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Abstract—Today’s multi-processor system-on-chip (MPSoC)
systems increasingly have to deal with dynamically changing
application workload scenarios. To cope with such dynamic appli-
cation behavior, these systems could dynamically adapt the map-
ping of application tasks onto the underlying system resources to
improve the system’s performance. However, such performance
improvement comes at the cost of a system reconfiguration
in which application tasks may have to be migrated between
processors. This trade-off implies that reconfiguring the system
is only beneficial when the performance gains outweight the re-
configuration overhead. To address this problem for MPSoCs, this
paper presents a scenario-based run-time resource management
framework with the ability of adaptivity throttling that uses the
history of application scenario execution behavior to predict the
actual benefit of a system reconfiguration to allow for explicitly
deciding (at runtime) whether or not to reconfigure. Experimental
results reveal that our proposed approach substantially improves
the system’s efficiency as compared to MPSoCs that do not
provide such intelligent reconfiguration control.

I. INTRODUCTION

Due to the ever-increasing performance demands of mod-
ern embedded applications, the use of heterogeneous MPSoC
systems has become increasingly popular in the embedded
systems domain. Today’s MPSoC systems often require sup-
porting an increasing number of applications and standards,
where multiple applications can run simultaneously. For each
single application, there may also be different execution modes
(or program phases) with different requirements. As a con-
sequence, the behavior of application workloads executing
on the embedded system can change dramatically over time.
Here, one can distinguish two forms of dynamic application
behavior: inter-application dynamism and intra-application dy-
namism, which are often captured using scenarios [7], [2].
This means that there are two different kinds of scenarios:
inter-application scenarios describe the simultaneously running
applications in the system, while intra-application scenarios
define the different execution modes for each application. The
combination of these inter- and intra-application scenarios are
called workload scenarios, and specify the application work-
load in terms of the different applications that are concurrently
executing and the mode of each application. The change of
workload scenarios over time on a certain MPSoC system
typically depends on environmental behaviour, such as initiated
by a user.

The mapping of application tasks onto the underlying
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system resources plays a crucial role in achieving high per-
formance in MPSoC systems. The performance of a workload
scenario may vary greatly among different mappings. To
enable MPSoC systems to support the application dynamism
more efficiently, a state-of-the-art solution would provide a
light-weight resource scheduler that allows for reconfiguring
the system at run time based on pre-optimised system config-
urations, such as task mappings, derived at design time [6],
[18], [14], [10], [9], [16]. This type of methods can be divided
into two stages. The first stage is the design time preparation
which determines one or multiple system configurations for
each possible scenario that may appear on the target system.
For example, these configurations could be different task
mappings optimizing the system for e.g. performance and/or
energy consumption. The second stage is the run-time stage
in which a resource scheduler chooses the appropriate system
configuration from the pre-optimised configurations based on
the current active workload scenario on the system.

However, these dynamic MPSoC solutions typically always
try to reconfigure the system when a new workload scenario
has been detected and, doing so, they do not explicitly take
the reconfiguration costs into account. These reconfiguration
costs may be substantial as they include the overhead of
application tasks that may need to be migrated between
different processors in the MPSoC. Especially in the case
where the duration of a certain workload scenario is not long
enough (i.e., different workload scenarios appear after each
other with a relatively high frequency), such overheads may
easily eliminate the benefits of reconfiguring the system: the
reconfiguration itself may take longer than the performance
gain that is obtained after reconfiguration. Therefore, this
paper presents a novel run-time management framework that
tries to predict whether or not reconfiguration of the system
actually is beneficial. In this paper, we refer to this ability
as adaptivity throttling. To make a good trade-off, we need
to be able to predict the potential performance benefits and
costs of a specific system reconfiguration. Here, especially
predicting the performance benefits is challenging because this
also entails predicting the duration of workload scenarios. For
this purpose, we use an approach in which the history of
application scenario execution behavior is stored to predict
future scenario execution behavior. Experimental results reveal
that our approach is able to clearly improve the system’s
efficiency as compared to MPSoCs that do not provide such



intelligent reconfiguration control.

The remainder of the paper is organized as follows. Sec-
tion II discusses some prerequisites, after which Section III
provides a detailed description of our approach. Section IV
presents the experimental environment and the results of our
experiments. Section V discusses related work, after which
Section VI concludes the paper.

II. PREREQUISITES

As introduced in the previous section, we use the concept
of scenarios to capture application dynamism. A workload sce-
nario is defined as one combination instance of the execution
mode of target applications. Here, we denote S as the set of
all possible workload scenarios for the target applications. For
a number of n target applications where each application has
m execution modes, the total number of workload scenarios
in §is (m—+1)"—1. In each workload scenario s; € S,
the application tasks and communications between tasks are
described as a directed graph G; = (T,C) where T is the set of
tasks in scenario s; and C represents the set of communication
channels between any pair of communicating tasks.

In this work, we restrict ourselves to heterogeneous MPSoC
architectures with shared memory. An architecture can be
modelled as a graph MPSoC = (PE,M), where PE is the set
of processing elements used in the architecture and M is a
multiset of pairs m;; = (pe;,pe;) € PE x PE representing a
buffered communication medium between processors pe; and
pej, composed of a network channel (Bus or NoC) and a buffer
located in shared memory. We note, however, that our proposed
approach is not limited to the architecture we assume here.

The task mapping defines the binding of the components in
a workload scenario (tasks and the communication channels)
to the underlying architecture resources. Given a workload
scenario and a target MPSoC, a correct mapping is a pair
of unique assignments (u: 7 — PE, n: C — M) such that it
satisfies Ve € C,sre(n(c)) = u(sre(c)) Adst((c)) = p(dst(c)).
For each workload scenario s; € S, the possible task mappings
are denoted as TM; with each single mapping tm! € TM;
complying with the mapping constraint. In this work, we
assume that the task mapping of applications on the target
system can only be changed by task migration.

Our target applications belong to the domain of streaming
applications (like multimedia applications) that continuously
process an incoming stream of data elements. To capture the
duration of a workload scenario in this case, we use the concept
of scenario frames. Here, we define one scenario frame as
the time it takes for each active application within a specific
workload scenario to process a single unit (frame) of data (e.g.,
processing a single MP3 frame, an H264 frame, etc.). This
means that the frame execution time p{ of a workload scenario
is defined as the maximum of frame execution times of all
active applications within the scenario:

p,! = max(péppk) (1

where pjpp, represents the frame execution time of applica-

tion app; that is active in scenario s; under mapping tm{ .
Consequently, the total execution duration of scenario s; under

mapping ¢m! is calculated as p! xn; where n; is the number of
scenario frames executed on the system.

When a new workload scenario has been detected, this
means that one or more applications may have stopped and/or
new ones have started. Here, we assume that when a new
application is started, it is added to the system using a pre-
determined, default task mapping. Given a newly detected
scenario, the complete task mapping of those applications that
persist in the new scenario and any newly added applications
needs to be reconsidered. Remapping of the application tasks
in the newly detected workload scenario can be beneficial
performance wise (i.e., every workload scenario has an optimal
task mapping) but this depends on both the actual performance
gain of reconfiguring the system and the reconfiguration costs.
The reconfiguration costs include two parts: 1) the overhead of
the resource scheduler which includes the time of finding a new
mapping and making a reconfiguration decision, and 2) the task
migration cost that may occur during system reconfiguration.
Here, we denote the reconfiguration costs for scenario s; to

-/ -/
change from mapping tm! to tm! as ¢!/, which includes
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the time of finding the new mapping tm{/ and making the
reconfiguration decision for the new mapping. This implies
that the system reconfiguration benefit B can now be expressed
as: . . L

B=(p!—pl)xn—cV’ )
Our objective is to maximize the system performance for
a sequence of workload scenarios . This means that we
want to maximize the total system reconfiguration benefit
Ys.cs bi* By, where by € {0,1} is the migration decision
made by the run time scheduler and By, is the reconfiguration
benefit of workload scenario s; € S’. Obviously, the solution
to this problem is by =0 if By <=0 and by =1 if By > 0.
Consequently, to achieve our objective, the system needs to
correctly predict the system reconfiguration benefit B for each
workload scenario.

III. RUN-TIME TASK MAPPING
A. Design-time Preparation

To achieve the objective of run-time adaptivity for our
target MPSoC system, a design-time preparation stage is
needed to provide the necessary information for the run-time
manager. For each possible workload scenario, the optimal
mapping needs to be found at design time. To this end, we have
deployed a so-called scenario-based design space exploration
(DSE) approach [17]. As this design-time DSE stage is not the
main focus of this paper, we refer the interested reader to [17]
for further details. The design-time DSE yields a performance
optimised mapping for each workload scenario, which are
stored in system memory for run-time usage.

To determine the performance gain of reconfiguring the
system (remapping application tasks) versus keeping the cur-
rently active mapping in case of a newly detected workload
scenario, we must know the performance of both the current
mapping and the pre-optimised mapping of the newly detected
scenario. In this work, we assume that these two performance
numbers have also been determined at design time and are
stored in system memory. This means that the frame execu-
tion time of each workload scenario under its pre-optimised



mapping (as found by design-time DSE) is stored. Moreover,
we assume that we also have a look-up table (generated
at design time) to determine the performance of a newly
detected scenario under the old mapping of the previously
active application scenario. Evidently, to avoid the relatively
large memory overheads of such look-up tables, we intend to
study light-weight run-time mapping performance prediction
techniques in the future. Finally, we also statically store the
size of data that needs to be migrated during task migration for
every task in all target applications for the run-time prediction
of migration costs.

B. Run-time Resource Reconfiguration

To construct the adaptive resource scheduler as introduced
before, the problem that needs to be solved is to correctly
predict the system reconfiguration benefit B. It consists of

. -
three parts: the per/formance improvement p{ — p{ , the recon-

figuration cost ¢’ and the workload execution duration n;.
These three parts are unknown before the system reconfigura-
tion. Thus, prediction models should be used to determine a
reconfiguration decision based on the benefit B. In this paper,
we mainly focus on the prediction of the workload scenario
duration n;.

1) Mapping Performance Prediction: As explained in the
previous section, the performance of each workload scenario
under the mappings derived at design time are stored on the
system. In this case, the run-time scheduler does not need to
dynamically predict the performance of workload scenarios
which saves additional overhead, at the cost of additional
design-time preparation and the system storage needed for
storing the performance information.

2) Reconfiguration Cost Prediction: The reconfiguration
cost of our target MPSoC consists of two parts: the overhead
of the resource scheduler and the task migration cost during
system reconfiguration. When a new workload scenario is
detected, the system scheduler will first determine a new
mapping (in our case the stored pre-optimised mapping) for
this workload scenario, and then make a reconfiguration de-
cision. The overhead of these two steps can be determined
by means of measurements. However, the other part of the
reconfiguration cost, the cost of task migration, should still be
predicted. As mentioned before, the amount of data that needs
to be migrated between processors for each task is known
at design time. Subsequently, we use a simple linear analytic
model for the migration cost:

CMig = ( Z ms;)/ Fmem 3)

[iETmig

where T, is the set of migrating tasks, ms; represents the
amount of migrating data for task #;, and 7y, is the memory
access speed. This model is based on two assumptions: the
migrating data is transferred via the MPSoC’s shared memory
and the resource scheduler sequentially controls task migra-
tions.

3) Reconfiguration Decision Prediction: For a newly de-
tected workload scenario s;, the potential performance im-
provement due to system reconfiguration can be calculated by
using the stored mapping performance information that was de-
rived at design time. Combining the performance improvement
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Figure 1: ASMM example with 3 history samples.

and the (predicted) system reconfiguration cost, the scheduler
can determine a lower bound bn; for the execution duration of
this workload scenario:

b=l /(p] —p]) )

According to the derivation in Section II, one can easily see
that the system should be reconfigured only if the execution
duration of s; is larger than bn; (B > 0). In this work, we
propose an Accumulated Statistical Metric Model (ASMM),
which is based on the Statistical Metric Model (SMM) [13],
to predict the scenario execution duration. The SMM is a
probability distribution over application patterns of varying
length. It models the conditional distribution on the identity of
the i —th (quantized) sample given the identities of all previous
(quantized) samples in a metric sequence. The difference
between our ASMM and the original SMM concerns the way
of how the prediction value is generated, as will be explained
below.

Using our ASMM, we build a metric model based on the
probability distribution of scenario execution duration for each
workload scenario, which means each workload scenario has
its own ASMM. When a new workload scenario is detected, the
system scheduler uses the ASMM of this workload scenario to
predict its duration. Figure 1 gives an example of the ASMM-
based prediction of a reconfiguration decision when using
3 history samples. In our problem, the samples of scenario
execution duration are measured in the number of frames (F).
These frame numbers are quantized using a limited number of
bins (or ranks) to reduce the complexity of our predictor, see
the upper part of Figure 1 for an example. The lower right
part of Figure 1 shows a simple instance of our ASMM. It



includes three kinds of tables: the execution duration history
tables, duration prediction tables and tables with probabilities
for all possible duration predictions. The first two types of
tables store rank numbers. The width and depth of the history
tables usually determine the prediction ability of the ASMM
and should be set based on the target problem. At the end of
a workload scenario, all tables of the workload scenario are
updated according to its actual execution duration. We refer the
interested reader to [13] for further details about (A)SMMs.

To illustrate the ASMM-based reconfiguration decision,
please consider the lower left part of Figure 1. The input
of our ASMM is the (quantized) execution duration sample
history (top of Figure 1) of the detected scenario and the
duration bound bn;. According to the detected workload sce-
nario, the corresponding ASMM will be used to determine
the reconfiguration decision. In our example, the ASMM first
checks the history table with 3 history samples to see if there
is a pattern match regarding the scenario’s duration history.
If there is no match, like in the case of our example, the
ASMM will continue to search the history tables with a
smaller width of history samples (i.e., using a shorter history).
This process continues until there is a history pattern match
or it ends up at the direct duration prediction without any
execution duration history (the table at the bottom of the
ASMM in Figure 1). In both cases, the duration bound bn; is
compared with all the possible duration prediction values and
for those prediction values bigger than bn; their probabilities
will be accumulated: hence the name Accumulated SMM. This
accumulated probability represents the chance of B > 0 if the
system is reconfigured for this workload scenario. Only if the
accumulated probability is larger than the probability bound
bp (set by the designer), the ASMM will return a positive
reconfiguration decision. In our example, the probability bound
bp is set to 50%.

IV. EXPERIMENTS
A. Experimental Setup

To evaluate the efficiency of our proposed run-time adap-
tive resource scheduler, we deploy the system-level MPSoC
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Figure 2: Workflow of run-time adaptive resource scheduler.

simulation framework from the work of [11] which is based
on the open source Sesame simulator [8]. This Sesame-based
modeling and simulation environment facilitates efficient per-
formance analysis of embedded (media) system architectures.
The most important feature of this simulator for this work
is its ability to support the simulation of run-time system
reconfiguration of MPSoC systems. We have extended this
simulator with our run-time resource scheduling framework
such that it includes a Scenario DataBase (SDB), a Run-time
System Monitor (RSM) and a Run-time Resource Scheduler
(RRS). The SDB is used to store the task mappings as derived
from design-time DSE as well as the mapping performance
information of each workload scenario and the migrating data
size of each task. The RSM is in charge of detecting and identi-
fying the active workload scenario, and also collects statistics
(e.g., the actual execution duration of a workload scenario)
from the underlying system during the execution of a certain
workload scenario. To detect and identify workload scenarios
in our Sesame simulation framework, we need to instrument
the source code of target applications with scenario related
events such as STARTSCENARIO and ENDSCENARIO. When
a processing element in a Seseme system model encounters
a STARTSCENARIO event of an application, it will register
this application with its execution mode information in the
RSM to notify that a new application has started execution
on the system. Similarly, for an ENDSCENARIO event of
an application, the processing element will unregister the
application in the RSM. According to the registered application
information in the RSM, the active workload scenario on the
target system can be identified. The RRS uses our proposed
approach to do resource reconfiguration for the identified
workload scenario. As the function of the RRS is performed
on a CPU, we can determine the overhead of finding the pre-
optimised mapping and making a migration decision (including
the cost of updating the information in the scenario duration
predictor) using the CPU timer. This cost is then normalized
with respect to the simulator’s frequency to get the final
reconfiguration cost.

Figure 2 illustrates the workflow of our adaptive run-time
MPSoC system. In our target MPSoC system, when the RSM
detects a new workload scenario, the RRS obtains the pre-
optimised mapping for the current active scenario from the
SDB. Hereafter, the RRS makes a reconfiguration decision
based on the reconfiguration benefit B of changing the current
mapping to the new mapping. According to this decision, the
RRS will either reconfigure the system based on the new
mapping or continue the system’s execution under the current
mapping. When the current workload scenario finishes, the
RRS updates the information in the corresponding ASMM
based on the actual execution duration collected by the RSM.

As the actual functionality of the applications is not impor-
tant in our experiments, we use five synthetic streaming ap-
plications to simplify the simulation process. Each application
contains only 1 execution mode. In this case, the total number
of workload scenarios is 31 (25 —1). The number of tasks in
each application ranges from 4 to 8. We assume that each task
can be executed on each processor of the target MPSoC using
the corresponding pre-compiled code (stored in the shared
memory). The task execution time and migration data size of
each task on each processor have been randomly generated
and range between 10,000 and 100,000 time units (simula-
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tion cycles) and between 50K and 500K Bytes respectively.
Communications between tasks range from 1,000 to 10,000
Bytes in size. Regarding the target architecture, we target a
heterogeneous MPSoC containing 5 different processors with
different computational characteristics, connected to a shared
bus and memory.

To model dynamic application behavior over time (e.g.
due to user behavior), we generate three workload scenario
sequences. These sequences are generated in two steps. The
first step is to choose a workload scenario from the total
31 workload scenarios considered in our experiment. Each
workload scenario has the same probability to be selected.
The second step is to generate the duration in frames of
the selected workload scenario. This process iterates until
a pre-defined total frame number (100,000 frames in our
case) has been achieved for the scenario sequence. As the
workload scenarios considered in our test case need around
40 frames on average to neutralize the reconfiguration cost,
we limit the duration of each workload scenario to a value
between 1 and 80 frames. Here, the reason of limiting the
duration of a workload scenario in the range of 1 to 80 is
that our simulated system is very sensitive when the scenario
execution duration is around 40. If the execution duration of
each workload scenario would be very large, then we would
not need to use our proposed adaptivity throttling technique
anymore and just alway reconfiguring the system when a
scenario changes. In our three scenario sequences, the duration
of each workload scenario and frequency of changes to this
duration are generated using different distributions as shown
in Figure 3. Here, the x-axis represents the nth appearance
of one specific workload scenario and the y-axis represents
the execution duration in frames for that particular appearance
of the workload scenario. In the longterm distribution, the
duration of a workload scenario is either long or short and does
not frequently change, whereas in the shortterm distribution
the scenario execution duration does frequently change. Like
in shortterm, the frequency of changes in the prob distribution
is high but the actual scenario execution duration now has
been generated from the following probability distribution:
1—30%, 11—10%, 21—10%, 31—+10%, 41—+10%, 51—10%,
61—10%, 71—10%. That is, a workload scenario has a
probability of 30% that it will be executed for only 1 frame
and 10% for each of the other duration times.

With regard to the parameters of our ASMM, the maximal
width and depth of the ASMM table is 4 (2-history, I-
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prediction and 1-probability) and 1024 respectively, which is
large enough for our test cases. The probability bound bp for
our ASMM is 50%. This will not lead to either a pessimistic
or aggressive decision. As we limit the scenario execution
duration from 1 to 80 frames, we divide the scenario execution
durations into 8 bins/ranks in our ASMM, each containing a
frame range of 10.

B. Experimental results

In the first experiment, we compare the scenario execution
time (including the run-time reconfiguration cost) of each of
the three workload scenario sequences under four resource
scheduling approaches. The first approach (ALMIG) is execut-
ing each workload scenario under its pre-optimised mapping
stored in the SDB. This means that the run-time scheduler
will always reconfigure the system based on the pre-optimised
mapping whenever a new workload scenario appears. The sec-
ond approach (STATIC) is executing all the workload scenarios
under a single pre-optimised mapping that has been optimised
to work best — on average — for all workload scenarios. In
STATIC, no system reconfiguration takes place. The third
approach (ASMM) uses our ASMM-based run-time adaptive
resource scheduler. Finally, as a baseline, we also compare
to the ideal case (OPT) that applies ALMIG but for which
all run-time reconfiguration costs have been discarded. At the
beginning of each simulation, the target system is initialised
by the mapping of the STATIC approach.

Figure 4 shows the results of the scenario execution time of
the first 100 appearances of a single selected workload scenario
in our three workload scenario sequences. Clearly, in all cases
the OPT approach performs best, and STATIC performs worst
in those cases where the system should have been reconfigured.
We can also see that the scenario execution time is influenced
by the reconfiguration cost. For example, consider the bot-
tom parts of the three graphs, i.e., small scenario execution
durations. Here, one can clearly see that ASMM consistently
outperforms ALMIG since the latter is negatively affected by
the reconfiguration overhead whereas our ASMM approach is
not because it predicted that reconfiguration is not beneficial.
For larger scenario execution durations (top parts of the three
graphs), the performance of ALMIG and ASMM is similar
(i.e., they both reconfigure the system).
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Figure 6: Performance of different resource scheduling tech-
niques in two prob scenario sequences.

In the second experiment, we compare the total execution
time of each workload scenario sequence under our adaptive
resource scheduler with different scenario duration predictors.
We compare three application behaviour predictors to our
ASMM approach: a Last Value predictor (LV), a Table-Based
predictor (TB) [5] and the original SMM [13]. For a fair
comparison, the parameters used for TB and SMM are the
same for ASMM. Figure 5 shows the results of this experiment.
In this figure, the total scenario execution time is normalized to
the ALMIG approach. As one can see, in the longterm case,
all predictors show a good performance as they are all able
to accurately predict the execution pattern. For the shortterm
distribution, the LV predictor shows a poorer performance
improvement. This is mainly because of a high prediction error
(nearly 100%) of the LV predictor in this distribution. In the
prob test case, our ASMM predictor clearly outperforms the
other three predictors. This is because the scenario execution
does not have a fixed pattern anymore which induces a high
prediction error for the LV and TB predictors. Compared
with the SMM predictor, our ASMM uses the accumulated
probability to determine a reconfiguration decision, which
increases the chance of making the right decision when recon-
figuration is actually needed. Among these predictors, the LV
predictor needs the least system memory (only the last value)
to record the execution history of a workload scenario. The
SMM/ASMM predictor consumes the most system memory
which will be introduced in the last part of this section.

Where the longterm and shortterm scenario sequences
more or less reflect extreme cases in workload scenario be-
havior, the prob sequence possibly exhibits a more realistic
view on dynamic behavior in application workloads. Therefore,
we focus on the prob case in the third experiment. Figure 6
shows the total execution time of executing all workload
scenarios in the entire scenario sequence for two instances
of the prob scenario sequence: in the s-prob sequence, 70%
of all scenarios has a short duration of less than 40 frames
(note that our test cases need around 40 frames on average
to neutralize the reconfiguration cost), whereas the [-prob
sequence contains only 40% of scenarios with a short duration.
In the s-prob and [-prob scenario sequences, the average
execution duration of scenarios is approximately 30 and 60
frames, respectively. This explains why the ALMIG approach
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Figure 7: Performance comparison of resource scheduling
approaches under different execution duration for a certain
workload scenario.

performs worse than STATIC for the s-prob scenario sequence,
as shown in Figure 6. However, when the average scenario
duration is large enough, such as in [-prob, an approach such
as ALMIG starts to perform better than STATIC. Note that the
gap between ALMIG (or ASMM) and STATIC will become
larger with an increasing average scenario duration. ASMM
shows good behaviour for both cases because its ability to
avoid unnecessary system reconfigurations. In the case of s-
prob, only the static mapping approach works slightly better
than ASMM as the former approach does not suffer from any
run-time overheads. As the average execution duration in these
two scenario sequences is fairly small, the percentages of
performance improvement of ASMM comparing with ALMIG
and STATIC are relatively low. However, we should stress
that the task migration enabled approaches, i.e., ASMM and
ALMIG, will show better performance with the increasing of
average scenario execution duration as shown in Figure 7. This
figure gives the performance results of executing a workload
scenario with different scenario duration (scenario frames)
under the above mentioned scheduling approaches. In the
ultimate case, the performance of ASMM and ALMIG will
very close to OPT.

The overhead of our approach involves the run-time com-
putational overhead and the system memory consumption.
Comparing the scenario execution time of ASMM and STATIC
in the bottom part of each figure in Figure 4, we can see
that the ASMM results are close to those for STATIC. This
means that the run-time overhead of our approach (hundreds
of thousands cycles on a 2.1GHZ CPU) does not have a
major impact on system performance. Regarding the run-
time system storage consumption, we store all the design-
time prepared information (pre-optimised mappings and ap-
plication/architecture information) in the shared memory. For
storing the pre-optimised mappings, we assume that the map-
ping information of each task and each communication channel
between tasks can be stored in one byte. Each piece of
application/system information needs one word of system
memory and each history scenario duration is encoded using
one byte. Under these assumptions, our approach needs 880
bytes and 920 bytes for storing the total of 31 mappings
and the application/architecture information, respectively. The

memory consumption of pre-optimised mappings is related to
the number of possible workload scenarios and the number of
tasks in each workload scenarios. And the memory usage for
storing the detailed scenario and architecture information is
dependent on the number of application tasks and processing
elements. Besides storing these types of information, we also
need to record the execution history of workload scenarios
in the ASMM predictor. The memory usage of our ASMM
predictor is dynamic and based on the execution pattern of
workload scenarios. In the worst case, for each ASMM with
the parameters considered in our experiments, it needs 584
bytes to record all possible patterns. As we have 31 possible
workload scenarios in our experiments, the total memory
consumption of all ASMMs is 18104 bytes. The memory usage
of each ASMM will, however, increase exponentially with the
width of history tables and the number of bins divided for
recording scenario execution duration. This problem will be
addressed in our future work.

V. RELATED RESEARCH

In recent years, much research has been performed in the
area of run-time task remapping for embedded systems to
achieve better performance or save energy consumption. In
these efforts, a hybrid task mapping approach is commonly
used which combines a design-time preparation stage with a
run-time dynamic mapping policy to perform task reallocation.
For example, Mariani et al. [6] propose a run-time management
framework in which Pareto-fronts with system configurations
for different applications are determined during design-time
DSE, after which heuristics are used to dynamically select a
proper system configuration at run time. In [18], a fast and
light-weight priority based heuristic is used to select near-
optimal configurations explored at design time for the active
applications according to the available platform resources.
[16] proposes DSE strategies that perform exploration to
optimize throughput and energy consumption by considering
a generic platform in which design points derived by DSE
are selected efficiently at run time. In [15], Schranzhofer et
al. propose static and dynamic task mapping approaches for
probabilistic applications based on static and dynamic power
components. Statically pre-computed template mappings for
each execution probability are stored on the system and
applied at run time, allowing the system to adapt to changing
environment conditions. Based on this work, [4] presents an
extension that considers only the static mapping and takes
into account the communication and reconfiguration energy
component. Schor et al. [14] and Quan et al. [10], [12] also
propose scenario-based run-time mapping approaches in which
mappings derived from design-time DSE are stored for run-
time mapping decisions. However, in these approaches, none of
them consider the problem of whether the system will actually
benefit from the system reconfiguration when e.g. the system
workload changes frequently.

Sarikaya et al. [13] proposed an SMM to predict the run-
time application behavior, and applied this technique to an
adaptive dynamic power management scheme. In our work,
we modified their SMM to predict the duration of workload
scenarios in our adaptive run-time framework. In [1], user
behavior information is used to adapt the strategy used for
resource allocation at run time. Based on the user behavior,
an online machine learning model predicts which kind of



communication contention should be minimized on a NoC-
based MPSoC. The authors of [3] propose a customer-aware
task allocation and scheduling for MPSoCs. At design time,
an initial task allocation and scheduling solution (TAS) to
optimize energy consumption and system lifetime for each
execution mode is generated. At run time, they conduct online
adjustment of the TAS based on the processor usage history
to guarantee the lifetime reliability and/or reduce the energy
consumption. Different to these works, we use the user system
execution history to control the task allocation process.

VI. CONCLUSION

To increase the efficiency of MPSoC systems, we have pro-
posed a run-time adaptive resource scheduler that reconfigures
the system based on past and future (predicted) application
workload behavior. At design time, we explore performance
optimal task mappings for different workload scenarios. These
pre-optimised mappings are used at run time by the resource
scheduler to reconfigure the system resources. The decision of
whether or not to reconfigure is made based on the scenario
execution pattern. By using the proposed approach, the system
can adapt its behavior according to e.g. user behavior. Exper-
imental results confirm the effectiveness of our approach.
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