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Abstract— Exploration of task mappings has an important role 

to achieve high performance in heterogeneous multi-processor 

system-on-chip (MPSoC) platforms. The application workloads in 

modern MPSoC-based embedded systems are becoming 

increasingly dynamic. Different applications concurrently execute 

and contend for resources in such systems. In this paper, a run-time 

algorithm is proposed to analytically evaluate the system 

throughput of to-be-executed applications (modelled as Kahn 

Process Networks, KPNs) in order to quickly determine a proper 

resource binding for these applications. Merging transformations 

on the KPNs are applied to capture the cases in which the number 

of processes in the KPN is larger than the number of available 

processing resources, thereby modeling the effects of binding 

multiple processes to a single processor. We evaluated our 

algorithm using a heterogeneous MPSoC system with several 

applications. Our experimental results revealed that during 

runtime, the performance of selected mapping with regard to 

available resources is close to the optimal performance obtained by 

exhaustive search and simulation. Therefore, the results clearly 

confirm that our algorithm is effective. 

Keywords—embedded systems, multiprocessor-systems-on-chip 

(MPSoCs), run-time mapping, design space exploration of 

heterogeneous MPSoCs, process merging, performance evaluation 

I. INTRODUCTION  

Application mapping on Multiprocessor-Systems-on-Chip 

(MPSoCs) has been identified as one of the most important 

problems in embedded systems design [1][2][3]. Before starting 

the mapping of applications on MPSoC platforms, first the 

applications need to be parallelized and synchronization and 

inter-task communication between the parallelized tasks need to 

be added. This job can be furnished by state-of-the-art 

application parallelization tools [4][5]. The parallel tasks can be 

executed on different platform resources concurrently in order to 

accelerate the application execution. Then, the parallelized code 

should be optimized for the given target platform.  

For heterogeneous MPSoC systems, the mapping of tasks 

from applications involves the assignment and ordering of 

application tasks to processors and binding communications 

between tasks to memories in the system in view of some 

optimization criteria like reducing energy consumption, 

improving compute performance etc. The optimization is 

necessary to satisfy performance constraints of the applications. 

Mapping applications’ tasks on MPSoC platform resources 

can be accomplished at either design-time (static) or run-time 

(dynamic). Design-time mapping techniques consider a 

predefined set of applications with known computation and 

communication behavior and a static platform. Therefore, they 

are not suitable for dynamic workloads in which, e.g., new 

applications may appear (i.e., start their execution) on the 

platform at run-time. Dynamic (run-time) mapping techniques 

are required for scenarios where application tasks need to be 

loaded into the platform at run-time. After task mapping, if the 

user requirement is changed or a new application has entered the 

system, task migration can be used to revise placement of some 

of the already executing tasks. 

In addition to the capability of run-time (dynamic) mapping 

techniques to handle dynamic workload scenarios, they also 

offer a number of additional advantages [6]: 

 Adaptability to the available resources. 

 Ability to enable unforeseeable upgrades. 

 Ability to avoid defective parts of a SoC. 

When the mapped applications start execution, the mapping of 

one or more running applications needs to be reconsidered in 

case of following events [6]: 

 When a new application enters the system and it needs 
resources from the already executing applications. 

 When a running application completes and releases some 
the occupied resources. 

 When the performance requirements of a running 
application are changed. For example, it might need extra 
resources for performing some extra functionality. 
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 When the current task mapping is not sufficiently optimal, 
it requires (re-)mapping. 

The aforementioned issues can be handled only by run-time 

mapping techniques as the issues are dynamic and need to be 

handled at run-time. In this paper, we consider the problem that a 

new application enters the system and needs to be mapped onto 

the available platform resources, where the number of available 

resources may be less than the number of processes in the 

application, i.e., multiple processes need to be mapped onto a 

single processor. We focus on mapping design space exploration 

(DSE), where mapping involves two aspects: allocation and 

binding. In the allocation step, decisions about the number and 

types of processors that should be deployed in the MPSoC 

platform are made. In the binding step, it is determined how 

these allocated resources should be used for running application 

tasks, i.e. determining which task is bound to which processor. 

We present a novel run-time binding approach, where 

identification of an efficient mapping for a use-case is done by 

the online execution trace analysis of the active applications for 

multimedia MPSoC-based embedded systems. The objective of 

our proposed technique is to minimize the execution time 

(performance) of running applications.  

The rest of this paper is organized as follows: Section II 
discusses related research. Section III describes prerequisites and 
the definition of the problem. Details of the proposed algorithms 
are presented in Section IV. The experimental results are 
presented in Section V, followed by the conclusions of the paper 
in Section VI. 

II. RELATED RESEARCH 

In recent years, much research has been performed in the area 

of task mapping for embedded systems. As mentioned before, it 

can be accomplished at either design-time (static) or run-time 

(dynamic). 

Design-time techniques: All the design-time techniques find 

placement of tasks at design-time. Therefore, these techniques 

are not suitable for run-time varying workloads in systems, 

which require re-mapping/run-time mapping of applications (e.g. 

networking and multimedia applications). Even if these mapping 

techniques are inadequate for the dynamic workload scenarios, 

such techniques might still be useful to find the initial task 

placement, or be optimized to be working at run-time. 

Run-time Mapping: In contrast to the design-time mapping, 

run-time mapping needs to consider the time taken to map each 

task as this contributes to overall application execution time. 

Furthermore, the tasks are mapped one by one, unlike the static 

case where all the tasks are mapped at once by globally looking 

at the system. Therefore, greedy algorithms are typically used for 

efficient mapping to optimize performance metrics such as 

energy consumption, communication latency, execution time etc. 

Dynamic task mapping on heterogeneous MPSoC platforms 
are investigated in [7][8][9][10][11][12][13][14][15]. An iterative 

hierarchical strategy is present in [7] to map an application to a 
parallel heterogeneous MPSoC architecture at run-time. 
Applications are modeled as a set of communicating PEs. The 
optimization objective is to minimize the energy consumption of 
the MPSoC while providing a certain level of Quality of Service.  

In [8] a run-time spatial mapping technique is investigated 
with real-time requirements, considering streaming applications 
mapped onto heterogeneous MPSoCs. In the proposed work, the 
application remapping is determined according 
latency/throughput that is collected at design time, aiming to 
satisfy the QoS requirements, minimize resources usage and also 
the energy consumption. In [9], a distributed agent-based 
mapping scheme is proposed. The scheme divides the system into 
virtual clusters. A cluster agent is responsible for all mapping 
operations within a cluster. Global agents store information about 
all the clusters of the NoC and use a negotiating policy with 
cluster agents in order to define to which cluster an application 
will be mapped. In [10], authors investigate the performance of 
mapping algorithms in MPSoCs considering dynamic workloads. 
The heuristics targets NoC congestion minimization as a key 
function to optimize the NoC performance. The proposed Path 
Load mapping heuristic reduces the total execution time. This 
work is extended in Singh et al. [11], where several 
communication-aware run-time multitask mapping heuristics are 
proposed.   

In [12], an ant colony optimization heuristic is introduced. 
Starting from a model of the target architecture and the 
application, the heuristic efficiently executes both scheduling and 
mapping in order to optimize the application performance. In 
[13], a novel technique is presented that is able to minimize the 
energy consumption of the entire multi-mode system while 
satisfying a given lifetime reliability constraint. In [14], a method 
is proposed that explores how to synthesize a heterogeneous 
multiprocessor platform with the partitioning of real-time tasks 
so that the energy consumption is minimized. By considering 
both static (leakage) power consumption and dynamic power 
consumption, they propose a method that uses a polynomial time 
approximation algorithm to minimize the energy consumption. In 
[15], a co-synthesis framework is introduced for design space 
exploration that considers heterogeneous scheduling while 
mapping multimedia applications onto such MPSoCs. The 
optimization key is energy.  

In this paper, we propose a run-time mapping algorithm for 
heterogeneous MPSoCs that uses task merging transformations to 
accommodate systems with less available processing resources 
than the number of tasks to execute. While many works focus on 
clustered or grouped tasks in the domain of Synchronous Data 
Flow (SDF) graphs [16], we analyze and model applications 
using the Kahn Process Network (KPN) model of computation 
[21]. More specifically, we analytically model the throughput 
behavior of different mappings of these KPNs, where we apply 
process merging (creating compound processes) to capture the 
effects of mapping multiple tasks to a single processor . There are 
other works on throughput computation, but they are mainly 



developed for SDF and CSDF models [17], [18]. A compile-time 
approach is presented in [19] to evaluate the system throughput 
of Polyhedral Process Networks (PPNs) in order to select a 
merging candidate which gives a system throughput as close as 
possible to the original PPN. Our work is inspired by this work 
but is different as their architecture platform was homogenous 
and they do no target run-time mapping. The work in [20] 
proposed a throughput model for mapping evaluation during 
design time. In that work, there are no constraints in the available 
resources in the system and the design space is explored by a 
NSGA-II genetic algorithm. The throughput model is used as 
fitness function interleaved with simulation. That approach 
significantly reduces the number of simulations that are needed 
during the process of DSE. In our problem, a resource binding 
decision has to be made at run-time and there is not enough time 
to perform simulation for this, reducing the search space that can 
be covered. Therefore, the analytical throughput model is used to 
make a fast decision at run-time about the optimal resource 
binding. 

III. PREREQUISITES AND PROBLEM DEFINITION  

Application task mapping on an MPSoC platform involves 

assignment and ordering of the tasks and their communications 

onto the platform resources in view of some optimization criteria 

like reducing energy consumption, improving compute 

performance etc. The optimization is necessary to satisfy 

performance constraints of the applications. Therefore, efficient 

mapping techniques are required in order to optimize the 

performance. The mapping techniques need the following 

models and parameters: 

 An application model (e.g., Task Graph, Data Flow 
Graph, KPN model, etc.).  

 An architecture model of the MPSoC platform (e.g., 
topology, number of processing elements (PEs) and their 
type, interconnection scheme, etc.). 

 The constraints of the application (e.g., compute 
performance and/or power requirements, etc.). 

 An estimate of the worst-case execution time of the 
task/process implementations on different PEs. 

In this section, we explain the necessary prerequisites for this 
paper and provide a detailed problem definition.  

A. Application Model 

In this paper, we target the multimedia application domain. 
For this reason, we use the Kahn Process Network (KPN) model 
of computation [21] to specify application behavior since this 
model of computation fits well with the streaming behavior of 
multimedia applications. In a KPN, an application is described 
as a network of concurrent processes that are interconnected via 
FIFO channels. This means that an application can be 
represented as a directed graph KPN = (P, E), where P is a set of 

processes (tasks) pi in the application and fij ∈ E represents the 
FIFO channel between two processes: pi and pj. Fig. 1 illustrates 
a KPN for a Motion-JPEG (MJPEG) encoder application. 

 

Fig. 1. KPN Model for an MJPEG encoder. 

B. Architecture Model 

The MPSoC hardware platform is also modelled as a graph H 
= (C, F), where C is the set of processing elements used in the 
architecture, F is a multiset of pairs Fij = (ci,cj) ∈ C×C 
representing a communication channel (like Bus, NOC, etc.) 

between processors ci and cj.  

C. Mapping applications to platform architecture 

Given the application and architecture models, the mapping 
problem can be defined as assigning application processes to 
architecture components in such a way that the overall 
performance of the application is optimized. In this paper, we 
consider the problem of finding the best process merging in a 
KPN such that we have an optimal 1-to-1 mapping of (possibly 
merged) processes to processors. That is, the proposed algorithm 
reduces the number of processes in a KPN by sequentializing a 
selected number of processes in a single compound process. 
Thus, less processes need to be mapped on the platform’s 
processing elements, at the cost of possibly having less processes 
running in parallel. This process merging transformation needs to 
be applied in case the number of processes is larger than the 
number of processing elements, i.e., multiple processes need to 
mapped onto a single processing resource. The problem is that 
many different options exist to merge two or more processes, 
where the challenge is to efficiently find the best solution from 
all these options at run-time. Therefore, the main contribution of 
this paper is: finding the best task binding for new incoming 
applications at run-time when the type and number of available 
processors are specified. This goal is achieved by using an 
analytical throughput estimation model for KPNs to evaluate the 
throughput of different process mergings in order to select the 
best option which gives a system throughput as close as possible 
to the original KPN. 
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The performance of an application can be measured by 
considering the execution time or throughput of that application. 
It is important to state that our goal is not to compare different 
KPNs, but to compare transformed KPNs derived from a single 
KPN. Therefore, in the throughput modeling, we do not take into 
account the latency of a token, i.e., the time that elapses between 
injecting a token in the KPN and the time when that token leaves 
the KPN. Thus, we do not calculate the total execution time of 
KPNs, but only want to capture the throughput trend instead. 

IV. SOLUTION APPROACH 

In this paper, the KPN model of computation is considered 
for application modeling in which parallel processes 
communicate with each other via unbounded FIFO channels. In 
the Kahn paradigm, reading from channels is done in a blocking 
manner, while writing is non-blocking. To evaluate each possible 
mapping, one need to perform throughput analysis for the KPN 
and a given mapping, like in [20]. As mentioned before, at run-
time, when a new application arrives to the system, the number 
and type of available processors can be less than the number of 
processes. In that case, multiple processes have to map onto a 
single processor. To model this, we use merging transformations 
on the KPN to reflect the mapping of the different processes onto 
a single resource. If two processes are mapped onto the same 
architectural component, they are merged into a single process in 
the KPN, as is illustrated in Fig. 2. Mapping multiple KPN tasks 
onto one processor allows for MPSoC implementations with less 
processing and communication components, i.e. with reduced 
implementation cost, but at the cost of potentially additional 
execution overhead. Subsequently, to evaluate the performance 
of a mapping decision, we perform throughput analysis on the 
transformed KPN. With 3 motivating examples we show that 
selecting the best merging option is not a straightforward task as 
it depends on the inter-play of many factors. 

 

Fig. 2. Process merging in an example (a) Initial Kahn Process Network (b) 
KPN processes (1,2) and (3,4) are mapped onto a single processor. 

A. Motivating Examples 

The first factor to be considered is the workload of a process. 

The workload 
iPW  of a process Pi denotes the number of time 

units that are required to execute a function, i.e., the pure 

computational workload, excluding the communication [19]. Fig. 
3 shows a KPN consisting of 6 processes. The network has two 
data paths DP1 = (P1, P2, P3, P6) and DP2 =(P1,P4,P5,P6) that 
transfer an equal number of tokens. The system throughput is 
determined by Process P3. The system throughput of the original 
KPN is 11 time units (1+2+7+1) needed to produce the first 
token for Process P6. Then, it produces a new token each 7 
cycles which is dictated by the slowest process P3. If the process 
merging transformation is applied to processes P2 and P3, then 
compound process P23 becomes the most computationally 
intensive process of the network. Processes P2 (2 time units) and 
P3 (7 time unit) are put into a sequence and thus it will take 
7+2=9 time units instead of 7 time units for a new token to be 
produced by process P6. We can see that the throughput of this 
network is lower than the original KPN. After merging processes 
P4 and P5, the system throughput is not impacted, i.e., it is 
identical to the original KPN, because the two merged and 
sequentialized processes do not determine the system throughput. 
Thus, these processes can be safely merged together and achieve 
the same system throughput as the original KPN. 

 

Fig. 3. Process Workload Influencing the System Throughput 

The second factor that needs to be taken into account is the 
rate of token production [19]. Consider the KPN in Fig. 4. In this 
figure, both data-paths transfer a different number of tokens. This 
is indicated by the patterns [100] and [011] at which process P1 
writes to its outgoing FIFO channels. A ”1” in these patterns 
indicates that data is read/written and a ”0” implies  that no data 
is read/written. So, the FIFO channel connecting P1 and P2, for 
example, is written on the first firing of P1, but not in the 
remaining two firings. As a consequence of these patterns, the 
second data path DP2 becomes the throughput-limiting path for 
this particular network and token firings. So, despite the fact that 
the largest workload of 7 time units can be attributed to process 
P3, process P4 with a workload of 4 is more dominant. 
Therefore, processes P2 and P3 can be safely merged as opposed 
to P4 and P5 to achieve a system throughput equal to the original 
KPN.  

 

Fig. 4. Production Rate Influencing the System Throughput 
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The third factor that needs to be also taken into account is the 
sequentialization of FIFO communication [19]. In Fig. 5, process 
P1 is the computationally most intensive process with a workload 
of 25 time units. A logical choice would be to combine P2 and P3 
and not to consider the heavy process P1. For this reason, we 
expect performance results that are equally good as the original 
KPN. However, when the performance results of both the 
original KPN and the transformed KPN are measured [22], the 
performance results of the transformed KPN are depreciated. 
Despite the workload of compound process P23 being lower than 
that of P1, the compound process reads in a sequential order from 
two input channels and writes in a sequential order to two output 
channels. This means it is the heaviest process in the network. 
So, besides sequential execution of the process workloads, the 
sequential FIFO reading/writing is another aspect that needs to be 
taken into account. 

 

Fig. 5. Sequentialized FIFO Accesses Influencing the System Throughput 

B. Throughput propagation to estimate overal throughput 

In this paper, the throughput analysis method is based on the 
work presented in [19][20], in which the solution approach for 
the overall KPN throughput modeling relies on calculating the 

throughput
iP of a process (i.e., node) Pi for all KPN processes 

and propagation of the lowest process throughput to the sink 
process. A depth first search is used to determine the order of the 
processes for propagating throughputs. For a process Pi, the 
propagation consists of selecting either the aggregated incoming 

FIFO throughput 
iPFaggr, or the isolated process throughput

iso

Pi
 . 

The isolated throughput 
iso

Pi
 is the throughput of a process Pi 

when it is considered to be completely isolated from its 
environment. This means that the isolated process throughput is 

determined only by the workload 
iPW  of a process and the 

number of FIFO reads/writes per process execution provided that 
no blocking occurs: 

WrRd

P
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P
CyCxW

i

i ..

1


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where x and y denote how many FIFOs are read and written 
per process execution and CRd and CWr the performance costs for 
reading/writing a token from/to a FIFO channel. The throughput 
of a FIFO-channel f is determined by the throughput of the 
processes accessing it: 

),min( Rd

f

Wr

ff      (2) 

 

Subsequently, the throughput 
iP of a process Pi is 

determined by either the throughput of the FIFOs from which 
process Pi receives its data or by the computational workload of 

the process itself, i.e., 
iso

Pi
 . For merged KPN processes, the 

incoming FIFO throughput is the aggregated throughput of the 
merged channels and the isolated throughput is calculated using 
the aggregated computational workloads. Consequently, the 
throughput associated to each process in a KPN graph is 
computed as: 

),min( ,

iso

PPFaggrP iii
    (3) 

C. Handling cycles 

It is possible that the aforementioned merging 
transformations to account for mapping decisions might 
introduce cycles in the transformed KPN. As shown in Fig. 6, 
processes 1, 3 and 5 are mapped to the same processor, resulting 
in a KPN with two cycles. Cycles in a KPN are responsible for 
sequential execution of some of the processes involved in the 
cycle. The sequential execution can vary from a single initial 
delay to a delay at each execution of some of the processes. For 
accurate throughput modeling, these cycles must be taken into 
account.  

 

Fig. 6. Transformation into a cyclic KPN 
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From equation 7, it is clear that the isolated throughput of a 

cycle is lower than the regular isolated throughput (
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Pi
 ) of any 

of the processes involved in the cycle. It also implies that the 

isolated throughput of a cycle can be lower than the isolated 

throughput of the bottleneck process. This is an important 

observation because, in such a case, the throughput of the cycle 
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will determine the overall KPN performance. To conclude, the 

throughput associated to each process Pi will be computed as: 

),,min( ,

iso

PPFaggr
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CyclP iiiPi
    (5) 

For example, in Fig. 6, two cycles are generated due to the 
KPN transformation. In this case, we assume that the resulting  

iso

Cycl
iP

  for a process iP would be 

))(),...,1(min( niso
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iPiPiP
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Where )1(iso

Cycl
iP

 ,..., )(niso

Cycl
iP

  are all the throughputs of the 

cycles involving process Pi . 

 

Algorithm 1: Run-time mapping algorithm using KPN Throughput 

Estimation Pseudo-code 

Input: Application Graph (KPN), Architecture Graph, Available 
Resources 

Output: Best resource binding and mapping, best throughput  

Requires: WPi, the computational workload of all processes. 

 

for l in itertools.product(Allocated_Resources, repeat=#Processes): 
              h = list(l) 

              if len(set.intersection(set(h),set(Allocated_Resources))) == 

                 len(Allocated_Resources): 
                       gmapping = h; 

                       Task_List ← Create topological ordering for KPN  

                       for all processes Pi ∈ Task_List do 

                               
iso

Pi
  = set isolated throughput(Pi , WPi)) 

                                 Set  for all incoming FIFOs fj   

                                  τPi = min (τFaggr,Pi ,
iso

Pi
 ) 

                                  Set  for all outgoing FIFOs fj of Pi. 

                        end for 

                        return Throughput = τsink                       
                         

       if Throughput < best_Throughput: 

                                    best_Throughput = Throughput 
  best_map = gmapping 

 

The pseudo code of the run-time algorithm to select the best 
binding using the described analytical throughput calculation and 
propagation method is shown in Algorithm 1. The KPN model of 
application and available resources in the system must be 
specified as algorithm input. The best mapping and resource 
binding will be determined by the algorithm. Here, the space has 
been explored exhaustively using itertools.product() function of 
Python. Using analytical throughput estimation as fitness 
function during the search for best mapping can yield significant 
efficiency improvements.  

 

V. EXPERIMENTS AND RESULTS 

For our experiments, three KPN models of synthetic 
applications with different number of processes (tasks) and 
different workload of processes and different rates of token 
production are used. Furthermore, a Motion JPEG (MJPEG) 
encoder is used as a real multi-media application. The target 
architecture that has been considered in our experiments consists 
of a MPSoC platform with five heterogeneous processors, i.e., 
five different processor types. These processors are connected via 
a bus to a shared memory. For all experiments, a PC with a 
2.9GHz Intel Core i7 CPU has been used. 

The open-source Sesame system-level MPSoC simulator [23] 
is deployed to evaluate mappings. The Sesame modeling and 
simulation environment facilitates efficient performance analysis 
of embedded (media) systems architectures. It recognizes 
separate definitions of application and architecture models in 
which an application model describes the functional behavior of 
an application and the architecture model defines architecture 
resources and captures their performance constraints. After 
explicitly mapping an application model onto an architecture 
model, they are co-simulated via trace-driven simulation. This 
allows for evaluation of the system performance of a particular 
application, its underlying architecture, and mapping.  

 

Fig. 7. KPN model of Applications used for experiments 

In the first experiment, it is supposed that an application as 
modeled in Fig. 7(a) arrives to the system at run-time and only 
three processors, identified by the IDs ‘1’, ‘2’ and ‘4’, are 
available to execute this incoming application. Here, 36 different 
configurations exist to merge processes and form a mapping. 
Exhaustively evaluating these mappings with the Sesame 
framework takes about 32 minutes to select the best mapping. 
The simulation time grows exponentially with the number of 
application tasks and available resources. Therefore, it is not 
feasible to use such simulations to make decisions at run-time. 
By evaluation with throughput model, it takes 0.42 second to 
select the best binding solution. TABLE I. shows the number of 
points which exist to evaluate, time needed for evaluation by 
proposed run-time algorithm based on throughput estimation 
model  and Sesame simulation.  

 As discussed in the previous section, decision making 
regarding process binding to find the best mapping can 
efficiently be realized at run-time using the discussed analytic 
throughput model. For example, application (a) has four 
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application tasks and for each task we assign the identifier of the 
processor to which the task is mapped. For instance, the mapping 
{1,1,1,2} indicates that tasks 1,2 and 3 are mapped to processor 
‘1’, while tasks 4 is mapped to processor ‘2’. For this 
application, our run-time algorithm based on the throughput 
model has found the {1,2,2,4} mapping as the optimal binding 
solution. By exhaustively searching and simulating all mappings 
with Sesame the same {1,2,2,4} mapping has also been selected. 
We have also performed the throughput model evaluation and 
Sesame simulation validation for applications (b) and (c) in Fig. 
7, where we assumed that the available resources in the system 
are <1,3> and <1,2,3,4>, respectively. For these cases, the 
mappings obtained from Sesame simulation and throughput 
estimation are very close to each other in term of performance. 
The performance accuracy for these applications are reported in 
TABLE II.  

TABLE I.  TIME NEEDED TO FIND BEST MAPPING 

TABLE II.  COMPARISION OF MAPPING OBTAINED BY SIMULATION AND 

THROUGHPUT MODEL EVALUATION  

 

In addition, the KPN of the MJPEG application is used as 
shown in Figure 1. To compare the performance accuracy of this 
application, consider Fig. 8. In this experiment, we assume the 
allocated resources available at the system are <1,2,4>. This 
figure shows the normalized performance ranking of ten random 
mappings when evaluating the mappings using Sesame 
simulations (in red) or using the throughput model (in blue). 
Evidently, the normalized ranking of the mappings for the 
MJPEG application is correct most of the times.  

VI. CONCLUSION 

In this paper, we have proposed a run-time resource binding 
for Heterogeneous MPSoC-based embedded systems in order to 
improve their performance. This is done by throughput modeling 
of Kahn process networks to evaluate process merging 
transformations and supporting new arriving applications. Our 

approach can be used at run-time to quickly evaluate different 
resource bindings, taking into account all factors that influence 
the throughput. Therefore, we can accurately capture the 
throughput trend and select the best possible mapping as 
illustrated with the experiments. 

 

 

Fig. 8. MJPEG application normalized mapping using Sesame simulation 

and throughput estimation model 
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