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Abstract. Software performance anomaly detection is a major chal-
lenge in complex industrial cyber-physical systems. The automated com-
parison of runtime execution metrics to reference ones provides a poten-
tial solution. We introduce the concept of software passports, intended
to act as a signature construct for runtime performance behaviour of
reference executions. Our software passport design is based on Extra-
Functional Behaviour (EFB) metrics. Amongst such metrics, our focus
has been especially on CPU time, read and write communication event
counts of different processes. The notion of phases for systems with repet-
itive tasks during their execution and its fundamental role in our software
passports has also been elaborated. We employ regression modelling of
our collected data for comparative purposes. The comparison reveals in-
consistencies between the execution at hand and the software passport,
if present. Such inconsistencies are strong indicators for presence of per-
formance anomalies. Our design is capable of detecting synthetically in-
troduced performance anomalies to the real execution tracing data from
a semiconductor photolithography machine.

Keywords: Software passports · Performance anomaly detection · In-
dustrial cyber-physical systems · Regression modelling.

1 Introduction

There has been an increasing dependence on complex embedded systems within
the industry. As every generation of microprocessors becomes more capable and
more power-efficient than its predecessor, embedded nodes are deployed more
than ever. Capabilities of embedded, i.e., purpose-built, computing power has
allowed companies to develop increasingly complex systems involving heteroge-
neous elements, such as hardware architectures and operating systems, as well
as many connected nodes. One major concern for any computing system is the
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occurrence of performance anomalies. These anomalies may be short-lived with
negligible effects, may be constantly reoccurring and affecting the system, or may
lead to an unresponsive state. Whichever the case, for anomalies to be avoided,
there is a need for anomaly detection.

The analysis of performance behaviour and anomaly detection has become
more and more time consuming, considering the sharp increase in the complex-
ity of industrial cyber-physical systems. It is difficult to pin-point the actual
anomaly, when it is happening, and where it is happening. This translates to
increased number of costly downtimes for the types of systems involved in high-
tech industry, e.g., a semiconductor photolithography machine.

It is our intention to tackle this challenge by developing methods and tools, fa-
cilitating automated monitoring and management of Extra Functional Behaviour
(EFB). In this context, EFB are the collection of behavioural metrics of a sys-
tem, which are not part of its functional description, i.e., EFB are not encoded in
software. However, there is an intimate dependency relationship between func-
tional and non-functional behaviour, such that the non-functional behaviour is
a consequence of the combination of functional behaviour, plus applied environ-
mental variables. Input data is considered as an environmental variable as well.
Examples of EFB metrics are CPU utilisation, occupied memory size, read and
write frequencies, message sizes, delays, and lifetimes, amongst others. Through-
out this paper, we will be considering CPU time, number of read events, number
of write events, as well as durations of events and process executions as our main
metrics to explain methods and demonstrate findings.

It is imperative to have mechanisms for anomalous performance behaviour
detection in complex industrial cyber-physical systems, more than conventional
computing systems. Any unexpected performance behaviour collected from the
software portion of an industrial cyber-physical system is a strong indication of
the whole system behaving outside its anticipated boundaries. In other words,
the reliability of the whole system, depends on the reliability of its software.
This is not an easy task. However, considering the operational specificities of
these systems, there are angles to be exploited. Such types of systems are highly
repetitive in the tasks they perform by definition. For instance, a semiconductor
photolithography machine is designed to perform collections of tasks over and
over for a large number of wafers. Another example is a radar system, applying
same object detection workflows and algorithms over and over. It would be a gen-
erally valid expectation to have similar EFB metric values during the execution
of similar tasks, as long as the system is performing correctly. This knowledge
will serve us as a precursor to developing reference executions and EFB metric
readings, to be compared with future ones. Such repetitive nature will allow us
to divide the execution in compartments and consider clear and separate parts.

To be able to detect deviations from the expected performance behaviour,
there is a need for comparative analysis of monitored performance behaviour
against reference ones. We introduce software passports as a representation of
these references. Software passports can be considered in two types, static and
dynamic. Further analysis will also provide clear insights regarding the process
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or processes responsible for anomalous behaviour, as well as their contribution,
since our software passport design includes separate regression models per every
process involved in the execution. This root cause identification may be done
in an automated fashion, if the comparison results are fairly clear-cut. We can
summarise a high-level view of our approach towards anomaly detection using
software passports in Fig. 1, including the optional analysis for identification
of the root cause and a possible actuation step to rectify the issue. The whole
workflow is to be continuously repeated. Our main focus in this paper has also
been highlighted in the figure.

Online 

monitoring
Detection Identification Actuation

Analysis

Fig. 1. The high-level view of our anomaly detection workflow, including the optional
analysis for identification and this paper’s main focus (highlighted in yellow)

Aside from the software passport’s definition and its varieties, we provide
the experimental results of our early prototype. We compare software passports
generated based on reference runs, against executions involving deliberately in-
jected anomalies. The following section provides background information and
our industrial use-case. Section 3 describes our software passport design, contin-
ued by a description of our methodology in Sect. 4. After elaborating achieved
experimental results in Sect. 5, we provide related work and our conclusions in
Sect. 6 and Sect. 7, respectively.

2 Background and industrial use-case

The notion of performance anomaly is especially important for industrial embed-
ded systems, as it is critical for these systems to deliver the functionality when
it is being demanded. For instance, a semiconductor photolithography machine
is designed to deliver a certain production yield and it has to fulfil such require-
ments, ideally at all times.

2.1 Performance anomalies

Before we continue, let us first define what performance anomalies and faults
are. A performance anomaly is any readily detectable deviation in the system’s
performance behaviour. For instance, if a computational job takes significantly
longer than it should to be fulfilled, a performance anomaly has occurred. Detect-
ing the actual fault causing the performance anomaly however, requires insight
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and analysis of the internal interactions of the system. As such, a performance
anomaly is the result of a fault, but at the same time, not all faults will neces-
sarily lead to a performance anomaly, as performance behaviour also depends on
environmental variables. Accordingly, we define two types of anomalies, namely,
transient and persistent anomalies.

Transient anomalies A transient anomaly is visible for a short period of time,
or occurs only a few times. In such cases, either the fault is a short-lived one, or
its impact to the overall execution is rather contained. For instance, with regards
to timeliness, transient anomalies could be seen as delayed tasks in a contained
part of the execution timeline.

Persistent anomalies In contrast to transient anomalies, a persistent anomaly
is of the type that either will keep reoccurring, or will create cascading delays for
all onwards tasks. This could be because of, for instance, dependencies between
tasks. The overall cost to the execution is higher for such anomalies. Figure 2 de-
picts conceptual representations of transient and persistent anomalies alongside
the comparison of their effect on the execution time. This is a rather simplified
example and intends to convey the definitions of introduced constructs.
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Fig. 2. The impact of transient and persistent performance anomalies in systems with
repetitive tasks

2.2 Industrial use-case

Our industrial use-case and the primary source of our data is ASML’s semicon-
ductor photolithography systems. These systems are typical examples of com-
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plex heterogeneous cyber-physical systems. They involve many computing nodes
with different hardware architectures, running different operating systems and
communicating via different messaging subsystems. Still, there is a close interde-
pendency amongst different computing nodes, making these systems highly sen-
sitive to untimeliness. In short, it is highly important to assure timely behaviour
of different cyber elements in these cyber-physical systems, detect performance
anomalies, and possibly react to them. We would like to reiterate that the most
important criteria to be fulfilled here is the timeliness of different machine tasks,
performed by multiple processes.

3 Software passports

Our software passport design is intended to act as a reference for executed pro-
cesses to be compared against. Software passports include EFB metric recordings
from previous executions. We consider two types of software passports, static and
dynamic.

Static software passports Static software passports are generated from previous
reference executions as post-mortem constructs. Any current execution that is
supposed to match a reference one can be compared against the latter’s software
passport. The amount of deviation could potentially reveal performance anoma-
lies. Interactions related to static software passports are depicted in Fig. 3.

CPU

CPU

CPU
Cyber-physical

system

Execution timeline

Comparator

Software

passport DB

Violation?

Execution sampling

Fig. 3. High-level view of static software passports and their usage

Dynamic software passports Dynamic passports as shown in Fig. 4 and as the
name suggests, are created in an online fashion, taking the immediate previous
steps as references to the upcoming ones. That is, initial stages of an execution
involving repetitive tasks could be used for passport generation and the follow-
ing ones will be checked against them. This may also be in combination with
previously generated static passports.
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Fig. 4. High-level view of dynamic software passports and their usage

3.1 Execution phases

With that in mind, let us go through the concept of execution phases. A phase is
considered as the duration in which the system is performing a recognisable and
contained part of its overall job. Remember that we are dealing with a system
that executes repetitive tasks, making the recognisability of phases even more
tangible. Consequently, it is of great importance to capture initiation and termi-
nation of phases correctly. This is even more important for dynamic passports,
as they are generated in an online fashion. Accordingly, a dynamic passport will
detect repetition of phases and will consider the initiating ones as reference for
the upcoming ones. The accurate knowledge of which initial phase, or phases are
to be taken as reference depends on different factors.

At the same time, we consider phases as flexible constructs in the sense that
one can decide how large, or more accurately, how long a phase should be. As an
extreme example, one can consider a full execution from start to end as a single
phase. Obviously, the choice of phase length has a direct impact on the generated
software passport and its utility. Figure 5 shows a depiction of different atomic
phases for different repetitive jobs, as well as larger combo-phases composed of
a repeated pattern of atomic phases.
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To put this into context, consider that a semiconductor photolithography
machine’s jobs are defined as batches of wafers. Each wafer could employ a
different image for die exposure and these batches are all queued up in the
machine’s job queue. One can naively consider a whole queue of wafer batches,
a single batch, a single wafer, or a single image exposure as phases from large to
small, respectively.

A software passport can have different formats. Some of the considerations
influencing this choice are types of collected data, i.e., EFB metrics in our
case; phase structure, i.e., whether the passport is representing combo-phases or
atomic ones; and gaps present in data point sets, i.e., how distant clusters of data
points are from one another. We will mention two possible formats here, a pass-
port including average, maximum and minimum values for a phase dataset, and
a passport including one or more regression models. The immediate advantage
of the latter is its compactness and relative sophistication. For our experiments,
we have considered and built passports using the regression format. Depend-
ing on the distribution of points one can choose different regression modelling
techniques. We have considered linear, multiple linear and polynomial regression
models. Regression models can capture the trend of different metrics over time.

3.2 Data collection

An appropriate way of sampling arbitrary portions of an industrial cyber-physical
system’s performance behaviour is through EFB metrics. EFB metrics provide
extra-functional performance readings of a system’s execution, which are in-
fluenced by both functional behaviour and environmental conditions. Although
EFB metrics provide a complete view over the system, the challenge present here
is the sheer amount of available and collected data for this type of monitoring.

An efficient, but still complete, technique in order to track system behaviour
is to collect monitoring data through major communication subsystems [11,10].
In this method, i.e., communication-centric monitoring, we are planting snippets
as probes in the interface library code of the major communication subsystem.
This library is used by many processes and thus, such an invasive probing allows
us to capture calls from any user of the subsystem and provides us with details
on communication and computation events. Though not a full picture of the sys-
tem’s operation, communication-centric monitoring provides sufficient detail on
performance behaviour trends [11,10]. After applying necessary transformations
on the collected traces, we will end up with traces composed of read, write and
compute events, allowing us to perform a replay simulation.

4 Methodology

To understand our methodology for the experiments involved in this paper, we
have to go through its main building blocks. These are namely, our simulation
environment, our fault injection technique, and our prototype set-up.



8 U. Odyurt et al.

4.1 Simulation environment

The aforementioned replay simulation closely resembles the actual system’s be-
havioural trends and is interchangeable with it. Previously, we have shown [11,10]
the power of communication-centric modelling of cyber-physical systems and
how its deployment can facilitate the performance behaviour analysis of such
systems. This facilitation is mainly about having valid performance trend detec-
tion, while reducing the monitoring effort by considering a smaller active portion
of the system. As a result, a smaller, but impactful part of the system will be
considered for EFB metrics collection, followed by performance trend detection.

Accordingly, collected traces will be used to generate a model of the system,
to calibrate this model for conformance with the actual execution conditions,
and eventually, to run the calibrated model as a replay simulation. The exact
same monitoring performed on the actual system is also present within the replay
simulation. This means that one of the outputs of our replay simulation is tracing
data with the exact same format of the tracing data used for its calibration. That
is how we validated the replay capability of our simulation.

There is also a need for presence of critical states in the system, to be able
to demonstrate the potential of software passports in action. The replay simula-
tion of the system will accept manipulated input to create scenarios resembling
critical states. In other words, the replay simulation is to be used as a generator
of monitoring data for fault injection. Thus, the output of the replay simula-
tion can be considered as tracing data collected from a system with anomalous
performance behaviour. The reason we are using the output of such a replay
simulator and not the actual system for passport generation is that the fault
injection cannot be done on the actual system at this point.

4.2 Fault injection

Fault injection can turn into a vast topic on its own rather quickly. Within the
scope of this paper, we have focused on a specific set of fault injections. As we
have explained before [11,10], events involve process idleness and CPU access
delay. Duration of an event (tE), which is the elapsed time from its initialisation
(tiniE ) till its end (tendE

), is made up of CPU access delay (delayE), CPU time
(compE) and idleness (idleE), such that

tE = tendE
− tiniE = delayE + compE + idleE .

We are considering synthetic increases to the duration of the event (tEsynth
),

which means that we are increasing the combined duration of CPU access delay
(delayE) and idleness (idleE), such that

tEsynth
= compE + (delayE + idleE + delaysynth).

Note that CPU access delay and idleness result from different conditions
and we are not able to distinguish between them using the deployed tracing
mechanism. While CPU access delay is simply a wait before CPU availability,
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idleness could be a result of I/O waits, or functional and data dependencies
to other processes. Nevertheless, our synthetic manipulation of traces does not
depend on the distinction of the two, since we will be adding to the overall delay
of an event, i.e., anything other than compE .

4.3 Prototype set-up

To assess the detection potential of our software passports, we have designed two
experiment workflows, one for generation of software passports, and the other
to demonstrate their usage as a reference. An overview of our workflows can be
seen in Fig. 6.

CPU

CPU

CPU

Data collector Simulator
Passport 

generator

Fault injector Simulator Comparator

Reference static

passport DB

Cyber-physical

system

Data collection

Fig. 6. Software passport generation and fault injection workflows

Passport generation workflow Considering the top flow given in Fig. 6,
the data collector includes our communication-centric tracing techniques and
tools [11,10]. What has been added here is the phase discovery. Each task of the
system involves a number of processes. Considering the repetitive tasks we are
dealing with, as explained in Sect. 3, we are able to detect per process start and
end times for the set of events involved in processing of, in our case, different
wafers. In this case, the detection is based on the dips in the CPU utilisation
graph of the execution. For instance, a batch of ten wafers will have eleven
distinctly observable dips, roughly representing transitions between wafers. This
allows us to clearly separate each wafer’s processing duration as a single phase.

After choosing one of the phases, the data representing this phase, which is
part of the whole reference execution, is used as an input for our replay sim-
ulation. Same metrics are also collected from the simulation as output, which
is extremely close to the real execution. The passport generator will consider
per process cumulative CPU time, cumulative read events, and cumulative write
events to generate regression models for the software passport. Usage of cu-
mulative values in performance monitoring can be desirable, as it provides a
monotonically increasing function.
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Fault injection workflow As shown in the bottom flow of Fig. 6, fault injec-
tion is applied on tracing data before executing a simulation based on it. The
output of the simulator and execution times of processes are collected and com-
pared to reference executions. If the execution time is significantly longer, the
collection of points for per process CPU time, read events and write events will
be checked against relevant software passports. We can check the goodness of fit
for a software passport’s regression model, given the collection of metrics in time
as our observation. There are multiple techniques to check goodness of fit, but
within the scope of this paper, we are using coefficient of determination (R2)
and Root-Mean-Square Deviation (RMSD) tests.

5 Experimental results

As indicated before, the experiments performed during this study are based on
a mixture of production and synthetic data. The incorporation of synthetic data
was a necessity as we needed a mechanism for controlled fault injection to test
our developed techniques. Generation of such faults in a production system, on
demand, is not certain and involves many limitations. Our fault injector imple-
mentation is capable of editing collected traces to introduce a chosen amount of
delay to a chosen portion of processes at random. For instance, we can introduce
10% of delay to 20% of the processes involved in a phase. Depending on the
delayed processes and their criticality, there may be different total phase delays
introduced.

5.1 Detection results

In order to demonstrate our implementation of software passports and anomaly
detection in action, we will present one of the processes from the tested phase.
The detection includes two steps. First, the length of the phase, i.e., the execution
duration of the phase, is checked. Note that the length of a phase should not
be mistaken with the execution duration of a process in the phase, as the latter
could be shorter. A 10% or above increase will be followed by a comparison
against the software passport for that phase. The software passport includes
three regression models per every process involved in the phase, for cumulative
CPU time (depicted in Fig. 7a), for cumulative read events (depicted in Fig. 7b),
and for cumulative write events.

These regressions’ goodness of fit is checked against the current execution
tracing data of the phase, after which a 5% or above difference between R2

values, or RMSD values, will be interpreted as a violation. Figures 8a and 8b
show the example process’ CPU time and read event count violations compared
to its passports, respectively. Note that there is no write event count violation,
as this process is a consumer of data and does not perform any writes using
the communication subsystem. Also, the library we use for regression model
generation does support simple linear, multiple linear and curvilinear regressions.
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Fig. 7. Two software passports for an example process involved in the tested
phase, with polynomial regressions, (7.994e−12)x2 + (1.534e−3)x + 890.944 and
(−7.755e−15)x2 + (2.343e−5)x− 12.813, for cases (a) and (b), respectively

The choice will depend on the data, though linear regression models are the most
common [6].

A comparison, based on regression models is especially useful for production
environments, where the comparison happens in real-time. During online sam-
pling, the comparison does not have to be postponed until reaching the end of
the phase under scrutiny. Partial sampling, resulting in data points for a portion
of the phase, will already be used for the goodness of fit check. The goodness of
fit check provides us with the analysis capability, revealing the contribution of
different processes, which is not detectable solely based on the execution time.

5.2 Towards identification

As it was shown in Fig. 1, to be able to perform identification, i.e., detect the root
cause of the violation at hand, one might have to carry on with extra analysis. As
we have separate passports per metric and per process in our design, it would be
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Fig. 8. Software passport violations for different metrics of an example process involved
in the tested phase

fairly straight forward to detect the violating processes. If the deviation in these
contributing processes happens around the same time, or there is an obvious
single initiator process with a large amount of deviation, we will have a clear-cut
case. However, as there are usually functional and data dependencies amongst
processes, interpreting violations will not be trivial. The link between metric
violations and application-level behaviour of the system should be taken into
account as well.

As part of our future work, there will be a need for a better understanding
of behavioural variations and performing verifications, e.g., visual verification.
A complex scenario could be simplified by breaking some of the irregular phases
into smaller ones. Generating different non-linear regression models, such as
isotonic regression, should also be considered.
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6 Related work

The common use of regression models as a statistical tool for data estimation
and inference is well argued in the literature [6,3]. This is especially true for
different performance parameters of application processes as Lee and Brooks
suggest [8]. Lee et al. also employ the notion of piecewise polynomial regres-
sion [9]. We have conducted a comparable strategy by dividing a timeline into
meaningful phases, based on drastic changes in the values of CPU utilisation.
Though, our division criteria aims at having meaningful and repeatable phases.
We are not using all points from an execution, i.e., certain unsuitable parts
are being omitted. Regression modelling has also been taken advantage of by
Joseph et al. and Barnes et al., for correlating micro-architectural parameters
with processor performance [7] and exploring parallel programme scalability [1],
respectively. Regression modelling has been the choice of Torr and Murray [12],
as well as Chen et al. [4], within the domain of image processing.

When it comes to anomaly detection in general, a comprehensive overview
can be grasped by looking at two elaborate surveys by Chandola et al. [2] and
Ibidunmoye et al. [5]. Our categorisation of anomalies as transient and permanent
certainly fits the categorisation given in [5]. It is worth repeating that our focus
for data collection is on EFB, which is arguably rather similar to the notion of
Key Performance Indicators (KPI) used in other works. Another characteristic,
separating our work, is its applicability to industrial cyber-physical systems,
which by default involve repetitive tasks.

7 Conclusion and future work

In this work, we have shown that the use of software passports can be advanta-
geous for performance anomaly detection of systems with repetitive tasks. We
have argued in favour of a segmenting approach when characterising repetitive
tasks and we have elaborated different phase constructs, as well as software
passports based on them. We have also described our experiment set-up and
detection results achieved using our prototype. We can conclude that though an
initial version, software passports display a promising potential as a reference
construct for comparative performance anomaly detection.

Our fault injection technique for anomaly introduction was based on ma-
nipulating simulations of the real system, also previously developed by us. This
can be followed by considering fault injection within the actual system. A more
complete software passport design is also part of our future work agenda. For
instance, finding the right balance between the phase length, passport’s detec-
tion capability, and computational effort for passport generation is the key for
online deployment of dynamic passports. Additionally, not every change in per-
formance behaviour of a system is an indication of anomalous behaviour. We
would like to develop soft and hard limits for violation detection and interpreta-
tions based on them, leading to a more elaborate detection of anomalies. Another
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lead we would like to follow is the categorisation of different types of anoma-
lies, which will facilitate the decision making process when choosing effective
actuation mechanisms.
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