
Run-time Mapping Algorithm for Dynamic Workloads

using Process Merging Transformations

Sima Sinaei

Electrical and Computer Department

University of Tehran

Tehran, Iran

simasinaei@ut.ac.ir

Omid Fatemi

Electrical and Computer Department

University of Tehran

Tehran, Iran

omid@fatemi.net

Andy D. Pimentel

Informatics Institute

University of Amsterdam

The Netherlands

a.d.pimentel@uva.nl

Abstract— Exploration of task mappings has an important role

to achieve high performance in heterogeneous multi-processor

system-on-chip (MPSoC) platforms. The application workloads in

modern MPSoC-based embedded systems are becoming

increasingly dynamic. Different applications concurrently execute

and contend for resources in such systems. In this paper, a run-time

algorithm is proposed to analytically evaluate the system

throughput of to-be-executed applications (modelled as Kahn

Process Networks, KPNs) in order to quickly determine a proper

resource binding for these applications. Merging transformations

on the KPNs are applied to capture the cases in which the number

of processes in the KPN is larger than the number of available

processing resources, thereby modeling the effects of binding

multiple processes to a single processor. We evaluated our

algorithm using a heterogeneous MPSoC system with several

applications. Our experimental results revealed that during

runtime, the performance of selected mapping with regard to

available resources is close to the optimal performance obtained by

exhaustive search and simulation. Therefore, the results clearly

confirm that our algorithm is effective.

Keywords—embedded systems, multiprocessor-systems-on-chip

(MPSoCs), run-time mapping, design space exploration of

heterogeneous MPSoCs, process merging, performance evaluation

I. INTRODUCTION

Application mapping on Multiprocessor-Systems-on-Chip

(MPSoCs) has been identified as one of the most important

problems in embedded systems design [1][2][3]. Before starting

the mapping of applications on MPSoC platforms, first the

applications need to be parallelized and synchronization and

inter-task communication between the parallelized tasks need to

be added. This job can be furnished by state-of-the-art

application parallelization tools [4][5]. The parallel tasks can be

executed on different platform resources concurrently in order to

accelerate the application execution. Then, the parallelized code

should be optimized for the given target platform.

For heterogeneous MPSoC systems, the mapping of tasks

from applications involves the assignment and ordering of

application tasks to processors and binding communications

between tasks to memories in the system in view of some

optimization criteria like reducing energy consumption,

improving compute performance etc. The optimization is

necessary to satisfy performance constraints of the applications.

Mapping applications’ tasks on MPSoC platform resources

can be accomplished at either design-time (static) or run-time

(dynamic). Design-time mapping techniques consider a

predefined set of applications with known computation and

communication behavior and a static platform. Therefore, they

are not suitable for dynamic workloads in which, e.g., new

applications may appear (i.e., start their execution) on the

platform at run-time. Dynamic (run-time) mapping techniques

are required for scenarios where application tasks need to be

loaded into the platform at run-time. After task mapping, if the

user requirement is changed or a new application has entered the

system, task migration can be used to revise placement of some

of the already executing tasks.

In addition to the capability of run-time (dynamic) mapping

techniques to handle dynamic workload scenarios, they also

offer a number of additional advantages [6]:

 Adaptability to the available resources.

 Ability to enable unforeseeable upgrades.

 Ability to avoid defective parts of a SoC.

When the mapped applications start execution, the mapping of

one or more running applications needs to be reconsidered in

case of following events [6]:

 When a new application enters the system and it needs
resources from the already executing applications.

 When a running application completes and releases some
the occupied resources.

 When the performance requirements of a running
application are changed. For example, it might need extra
resources for performing some extra functionality.

mailto:a.d.pimentel@uva.nl

 When the current task mapping is not sufficiently optimal,
it requires (re-)mapping.

The aforementioned issues can be handled only by run-time

mapping techniques as the issues are dynamic and need to be

handled at run-time. In this paper, we consider the problem that a

new application enters the system and needs to be mapped onto

the available platform resources, where the number of available

resources may be less than the number of processes in the

application, i.e., multiple processes need to be mapped onto a

single processor. We focus on mapping design space exploration

(DSE), where mapping involves two aspects: allocation and

binding. In the allocation step, decisions about the number and

types of processors that should be deployed in the MPSoC

platform are made. In the binding step, it is determined how

these allocated resources should be used for running application

tasks, i.e. determining which task is bound to which processor.

We present a novel run-time binding approach, where

identification of an efficient mapping for a use-case is done by

the online execution trace analysis of the active applications for

multimedia MPSoC-based embedded systems. The objective of

our proposed technique is to minimize the execution time

(performance) of running applications.

The rest of this paper is organized as follows: Section II
discusses related research. Section III describes prerequisites and
the definition of the problem. Details of the proposed algorithms
are presented in Section IV. The experimental results are
presented in Section V, followed by the conclusions of the paper
in Section VI.

II. RELATED RESEARCH

In recent years, much research has been performed in the area

of task mapping for embedded systems. As mentioned before, it

can be accomplished at either design-time (static) or run-time

(dynamic).

Design-time techniques: All the design-time techniques find

placement of tasks at design-time. Therefore, these techniques

are not suitable for run-time varying workloads in systems,

which require re-mapping/run-time mapping of applications (e.g.

networking and multimedia applications). Even if these mapping

techniques are inadequate for the dynamic workload scenarios,

such techniques might still be useful to find the initial task

placement, or be optimized to be working at run-time.

Run-time Mapping: In contrast to the design-time mapping,

run-time mapping needs to consider the time taken to map each

task as this contributes to overall application execution time.

Furthermore, the tasks are mapped one by one, unlike the static

case where all the tasks are mapped at once by globally looking

at the system. Therefore, greedy algorithms are typically used for

efficient mapping to optimize performance metrics such as

energy consumption, communication latency, execution time etc.

Dynamic task mapping on heterogeneous MPSoC platforms
are investigated in [7][8][9][10][11][12][13][14][15]. An iterative

hierarchical strategy is present in [7] to map an application to a
parallel heterogeneous MPSoC architecture at run-time.
Applications are modeled as a set of communicating PEs. The
optimization objective is to minimize the energy consumption of
the MPSoC while providing a certain level of Quality of Service.

In [8] a run-time spatial mapping technique is investigated
with real-time requirements, considering streaming applications
mapped onto heterogeneous MPSoCs. In the proposed work, the
application remapping is determined according
latency/throughput that is collected at design time, aiming to
satisfy the QoS requirements, minimize resources usage and also
the energy consumption. In [9], a distributed agent-based
mapping scheme is proposed. The scheme divides the system into
virtual clusters. A cluster agent is responsible for all mapping
operations within a cluster. Global agents store information about
all the clusters of the NoC and use a negotiating policy with
cluster agents in order to define to which cluster an application
will be mapped. In [10], authors investigate the performance of
mapping algorithms in MPSoCs considering dynamic workloads.
The heuristics targets NoC congestion minimization as a key
function to optimize the NoC performance. The proposed Path
Load mapping heuristic reduces the total execution time. This
work is extended in Singh et al. [11], where several
communication-aware run-time multitask mapping heuristics are
proposed.

In [12], an ant colony optimization heuristic is introduced.
Starting from a model of the target architecture and the
application, the heuristic efficiently executes both scheduling and
mapping in order to optimize the application performance. In
[13], a novel technique is presented that is able to minimize the
energy consumption of the entire multi-mode system while
satisfying a given lifetime reliability constraint. In [14], a method
is proposed that explores how to synthesize a heterogeneous
multiprocessor platform with the partitioning of real-time tasks
so that the energy consumption is minimized. By considering
both static (leakage) power consumption and dynamic power
consumption, they propose a method that uses a polynomial time
approximation algorithm to minimize the energy consumption. In
[15], a co-synthesis framework is introduced for design space
exploration that considers heterogeneous scheduling while
mapping multimedia applications onto such MPSoCs. The
optimization key is energy.

In this paper, we propose a run-time mapping algorithm for
heterogeneous MPSoCs that uses task merging transformations to
accommodate systems with less available processing resources
than the number of tasks to execute. While many works focus on
clustered or grouped tasks in the domain of Synchronous Data
Flow (SDF) graphs [16], we analyze and model applications
using the Kahn Process Network (KPN) model of computation
[21]. More specifically, we analytically model the throughput
behavior of different mappings of these KPNs, where we apply
process merging (creating compound processes) to capture the
effects of mapping multiple tasks to a single processor . There are
other works on throughput computation, but they are mainly

developed for SDF and CSDF models [17], [18]. A compile-time
approach is presented in [19] to evaluate the system throughput
of Polyhedral Process Networks (PPNs) in order to select a
merging candidate which gives a system throughput as close as
possible to the original PPN. Our work is inspired by this work
but is different as their architecture platform was homogenous
and they do no target run-time mapping. The work in [20]
proposed a throughput model for mapping evaluation during
design time. In that work, there are no constraints in the available
resources in the system and the design space is explored by a
NSGA-II genetic algorithm. The throughput model is used as
fitness function interleaved with simulation. That approach
significantly reduces the number of simulations that are needed
during the process of DSE. In our problem, a resource binding
decision has to be made at run-time and there is not enough time
to perform simulation for this, reducing the search space that can
be covered. Therefore, the analytical throughput model is used to
make a fast decision at run-time about the optimal resource
binding.

III. PREREQUISITES AND PROBLEM DEFINITION

Application task mapping on an MPSoC platform involves

assignment and ordering of the tasks and their communications

onto the platform resources in view of some optimization criteria

like reducing energy consumption, improving compute

performance etc. The optimization is necessary to satisfy

performance constraints of the applications. Therefore, efficient

mapping techniques are required in order to optimize the

performance. The mapping techniques need the following

models and parameters:

 An application model (e.g., Task Graph, Data Flow
Graph, KPN model, etc.).

 An architecture model of the MPSoC platform (e.g.,
topology, number of processing elements (PEs) and their
type, interconnection scheme, etc.).

 The constraints of the application (e.g., compute
performance and/or power requirements, etc.).

 An estimate of the worst-case execution time of the
task/process implementations on different PEs.

In this section, we explain the necessary prerequisites for this
paper and provide a detailed problem definition.

A. Application Model

In this paper, we target the multimedia application domain.
For this reason, we use the Kahn Process Network (KPN) model
of computation [21] to specify application behavior since this
model of computation fits well with the streaming behavior of
multimedia applications. In a KPN, an application is described
as a network of concurrent processes that are interconnected via
FIFO channels. This means that an application can be
represented as a directed graph KPN = (P, E), where P is a set of

processes (tasks) pi in the application and fij ∈ E represents the
FIFO channel between two processes: pi and pj. Fig. 1 illustrates
a KPN for a Motion-JPEG (MJPEG) encoder application.

Fig. 1. KPN Model for an MJPEG encoder.

B. Architecture Model

The MPSoC hardware platform is also modelled as a graph H
= (C, F), where C is the set of processing elements used in the
architecture, F is a multiset of pairs Fij = (ci,cj) ∈ C×C
representing a communication channel (like Bus, NOC, etc.)

between processors ci and cj.

C. Mapping applications to platform architecture

Given the application and architecture models, the mapping
problem can be defined as assigning application processes to
architecture components in such a way that the overall
performance of the application is optimized. In this paper, we
consider the problem of finding the best process merging in a
KPN such that we have an optimal 1-to-1 mapping of (possibly
merged) processes to processors. That is, the proposed algorithm
reduces the number of processes in a KPN by sequentializing a
selected number of processes in a single compound process.
Thus, less processes need to be mapped on the platform’s
processing elements, at the cost of possibly having less processes
running in parallel. This process merging transformation needs to
be applied in case the number of processes is larger than the
number of processing elements, i.e., multiple processes need to
mapped onto a single processing resource. The problem is that
many different options exist to merge two or more processes,
where the challenge is to efficiently find the best solution from
all these options at run-time. Therefore, the main contribution of
this paper is: finding the best task binding for new incoming
applications at run-time when the type and number of available
processors are specified. This goal is achieved by using an
analytical throughput estimation model for KPNs to evaluate the
throughput of different process mergings in order to select the
best option which gives a system throughput as close as possible
to the original KPN.

RGB to

YUV

V-in Quantizer VLE V-out DMUX

DCT Q-Ctrl

The performance of an application can be measured by
considering the execution time or throughput of that application.
It is important to state that our goal is not to compare different
KPNs, but to compare transformed KPNs derived from a single
KPN. Therefore, in the throughput modeling, we do not take into
account the latency of a token, i.e., the time that elapses between
injecting a token in the KPN and the time when that token leaves
the KPN. Thus, we do not calculate the total execution time of
KPNs, but only want to capture the throughput trend instead.

IV. SOLUTION APPROACH

In this paper, the KPN model of computation is considered
for application modeling in which parallel processes
communicate with each other via unbounded FIFO channels. In
the Kahn paradigm, reading from channels is done in a blocking
manner, while writing is non-blocking. To evaluate each possible
mapping, one need to perform throughput analysis for the KPN
and a given mapping, like in [20]. As mentioned before, at run-
time, when a new application arrives to the system, the number
and type of available processors can be less than the number of
processes. In that case, multiple processes have to map onto a
single processor. To model this, we use merging transformations
on the KPN to reflect the mapping of the different processes onto
a single resource. If two processes are mapped onto the same
architectural component, they are merged into a single process in
the KPN, as is illustrated in Fig. 2. Mapping multiple KPN tasks
onto one processor allows for MPSoC implementations with less
processing and communication components, i.e. with reduced
implementation cost, but at the cost of potentially additional
execution overhead. Subsequently, to evaluate the performance
of a mapping decision, we perform throughput analysis on the
transformed KPN. With 3 motivating examples we show that
selecting the best merging option is not a straightforward task as
it depends on the inter-play of many factors.

Fig. 2. Process merging in an example (a) Initial Kahn Process Network (b)
KPN processes (1,2) and (3,4) are mapped onto a single processor.

A. Motivating Examples

The first factor to be considered is the workload of a process.

The workload
iPW of a process Pi denotes the number of time

units that are required to execute a function, i.e., the pure

computational workload, excluding the communication [19]. Fig.
3 shows a KPN consisting of 6 processes. The network has two
data paths DP1 = (P1, P2, P3, P6) and DP2 =(P1,P4,P5,P6) that
transfer an equal number of tokens. The system throughput is
determined by Process P3. The system throughput of the original
KPN is 11 time units (1+2+7+1) needed to produce the first
token for Process P6. Then, it produces a new token each 7
cycles which is dictated by the slowest process P3. If the process
merging transformation is applied to processes P2 and P3, then
compound process P23 becomes the most computationally
intensive process of the network. Processes P2 (2 time units) and
P3 (7 time unit) are put into a sequence and thus it will take
7+2=9 time units instead of 7 time units for a new token to be
produced by process P6. We can see that the throughput of this
network is lower than the original KPN. After merging processes
P4 and P5, the system throughput is not impacted, i.e., it is
identical to the original KPN, because the two merged and
sequentialized processes do not determine the system throughput.
Thus, these processes can be safely merged together and achieve
the same system throughput as the original KPN.

Fig. 3. Process Workload Influencing the System Throughput

The second factor that needs to be taken into account is the
rate of token production [19]. Consider the KPN in Fig. 4. In this
figure, both data-paths transfer a different number of tokens. This
is indicated by the patterns [100] and [011] at which process P1
writes to its outgoing FIFO channels. A ”1” in these patterns
indicates that data is read/written and a ”0” implies that no data
is read/written. So, the FIFO channel connecting P1 and P2, for
example, is written on the first firing of P1, but not in the
remaining two firings. As a consequence of these patterns, the
second data path DP2 becomes the throughput-limiting path for
this particular network and token firings. So, despite the fact that
the largest workload of 7 time units can be attributed to process
P3, process P4 with a workload of 4 is more dominant.
Therefore, processes P2 and P3 can be safely merged as opposed
to P4 and P5 to achieve a system throughput equal to the original
KPN.

Fig. 4. Production Rate Influencing the System Throughput

P1

1

P2

2

P4

4

P6

1

[1]

[1] [1]

τout

P3

7

P5

1

[1]

[1]

[1]
[1]

[1]

[1]

[1]

[1]
τ in

[1]

P1

1

P2

2

P4

4

P6

1

[100]

[1] [1]

τout

P3

7

P5

1

[1]

[1]

[1][011]

[1]

[1]

[1]

[011]

[100]

τ in

P1 P2

P3

P4

P5 P6

 (a)

P1 P2

P3

P4

P5 P6

 (b)

The third factor that needs to be also taken into account is the
sequentialization of FIFO communication [19]. In Fig. 5, process
P1 is the computationally most intensive process with a workload
of 25 time units. A logical choice would be to combine P2 and P3
and not to consider the heavy process P1. For this reason, we
expect performance results that are equally good as the original
KPN. However, when the performance results of both the
original KPN and the transformed KPN are measured [22], the
performance results of the transformed KPN are depreciated.
Despite the workload of compound process P23 being lower than
that of P1, the compound process reads in a sequential order from
two input channels and writes in a sequential order to two output
channels. This means it is the heaviest process in the network.
So, besides sequential execution of the process workloads, the
sequential FIFO reading/writing is another aspect that needs to be
taken into account.

Fig. 5. Sequentialized FIFO Accesses Influencing the System Throughput

B. Throughput propagation to estimate overal throughput

In this paper, the throughput analysis method is based on the
work presented in [19][20], in which the solution approach for
the overall KPN throughput modeling relies on calculating the

throughput
iP of a process (i.e., node) Pi for all KPN processes

and propagation of the lowest process throughput to the sink
process. A depth first search is used to determine the order of the
processes for propagating throughputs. For a process Pi, the
propagation consists of selecting either the aggregated incoming

FIFO throughput
iPFaggr, or the isolated process throughput

iso

Pi
 .

The isolated throughput
iso

Pi
 is the throughput of a process Pi

when it is considered to be completely isolated from its
environment. This means that the isolated process throughput is

determined only by the workload
iPW of a process and the

number of FIFO reads/writes per process execution provided that
no blocking occurs:

WrRd

P

iso

P
CyCxW

i

i ..

1


 (1)

where x and y denote how many FIFOs are read and written
per process execution and CRd and CWr the performance costs for
reading/writing a token from/to a FIFO channel. The throughput
of a FIFO-channel f is determined by the throughput of the
processes accessing it:

),min(Rd

f

Wr

ff   (2)

Subsequently, the throughput
iP of a process Pi is

determined by either the throughput of the FIFOs from which
process Pi receives its data or by the computational workload of

the process itself, i.e.,
iso

Pi
 . For merged KPN processes, the

incoming FIFO throughput is the aggregated throughput of the
merged channels and the isolated throughput is calculated using
the aggregated computational workloads. Consequently, the
throughput associated to each process in a KPN graph is
computed as:

),min(,

iso

PPFaggrP iii
  (3)

C. Handling cycles

It is possible that the aforementioned merging
transformations to account for mapping decisions might
introduce cycles in the transformed KPN. As shown in Fig. 6,
processes 1, 3 and 5 are mapped to the same processor, resulting
in a KPN with two cycles. Cycles in a KPN are responsible for
sequential execution of some of the processes involved in the
cycle. The sequential execution can vary from a single initial
delay to a delay at each execution of some of the processes. For
accurate throughput modeling, these cycles must be taken into
account.

Fig. 6. Transformation into a cyclic KPN

We therefore approximate the isolated throughput of a
process Pi that is member of a cycle by:






CycleP

iso

P

iso

Cycl

j

j

iP 


1
 (7)

From equation 7, it is clear that the isolated throughput of a

cycle is lower than the regular isolated throughput (
iso

Pi
) of any

of the processes involved in the cycle. It also implies that the

isolated throughput of a cycle can be lower than the isolated

throughput of the bottleneck process. This is an important

observation because, in such a case, the throughput of the cycle

P1

25

P2

10

P3

12

P4

6

[1]
[1]

[1]

[1]

τout

[1]

[1]
[1]

[1]

τ in

P1 P2 P4
τ in

P3 P5
τout

P1,3,5 P2
τ in

P4

τout

P6

P6

will determine the overall KPN performance. To conclude, the

throughput associated to each process Pi will be computed as:

),,min(,

iso

PPFaggr

iso

CyclP iiiPi
  (5)

For example, in Fig. 6, two cycles are generated due to the
KPN transformation. In this case, we assume that the resulting

iso

Cycl
iP

 for a process iP would be

))(),...,1(min(niso

Cycl

iso

Cycl

iso

Cycl
iPiPiP

  (6)

Where)1(iso

Cycl
iP

 ,...,)(niso

Cycl
iP

 are all the throughputs of the

cycles involving process Pi .

Algorithm 1: Run-time mapping algorithm using KPN Throughput

Estimation Pseudo-code

Input: Application Graph (KPN), Architecture Graph, Available
Resources

Output: Best resource binding and mapping, best throughput

Requires: WPi, the computational workload of all processes.

for l in itertools.product(Allocated_Resources, repeat=#Processes):
 h = list(l)

 if len(set.intersection(set(h),set(Allocated_Resources))) ==

 len(Allocated_Resources):
 gmapping = h;

 Task_List ← Create topological ordering for KPN

 for all processes Pi ∈ Task_List do

iso

Pi
 = set isolated throughput(Pi , WPi))

 Set for all incoming FIFOs fj

 τPi = min (τFaggr,Pi ,
iso

Pi
)

 Set for all outgoing FIFOs fj of Pi.

 end for

 return Throughput = τsink

 if Throughput < best_Throughput:

 best_Throughput = Throughput
 best_map = gmapping

The pseudo code of the run-time algorithm to select the best
binding using the described analytical throughput calculation and
propagation method is shown in Algorithm 1. The KPN model of
application and available resources in the system must be
specified as algorithm input. The best mapping and resource
binding will be determined by the algorithm. Here, the space has
been explored exhaustively using itertools.product() function of
Python. Using analytical throughput estimation as fitness
function during the search for best mapping can yield significant
efficiency improvements.

V. EXPERIMENTS AND RESULTS

For our experiments, three KPN models of synthetic
applications with different number of processes (tasks) and
different workload of processes and different rates of token
production are used. Furthermore, a Motion JPEG (MJPEG)
encoder is used as a real multi-media application. The target
architecture that has been considered in our experiments consists
of a MPSoC platform with five heterogeneous processors, i.e.,
five different processor types. These processors are connected via
a bus to a shared memory. For all experiments, a PC with a
2.9GHz Intel Core i7 CPU has been used.

The open-source Sesame system-level MPSoC simulator [23]
is deployed to evaluate mappings. The Sesame modeling and
simulation environment facilitates efficient performance analysis
of embedded (media) systems architectures. It recognizes
separate definitions of application and architecture models in
which an application model describes the functional behavior of
an application and the architecture model defines architecture
resources and captures their performance constraints. After
explicitly mapping an application model onto an architecture
model, they are co-simulated via trace-driven simulation. This
allows for evaluation of the system performance of a particular
application, its underlying architecture, and mapping.

Fig. 7. KPN model of Applications used for experiments

In the first experiment, it is supposed that an application as
modeled in Fig. 7(a) arrives to the system at run-time and only
three processors, identified by the IDs ‘1’, ‘2’ and ‘4’, are
available to execute this incoming application. Here, 36 different
configurations exist to merge processes and form a mapping.
Exhaustively evaluating these mappings with the Sesame
framework takes about 32 minutes to select the best mapping.
The simulation time grows exponentially with the number of
application tasks and available resources. Therefore, it is not
feasible to use such simulations to make decisions at run-time.
By evaluation with throughput model, it takes 0.42 second to
select the best binding solution. TABLE I. shows the number of
points which exist to evaluate, time needed for evaluation by
proposed run-time algorithm based on throughput estimation
model and Sesame simulation.

 As discussed in the previous section, decision making
regarding process binding to find the best mapping can
efficiently be realized at run-time using the discussed analytic
throughput model. For example, application (a) has four

P1 P2 P4
τ in

P3

τout

P1 P2 P4
τ in

P3 P5

τout

P1 P2 P4
τ in

P3 P5
τout

P6

(a)

(b)

(c)

[1]

[1]

[1][1]

[1][100] [100]

[100] [1][10] [100] [10]

application tasks and for each task we assign the identifier of the
processor to which the task is mapped. For instance, the mapping
{1,1,1,2} indicates that tasks 1,2 and 3 are mapped to processor
‘1’, while tasks 4 is mapped to processor ‘2’. For this
application, our run-time algorithm based on the throughput
model has found the {1,2,2,4} mapping as the optimal binding
solution. By exhaustively searching and simulating all mappings
with Sesame the same {1,2,2,4} mapping has also been selected.
We have also performed the throughput model evaluation and
Sesame simulation validation for applications (b) and (c) in Fig.
7, where we assumed that the available resources in the system
are <1,3> and <1,2,3,4>, respectively. For these cases, the
mappings obtained from Sesame simulation and throughput
estimation are very close to each other in term of performance.
The performance accuracy for these applications are reported in
TABLE II.

TABLE I. TIME NEEDED TO FIND BEST MAPPING

TABLE II. COMPARISION OF MAPPING OBTAINED BY SIMULATION AND

THROUGHPUT MODEL EVALUATION

In addition, the KPN of the MJPEG application is used as
shown in Figure 1. To compare the performance accuracy of this
application, consider Fig. 8. In this experiment, we assume the
allocated resources available at the system are <1,2,4>. This
figure shows the normalized performance ranking of ten random
mappings when evaluating the mappings using Sesame
simulations (in red) or using the throughput model (in blue).
Evidently, the normalized ranking of the mappings for the
MJPEG application is correct most of the times.

VI. CONCLUSION

In this paper, we have proposed a run-time resource binding
for Heterogeneous MPSoC-based embedded systems in order to
improve their performance. This is done by throughput modeling
of Kahn process networks to evaluate process merging
transformations and supporting new arriving applications. Our

approach can be used at run-time to quickly evaluate different
resource bindings, taking into account all factors that influence
the throughput. Therefore, we can accurately capture the
throughput trend and select the best possible mapping as
illustrated with the experiments.

Fig. 8. MJPEG application normalized mapping using Sesame simulation

and throughput estimation model

REFERENCES

[1] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-core Systems: Survey of Current and Emerging Trends,” in
Proceedings of ACM Design Automation Conference (DAC), pp. 1:1–1:10,
2013.

[2] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee,
Q. Xu, and L. Huang, “Mapping of applications to MPSoCs,” in
Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software
Codesign and System Synthesis (ISSS+CODES), pp. 109–118, 2011.

[3] R. Marculescu, U. Ogras, L. Peh, N. Jerger, and Y. Hoskote, “Outstanding
Research Problems in NoC Design: System, Microarchitecture, and Circuit
Perspectives,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 28, no. 1, pp. 3–21, 2009.

[4] J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. Ascheid,
H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: an integrated framework for
MPSoC application parallelization,” in Proceedings of the Design
Automation Conference, pp. 754–759, 2008.

[5] “IMEC MPSoC Mapping Tools,” 2008,
http://www.imec.be/ScientificReport/SR2008/HTML/1225004.html (Last
visited: 23 December, 2011).

[6] A. K. Singh, W. Jigang, A. Kumar and T. Srikanthan, “Run-time mapping
of multiple communicating tasks on MPSoC platforms”, Procedia
Computer Science, vol. 1, no. 1, pp. 1019-1026, 2010.

[7] L.T. Smit, J.L. Hurink and G.J.M. Smit, “Run-time mapping of
applications to a heterogeneous SoC”. In: International Symposium on
System-on-Chip (SoC'05), 2005.

[8] P.K.F. Hölzenspies, L. Johann, J.K. Hurink and G.J.M. Smit, "Run-time
spatial mapping of streaming applications to a heterogeneous multi-
processor system-on-chip (MPSoC)." In Proceedings of the conference on
Design, automation and test in Europe, pp. 212-217. ACM, 2008.

[9] M. A. Faruque, R. Krist and J. Henkel, “ADAM: run-time agent-based
distributed application mapping for on-chip communication”, In 45th
ACM/IEEE Design Automation Conference, (DAC'08), pp. 760-765, 2008.

[10] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for dynamic task
mapping in NoC-based heterogeneous MPSoCs”, In 18th IEEE/IFIP

Application
points to

evaluate

Time

(Throughput

estimation model)

Time

(Sesame

Simulation)

App1 36 0.42 sec 32 min

App2 30 0.40 sec 25 min

App3 1560 1.92 sec 8 h 54 min

MJPEG 540 0.91 sec 3 h 12 min

Application
Allocated

Resources

Best

Mapping

(Sesame)

Best

Mapping

(Throughpu

t model)

Performance

Accuracy

App1 <1,2,4> {1,2,2,4} {1,2,2,4} 95%

App2 <1,3> {1,1,3,3,1} {1,1,3,3,3} 97%

App3 <1,2,3,4> {1,3,2,4,4,2} {1,3,2,4,4,4} 94%

MJPEG <1,2,4> {1,1,4,2,4,4} {1,1,2,2,4,4} 87%

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.L.%20Hurink.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.J.M.%20Smit.QT.&newsearch=true

International Workshop on Rapid System Prototyping (RSP 2007), pp. 34-
40, 2007.

[11] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC
platforms”, Journal of Systems Architecture, vol. 56 no. 7, pp. 242-255,
2010.

[12] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto and A. Tumeo, “Ant colony
heuristic for mapping and scheduling tasks and communications on
heterogeneous embedded systems”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 29, no. 6, 2010.

[13] L. Huang, and Q. Xu, “Energy-efficient task allocation and scheduling for
multi-mode MPSoCs under lifetime reliability constraint”. In: Design,
Automation and Test in Europe (DATE'10), pp. 1584-1585, 2010.

[14] J. J. Chen and L. Thiele, “Platform synthesis and partitioning of real-time
tasks for energy efficiency”. Journal of Systems Architecture, vol. 57, no.
6, pp. 573-583, 2011.

[15] M. Kim, S. Banerjee, N. Dutt and N. Venkatasubramanian, “Energy-aware
cosynthesis of real-time multimedia applications on MPSoCs using
heterogeneous scheduling policies”, ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 2, 2008.

[16] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. S. Bhattacharyya, “A
generalized static data flow clustering algorithm for mpsoc scheduling of
multimedia applications”, In Proceedings of the 8th ACM international
conference on Embedded software, pp. 189–198, , 2008.

[17] A. H. Ghamarian, M. C. Geilen, W. T. Basten and S. Stuijk, S, “Parametric
throughput analysis of synchronous data flow graphs,” In Design,
Automation and Test in Europe, pp. 116–121, 2008.

[18] A. Moonen, M. Bekooij, R. van den Berg and J.A. van Meerbergen,
“Practical and accurate throughput analysis with the cyclo static dataflow
model,” In 15th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS'07),
pp. 238–245, 2007.

[19] S. Meijer, H. Nikolov, and T. Stefanov, “Throughput modeling to evaluate
process merging transformations in polyhedral process networks”,
In Design, Automation & Test in Europe Conference (DATE’10), pp. 747–
752, 2010.

[20] R. Piscitelli and A. D. Pimentel. "Design space pruning through hybrid
analysis in system-level design space exploration." In Design, Automation
& Test in Europe Conference (DATE’12), pp. 781-786, 2012.

[21] G. Kahn, “The semantics of a simple language for parallel programming”, I
In Information Processing, pp. 471-475, 1974.

[22] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and automated
multiprocessor system design, programming, and implementation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 27, no. 3, pp. 542–555, 2008.

[23] A.D. Pimentel, M. Thompson, S. Polstra, and C. Erbas, “Calibration of
abstract performance models for system-level design space exploration,”
Journal of Signal Processing Systems, vol. 50, no. 2, pp. 99-114, 2008.

