration for application specific systems-on-a-chip. J.
Syst. Archit., 53:733–750, October 2007.

[2] V. Catania and M. Palesi. A multi-objective genetic approach to mapping
problem on network-on-chip. Journal of Universal Computer Science,
12(4), 2006.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2000.

[4] M. T. M. Emmerich, K. Giannakoglou, and B. Naujoks. Single- and
multiobjective evolutionary optimization assisted by gaussian random
field metamodels. IEEE Transactions on Evolutionary Computation,
10:421–439, 2006.

[5] C. Erbas, S. Cerav-erbas, and A. D. Pimentel. Multiobjective op-
timization and evolutionary algorithms for the application mapping
problem in multiprocessor system-on-chip design. IEEE Transactions
on Evolutionary Computation,vol.10,no.3, 10:358–374, 2006.

[6] M. Gries. Methods for evaluating and covering the design space during
early design development. Integr. VLSI J., 38:131–183, December 2004.

[7] Z. J. Jia, A.D. Pimentel, M. Thompson, T. Bautista, and A. Núñez.
Nasa: A generic infrastructure for system-level mp-soc design space
exploration, Proceedings of the IEEE Workshop on Embedded Systems
for Real-Time Multimedia (ESTIMedia) 2010.

[8] G. Kahn. The semantics of a simple language for parallel programming.
In Proc. of the IFIP Congress 74, 1974.

[9] J. Kim and M. Orshansky. Towards formal probabilistic power-
performance design space exploration. In Proceedings of the 16th ACM
Great Lakes symposium on VLSI. ACM, 2006.

[10] J. Knowles. Parego: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation, 10(1), 2006.

[11] G. Mariani, A. Brankovic, G. Palermo, J. Jovic, V. Zaccaria, and
C. Silvano. A correlation-based design space exploration methodology
for multi-processor systems-on-chip. In Proceedings of the 47th Design
Automation Conference (DAC). ACM, 2010.

[12] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid design
space exploration of heterogeneous embedded systems using symbolic
search and multi-granular simulation. SIGPLAN Not., 2002.

[13] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere. Daedalus: Toward composable mul-
timedia MPSoC design. In Proc. of the 45th ACM/IEEE Int. Design
Automation Conference (DAC ’08), 2008.

[14] H. Orsila, E. Salminen, and T. D. Hämäläinen. Parameterizing simulated
annealing for distributing kahn process networks on multiprocessor socs.
In Proc. of the Int. Conference on System-on-chip, pages 19–26, 2009.

[15] G. Palermo, C. Silvano, and V. Zaccaria. Respir: a response surface-
based pareto iterative refinement for application-specific design space
exploration. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28, 2009.

[16] A. D. Pimentel, C. Erbas, and C. Polstra. A systematic approach to
exploring embedded system architectures at multiple abstraction levels.
IEEE Trans. Comput., 55(2):99–112, 2006.

[17] R. Piscitelli and A.D. Pimentel. Design space pruning through hybrid
analysis in system-level design space exploration. In Proceedings of the
Int. Conference on Design, Automation, and Test in Europe (DATE’12),
2012.

[18] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and
software design methodology for embedded systems. IEEE Des. Test,
18, 2001.

[19] T. Taghavi and A.D. Pimentel. Design metrics and visualization
techniques for analyzing the performance of moeas in dse. In Proc. of
the 11th Int. Conference on Embedded Computer Systems: Architectures,
MOdeling and Simulation (SAMOS ’11), 2011.

[20] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary
algorithms - a comparative case study. In Proc. of the 5th International
Conference on Parallel Problem Solving from Nature, 1998.

