
SysRT: A Modular Multiprocessor RTOS Simulator
for Early Design Space Exploration

Jun Xiao∗, Andy Pimentel∗ and Giuseppe Lipari†
∗University of Amsterdam, Amsterdam, The Netherlands

†University of Lille, Lille, France
Email: J.Xiao@uva.nl, A.D.Pimentel@uva.nl, Giuseppe.Lipari@univ-lille1.fr

Abstract—Modern embedded systems increasingly accommo-
date several applications running concurrently on a multiproces-
sor platform managed by a real-time operating system (RTOS).
The increasing design complexity of such systems calls for good
design tools to evaluate real-time performance during the very
early stages of design. To this end, fast system-level simulators
that allow for efficient hardware/software co-simulation are
essential. In this paper, we present SysRT, a generic and high-
level RTOS simulator that is highly suited for early design
space exploration (DSE). The simulator contains different types
of application models and a modular RTOS kernel model,
all developed in SystemC. Efficient and precise modeling of
preemptive scheduling is achieved via an event-driven simulation
approach, allowing simulations to be performed much faster than
cycle-accurate simulations. At the same time, the kernel model is
developed to be generic and modular to support for easy plug-
in of new schedulers as well as new resource sharing protocols.
Comparing SysRT with state-of-art simulators, it achieves faster
simulation speeds with an identically small simulation error. We
demonstrate the flexibility of SysRT and its benefits for early
DSE using experiments with a mixed workload executing on
multiprocessor platforms with different numbers of cores.

I. INTRODUCTION

In the past years, the design of systems-on-chip (SoCs)
has become increasingly complex. Hardware architectures are
migrating from simple single-core based systems to more
complex multi-core architectures. In the embedded systems
domain, together with the increasing hardware complexity,
the software complexity has also been growing dramatically.
Modern embedded systems increasingly execute several ap-
plications of different types concurrently on the underlying
computing platform. These applications can have different
execution requirements. For example, control applications typ-
ically are hard real-time applications and thus have stringent
timing constraints, while best-effort applications prefer a short
task response time. These systems are usually managed by a
Real-Time Operating System (RTOS).

Raising the level of abstraction is generally considered as
a solution to address the design complexity, thus reducing
time-to-market. To provide a simulation environment and to
help in the design space exploration (DSE) at the early stages
of design, various system-level design languages (SLDL) and
methodologies have been proposed, such as SystemC [1] and
SpecC [2]. Originally, SLDLs primarily focused on hardware
modeling and did not properly address the modeling of
software aspects. Later efforts introduced methods to model

timing behavior of software in SLDLs. But most solutions
still lack direct support for simulating the real-time behavior
of concurrent applications, such as preemption or scheduling
within the RTOS. To verify that the timing requirements posed
by applications are met during the early stages of design, a
fast system-level simulator, capturing both the modeling of
software and hardware, is needed.

In this paper, we present SysRT [3], a generic and modular
high-level RTOS simulator that is highly suited for early DSE
to study RTOS design alternatives. The SystemC-based SysRT
simulator improves on current state-of-art RTOS simulators by
providing the unique combination of being, at the same time,
highly accurate, efficient and easy to extend to facilitate early
DSE. SysRT contains different types of application models,
an RTOS kernel model and an abstract architecture model.
Efficient and precise modeling of preemptive scheduling is
achieved via an event-driven simulation approach, which
utilizes scheduling events associated with task states and
interrupts. At the same time, the kernel model is developed
to be generic and modular to support for easy plug-in of
new schedulers as well as new resource sharing protocols. We
have compared the accuracy and simulation performance of
SysRT with state-of-art RTOS simulators, of which the results
show that our simulator is faster while still producing the most
accurate results.

The rest of the paper is organized as follows. Section II gives
an overview of the related work. The overall RTOS simulation
framework is described in Section III. Section IV describes
the application models. In Section V, the kernel model is
detailed, and Section VI presents a range of experimental
results. Section VII concludes the paper.

II. RELATED WORK

The modeling and simulation of RTOS with SLDL have
received widespread attention from many researchers, [4],
[5], [6]. In [7], the modeling capability of SystemC has
been extended by RTOS services to provide more realistic
software modeling features. However, to realize features such
as preemption and scheduling, a scheduler model is invoked
every simulation quantum, similar to the way a real OS
scheduler behaves. This quantum-granularity based simulation
approach therefore introduces large overheads, resulting in low
simulation speeds. Later efforts such as [8], [9] focused on
improving the accuracy of high-level simulation via while

maintaining high performance. However, these works still
trade-off speed for accuracy.

In [10], a host-compiled multi-core system simulator is
presented for early real-time performance evaluation. They
present an integrated approach for automatic timing granular-
ity adjustment to optimally navigate simulation speed versus
accuracy. This approach switches between prediction mode
and fallback mode. In prediction mode, a prediction of the next
scheduling points is performed based on the simulation param-
eters and states of periodic tasks. Schirner et al. [11] introduce
preemptive scheduling in abstract RTOS models using Result
Oriented Modeling (ROM). To speed up simulation, ROM
optimistically predicts the finish time of a process already at
the start time by a ”run to finish” assumption. ROM records
any possible preemption that may alter the predicted outcome.
While time passes, it validates the prediction and takes cor-
rective measures to ensure accuracy. However, predictions of
preemption points are difficult if the simulation uses more
complex task models like Directed Acyclic Graphs (DAGs)
and resource sharing models as supported by SysRT.

SysRT provides a framework of RTOS services in SystemC
that allows developers and researchers to easily explore and
validate embedded RTOS design alternatives. Compared with
quantum-granularity based simulators and prediction-based
simulators, SysRT has two main advantages: (i) it has been
developed to be generic and modular to support for easy
plug-in of new schedulers as well as new resource sharing
protocols. Thus, it is more flexible to simulate various real-
time scheduling algorithms; (ii) it typically achieves higher
simulation speeds via an event-driven simulation approach
while obtaining identical accuracy results.

III. MODELING FRAMEWORK

SysRT consists of three layers, as shown in Fig. 1: the
application layer, the kernel layer, and the architecture layer.
In the application layer, the user can model a set of processes.
A process can be a single job instance (named ST in Fig. 1),
a Periodic Task (PT) of which job instances are invoked
periodically, or a process with execution precedences modeled
by a DAG, as will be explained in Section IV.

The application layer interacts with the RTOS kernel layer.
The application informs the kernel of its execution states,
while the kernel model returns task scheduling decisions. We
model four functionalities of the OS kernel, namely process
management, resource management, interrupt handling and
real-time scheduling. A queue in the OS kernel is used to
order the tasks that become ready for execution. The OS
kernel further has a resource manager sub-module that controls
access to resources shared between tasks. The resource block
queues store tasks waiting to get access to a particular resource
due to mutual exclusion. Moreover, interrupt service routines
are defined in the OS kernel model. When an interrupt is
generated, either from software or hardware, the OS kernel
schedules the corresponding interrupt handler depending on
the handler priority. Different real-time (preemptive) sched-
ulers are implemented in the scheduling module of the OS

kernel model. The architecture layer models the hardware
computing platform. It specifies the number of cores in the
SoC platform, the interconnection between the cores, and
the hardware interrupt interfaces. The current architecture
model mainly accounts for the scheduling overhead including
migration and context switching overhead after a scheduling
decision is made by the OS kernel. The implementation details
of the architecture model are beyond the scope of this paper.

P 0
	

P 1
	

P 2
	

P 3
	

	 M
em

or
y 	

…	
Process	 Management	

Interrupt	 Handling	

Resource	 Management	

…	

Scheduling	

wait	 ('me)	 	 	 	 	 EVENT.no'fy('me)	
	 	 	 	 EVENT.cancel()	

SystemC	

Resource	 Block	 Queue	

Task	 Ready	 Queue	

App	 3:DAG	

App	 2:PT	

App	 1:ST	

Task	 Kernel	 Architecture	

Scheduling	 Overhead	
•  Context	 switch	
•  MigraLon	 cost	

	 	 Architecture	 Model	
• 	 	 	 	 Number	 of	 cores	 	
• 	 	 	 	 InterconnecLon	

Fig. 1: Simulation framework of SysRT.

Application layer, OS kernel layer and architecture layer
are implemented on top of the basic classes and primitives
provided by SystemC. We use event-driven simulation, where
events are modeled by the sc event class. This class allows
explicit triggering of events by means of a notification method.
The Event.notify(sc time t) method notifies or posts an event
after time t. If a simulation process is set to be sensitive to an
event, then this process acts as the corresponding event han-
dler. When an event occurs, the corresponding event handler
is invoked and scheduled by the SystemC simulation kernel.
Scheduled events may be canceled with the event.cancel()
method.

Modelling preemption is always a challenging topic for a
RTOS simulator. Most RTOS simulators that are built on top
of SystemC use wait(sc time time) to model task execution
latency. If a task is preempted for some time, then the
preemption time is counted as extra task execution latency,
resulting in another execution of wait(sc time time) for that
task. However, this approach comes with a speed penalty
due to the frequent computations of the preemption time and
the frequent executions of wait(sc time time). Unlike this
approach, SysRT adopts an event-driven approach that uses
only sc event to model preemption. Events are extracted from
the task execution states, which will be discussion soon. Once
a task is preempted, the only work to do is to cancel the
task finishing event. When this task is scheduled again, a new
task finishing event is posted after the remaining execution
time. compared with the wait(sc time time) method, this event-
driven approach introduces less simulation overhead.

IV. APPLICATION MODEL

The Application is a program that contains a set of coor-
dinated tasks modeled by the user through the Task module.
In this work, the actual task functionality is abstracted away,
and only the timing of task execution is simulated. Here, we
assume that timing information of task execution latencies are
estimated or known a priori.

A. Task Model

In the task model, three kinds of constraints specified on
real-time tasks are considered: timing constraints, precedence
relations, and access control on shared resources. Timing
constraints, such as execution times and job deadlines, are
specified at the creation of a real-time task object. Precedence
constraints are realized by a DAG task model [12]. Contention
on shared resources is simulated by adding wait/signal instruc-
tions in the task execution routine, as will be explained below.

A task module contains a list of high-level instructions that
are executed in sequence. Instruction sub-modules are added
to a task module by the InsertCode method. For example, con-
sider a task T1 that computes for 500 milliseconds, then tries
to get access to a shared variable R1 after which it occupies
the resource for 50 milliseconds once the access is granted,
and after releasing the shared resource the task finishes its
current job by computing for another 300 milliseconds. This
can be modeled by: T1.InsertCode(“execute(500); wait(R1);
execute(50); signal(R1); execute(300)”). Details about the in-
struction module will be described in Section IV-B.

The simulation is driven by events generated by the first
job of each task. The typical events generated for a task are
illustrated in Fig. 2. A job arrival event is posted at the
activation offset (start time) φi by the start of simulation()
method in the Task module which is called at the beginning
of the simulation. A job arrival event is notified every time
when the task becomes ready to execute. Between the job
arrival time and finish time, a job may miss its relative
deadline. For such cases, a deadline miss event is posted
at time φi+Di, where Di is the relative deadline of task i.
The action of the deadline miss event handler is specified
by the user. Possible actions are to kill the job instance,
to ignore the deadline miss or even to stop the simulation.
Once a job starts its execution, a job end event is posted at
time φi+Ci, where Ci is the execution latency of task i. The
responsibility of the job end event handler is to cancel the
pending deadline miss event and to call the kernel interface
to inform it to schedule another task. A schedule event is
posted by the OS kernel to a specific task if it was selected
to be scheduled. The schedule event handler schedule() then
schedules the instructions of the task. A deschedule event
is generated if a task is preempted by another task with a
higher priority. The deschedule event handler deschedule()
cancels the pending job end event, records the current time
stamp and computes the executed job length. When the task
is re-scheduled, a new job end event is posted for the job’s
remaining execution time.

Fig. 2: Task events.

The UML class diagram of task modules is shown in
Fig. 3(a). AbsTask defines the interface that must be imple-

DagNode

PeriodicTask

Task

sc_module AbsRTTask

AbsTask

SMPKernel

UNPKernel

sc_module AbsKernel

PartiKernel

(a) (b)

Fig. 3: (a) Task module and (b) Kernel module.

mented by a general task. It includes an activate() method,
which activates the task, as well as schedule()/deschedule()
methods, which modify the task state and related variables
when a task is scheduled/descheduled. AbsRTTask defines the
interface that should be provided by a real-time task and
contains methods for getting the absolute and relative deadline
of a task.

Periodic Task Model: Periodic tasks consist of a number
of instances or jobs that are regularly activated at each period.
Periodic tasks are reactivated by the job arrival event handler,
which posts a new job arrival event at the next period.

DAG Task Model: A DAG is a graph of real-time subtasks
(also called nodes) that captures their execution precedences.
The subtasks share the same deadline and period but differ
in their WCET. The DagNode module is used to construct a
DAG application model in SysRT.

B. Instruction Model

Instructions inside tasks are modeled using the Instruc-
tion class. There are two kinds of instructions. First, exe-
cute(sc time time) is used to model the execution time required
to execute a real code segment in an application. It can be
described by a random variable, making it is possible to
model a portion of code with an arbitrarily distributed random
execution time. The other instruction type is wait(Resource
res)/signal(Resource res), which models the request or release
of a shared resource. A task executes all the instructions
in sequence. A job instance is completed only after its last
instruction was executed. If a task is activated again (i.e. firing

a new job), then the instruction pointer is reset to the first
instruction.

The schedule/deschedule event propagates from a task to
its instructions. If a task is selected to execute at time t,
the task calls its instruction interface and notifies a schedule
event in the Instruction module. Suppose that the execution
duration of the instruction is instr time, the schedule event
handler in the Instruction module will post an end instr event
at time t+instr time. The end instr event handler increments
the instruction pointer to the next instruction in the task
and posts a new end instr event for the next instruction. If
there are no more instructions to execute, the interface of
the task module is invoked and a job end event is posted.
During instruction execution, a task may be preempted and
rescheduled. A similar event propagation mechanism between
a task and its instructions applies to the deschedule event.

Based on the assumption that the actual requesting and
releasing of a resource takes zero time, the end instr event
is notified immediately if the current scheduled instruction
is wait or signal. The end instr event handler for the wait
instruction communicates with operating system kernel by
calling the interface request resource(Kernel, Resource, re-
source quantity). As a result, the task gets the resource if a
sufficient quantity of that resource is available. Otherwise, the
task is blocked by the operating system kernel. For the signal
instruction, the end instr event handler invokes the interface
release resource(Kernel, Resource, resource quantity) in the
operating system kernel module. The task releases the resource
quantity used.

V. RTOS KERNEL MODEL

Fig. 3(b) shows the UML class diagram of the OS kernel
module. The AbsKernel class is an abstract class that defines
the minimal functionality of a kernel. The UNPKernel and
SMPKernel classes are implemented to model an OS kernel
running on a uniprocessor system (UNP) or a symmetric mul-
tiprocessor system (SMP), respectively. Traditional real-time
multiprocessor schedulers can be classified in two categories:
global and partitioned schedulers. Global Earliest-Deadline-
First (G-EDF) and Partitioned-EDF (P-EDF) are examples of
each category. The SMPKernel class models a general OS
kernel with a global scheduler, whereas the PartiKernel class
models an OS kernel with partitioned schedulers.

In this work, we mainly consider services of process
management, resource management, interrupt handling and
real-time scheduling provided by the OS kernel. We have
developed the modules of the OS kernel model with the aim
to provide a flexible and extendable framework to facilitate
implementation, testing and evaluation of different real-time
schedulers with various resource sharing protocols.

A. UNPKernel Model

The UNPKernel module is developed to model a real-
time OS kernel running on a uniprocessor. It contains sub-
components such as the Scheduler module and the ResMan-
ager module that is responsible for performing resource access

related operations. These sub-components are set through
methods set sched (Scheduler* s) and set resmanager (Res-
Manager* rm).

At initialization, a CPU pointer, which points to the mod-
eled architecture, is created in the UNPKernel module to get
information of the architecture platform. Since at most one
task is allowed to execute at a time in a uniprocessor system,
one pointer cur exe is enough to track the current executing
task.

For the communication with tasks, the UNPKernel module
provides several functions. These include the functions Ar-
rival(AbsRTTask* t) and End(AbsRTTask* t). The function Ar-
rival(AbsRTTask* t) is called by the task arrival event handler.
This method inserts the task in the ready queue, followed by
a function call to make a schedule decision. End(AbsRTTask*
t) is invoked by a task when the task completes its execution.
This function removes the task from the ready queue and sets
the cur exe pointer to null. To suspend a task, the UNPKernel
class implements a Suspend(AbsRTTask* t) function. This
function removes the task from the ready queue. If the task
was executing, then it will first be descheduled. When a task
is resumed (from suspension by the OS or from being blocked
on a resource), the kernel reactivates the task by calling
Activate(AbsRTTask* t) which simply inserts the task in the
ready queue and changes the task’s state to ready.

The operation of allocating the CPU for task execution is
referred to as dispatching. The dispatching activity is simulated
by the dispatch() function. Any circumstance that may change
the current executing task should invoke dispatch() to make a
scheduling decision:

• when a new task becomes ready;
• when a task finishes its current job;
• when a task is blocked;
• when an interrupt arrives, activating its corresponding

interrupt handler.

On uniprocessor systems, just one execution flow can progress
at a time. Therefore, dispatch() is simple in UNPKernel as
compared with its implementation in other kernel modules.
It simply compares the executing task with the first task in
the ready queue. If they are different, it forces a context
switch, which involves the participation of architecture model
to simulate the context switch overhead. When the context
switch has finished, the kernel schedules the newly dispatched
task. Important to realize is that the dispatch() function has
been decoupled from the scheduler that actually determines
the order of the tasks in the ready queue, according to the
implemented scheduling algorithm.

B. SMPKernel Model

The SMPKernel is a module modeling a real-time kernel
with a global scheduler for (SMP) multiprocessor systems.
On multiprocessor systems, multiple tasks are allowed to run
concurrently. The SMPKernel module keeps track of the status
of each individual processor, storing information about which
task is executing on which processor, which tasks are about

to be dispatched to which processor, and whether or not
processors are in the process of performing a context switch.

The functions provided to the Task module and methods
related to process management in the SMPKernel module
are similar to those in the UNPKernel module. However,
the function to make a scheduling decision, dispatch(), is
more complicated. Pseudocode 1 shows the procedure of the
dispatch() method in SMPKernel. In this code, the variable
newtasks denotes the number of tasks that are not executing
but need to be scheduled. Assuming a simulated architecture
with m processors, newtasks therefore equals to the number
of tasks that are among the first m tasks in the task ready
queue that are not yet executing or being dispatched. Newly
scheduled tasks are dispatched to free processors if there are
any available. If all processors are busy, then task preemption
will take place.

Pseudocode 1: The procedure of dispatch() with a system architecture with
m processors

1: while newtasks > 0 do
2: tnew ← first non-executing task in ready queue that

needs to be scheduled (i.e., among the first m entries)
3: c ← find next free core {return NULL if no more free

cores}
4: if c == NULL then
5: tremove ← first executing task in ready queue not

part of the first m entries ;
6: c ← get the index of core executing task tremove

7: end if
8: dispatch to proc(tnew, c)
9: newtasks ← newtasks - 1

10: end while

The dispatch() method decides on the index of the selected
cores for task dispatch. By calling dispatch to proc(Task *
newtask, CPU *c), the OS kernel also deschedules any task
currently executing on processor c and computes the schedul-
ing overhead including the context switch and task migration
costs. The computed scheduling overhead is passed from the
kernel layer to the architecture layer, which subsequently
simulates this overhead. Hereafter, a newly dispatched task
is selected to start execution on processor c. The procedure
of dispatch to proc(Task * newtask, CPU *c) is shown in
Pseudocode 2.

C. PartiKernel Model

In a partitioned scheduler, ready tasks are first inserted in
a global ready queue. Through this global scheduler, ready
tasks are then dispatched to a specific local task queue
according to the task’s affinity. Each processor has its own
local queue in which the order depends on the local scheduler.
Each processor may use a different scheduler. Since the
structure of such a partitioned scheduler is different from the
global scheduler, a different kernel module, PartiKernel, has
been implemented to facilitate the development of partitioned
schedulers. The interface provided to the Task module and

Pseudocode 2: The procedure of dispatch to proc(Task ∗
newtask, CPU ∗ c)

1: AbsRTTask current task ← the task currently executing
on core c

2: if current task 6= NULL then
3: deschedule current task
4: end if
5: if newtask == NULL then
6: RETURN
7: else
8: prepare newtask to execute on core c
9: end if

10: Compute the scheduling overhead
11: Send the overhead to architecture model

functions related to process management in the PartiKernel
module are slightly different than those in SMPKernel due
to task affinity. However, the dispatch() method has been
completely re-implemented. If a task is inserted to or is
removed from a local queue, instead of calling dispatch(),
PartiKernel invokes a dispatch(CPU *cpu) function that passes
the task affinity as a parameter to make a local rescheduling
decision for the processor in question. Changes on a local
queue have no effect on the ordering of other local queues.
In this sense, the dispatch(CPU *cpu) function is similar to
dispatch() in UNPKernel.

D. Scheduler Model

When a task becomes ready to execute, it is inserted to
the ready queue managed by the scheduler, which is a sub-
component of a kernel module. The ready queue is ordered
by task priority assigned by the scheduling algorithm. At a
scheduling point, the scheduler (i.e. dispatcher) is responsible
for selecting the task(s) at the front of the ready queue to
execute. In SysRT, the following schedulers have currently
been implemented:

• Global Earliest Deadline First [13] (G-EDF)
• First Come First Out (FIFO)
• Fixed Priority Scheduler (FPS)
• Rate Monotonic Scheduler (RMS)
• Round Robin (RR).
• Proportional Fairness [14] (P-FAIR)
• Partitioned-based Scheduler (PS) including P-EDF
• Non-Preemptive EDF (NP-EDF)

E. Resource Management Model

The Resource module models a resource shared by two or
more tasks. It provides an interface to the OS kernel module
to, for example, perform locking operations for providing
access to these shared resources. The resource availability
is checked by the method IsAvailable(int amount). It returns
false if the quantity of a certain resource is not sufficient.
Every task uses resources through a critical section sur-
rounded by wait and signal instructions. If the executing
task requests/releases a certain resource quantity, the resource

manager in the OS kernel invokes the interface of the resource,
lock(int amount)/unlock(int amount), to decrease/increase re-
source availability for that particular resource.

The ResManager module models a resource manager that
implements the resource accessing protocol. It contains multi-
ple block queues, each associated with a particular resource to
store tasks blocked on that resource. These block queues are
ordered by task priority. Different resource sharing protocols
can be implemented by the ResManager module. Taking the
Priority Inheritance Protocol [15] as an example, requesting
a resource is implemented by first checking the availability
of the requested resource. If there are not enough available
resources, the resource manager calls the kernel interface to
suspend the task that is requesting the resource. Furthermore,
the priority of the resource owner is changed to the maximum
priority of those tasks that are blocked for the resource. If
the requested resources are available, the resource manager
invokes the unlock interface of the resource and grants the
resources to the task. Releasing a resource unlocks the re-
sources and changes the priority of the releasing task back
to its original priority, after which it checks if the resource
block queue is empty. If the queue is not empty, the resource
manager removes the first task from the block queue, and
activates the task through the kernel interface and locks the
resource for the new owner.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy and simulation
performance of SysRT, and demonstrate its flexibility and
benefit in DSE. All experiments were conducted on a 3.4GHZ
Intel Core I5. The default time unit of the task parameters in
the following experiments is the simulation resolution set by
SystemC.

A. Simulation performance and accuracy

The first experiment is to evaluate the accuracy and sim-
ulation performance of SysRT by comparing it with four
other simulators: the state-of-art (prediction-based) HCSim
simulator [10] and three conventional quantum-granularity
based simulators (also described in [10]) with a simulation
quantum of 1ms, 10ms and 100ms, respectively. All simulators
model a Partitioned-Fixed Priority scheduler, where tasks have
been uniformly partitioned over the simulated processors. Task
execution costs and periods, priorities are randomly distributed
over the intervals [50ms, 150ms], [100ms,10s] and [1, 100],
respectively. The simulated time is 10 minutes. Note that all
these tasks are not necessarily real-time tasks.

Figures 4 (a), (b) and (c) show the simulation times taken
by each simulator simulating a different number of processors,
ranging from 1 to 16, where the number of tasks is 16, 100 and
1000. Figure 4 clearly shows that SysRT achieves the fastest
simulation speed in these experiments. Both SysRT and HC-
Sim are scalable with respect to the number of processors and
the number of tasks. The simulation speed of the conventional
simulator with largest simulation quantum is similar to that of
HCSim and SysRT. However, it suffers from a lower accuracy,

as will be discussed later on. Conventional simulators get
much slower if the simulation quantum size decreases.

To derive a reference for the task response times, we have
also performed the experiment with the same task sets on a
real Linux-based RTOS, i.e. Litmus [16], varying the number
of active processors from 1 to 4. For each task, we calculate
the relative errors between the response times obtained from
simulators and the actual response times from Litmus. The
accuracy is measured by the average error of all tasks in the
testing task set.

Table I is the average simulation error of those tests. The
number of active processors and the number of tasks in
different testing sets is not reported since it turns out that these
factors have little effect on the relative error of each individual
task. SysRT, HCSim and conventional simulation with the
smallest simulation quantum yield high accuracy, whereas
conventional simulators with a larger simulation quantum
suffer from degraded accuracy.

TABLE I: Average Simulation Error of Five Simulators

HCSim SysRT Quantum:1ms Quantum:10ms Quantum:100ms

0.166% 0.166% 0.166% 4.182% >100%

Note that, although SysRT and HCSim are supposed to be
theoretically accurate, several factors in Litmus such as context
switches and kernel tasks with high priorities could lead to
small simulation errors. Fortunately, both SysRT and HCSim
provide support to model the scheduling overhead to improve
accuracy.

B. Flexibility of SysRT

As most prediction-based RTOS simulators do not support
simulating real-time resource access protocols due to difficul-
ties in predicting preemption points, we show the flexibility
of SysRT by simulating a set of four periodic tasks T1, ..., T4
that exclusively access two shared resources R1 and R2. Task
parameters are listed in Table II. Pi is the task activation period
and Ci the execution time. Variable ξj,i denotes the duration
of the critical section that Ti occupies Rj . The value 0 for
ξj,i means that Ti does not use Rj . Tasks are scheduled on
an uniprocessor by a RM scheduler with priority inheritance
as resource sharing protocol.

TABLE II: Task Parameters and Theoretical WCRT.

Tasks Pi Ci ξ1,i ξ2,i WCRTi
T1 100 5 0 0 5
T2 110 16 3 3 71
T3 200 70 20 0 142
T4 350 102 0 30 310

The analytically calculated Worst Case Response Time
(WCRT) for each task is given in the last column of Table II.
We have run the simulation for 80000 time units. The sim-
ulated response time of the first 200 jobs of each task are
shown in Fig. 5. As can be seen from Fig. 5, the response
times obtained from simulation are consistently lower than

(a) 16 tasks (b) 100 tasks (c) 1000 tasks

Fig. 4: Simulation time of five simulators.

the theoretical WCRTs. Thanks to the modular and flexible
implementation of SysRT, the resource sharing protocol is
correctly simulated.

Fig. 5: Response time of jobs in tasks.

C. Benefit of SysRT in DSE

The second experiment demonstrates the flexibility of
SysRT and its benefits for early DSE. An embedded system
with a mixed application workload is simulated. The task set
is composed of three Hard Real-Time (HRT) tasks, five Soft
Real-Time (SRT) tasks and three Best-Effort (BE) tasks. Task
types, parameters and utilization (Pi divided by Ci) are listed
in Table III. If an interval [a, b] is assigned to Pi (or Ci), then
Pi (or Ci) is a random variable uniformly distributed in that
interval. This models workload variations.

The application requirement for hard real-time tasks is to
guarantee that deadlines are always met. SRT tasks are allowed
to miss deadlines, thus their performance is measured by the
deadline miss ratio. For best-effort tasks, the performance
is calculated by their average response time. We have run

TABLE III: Task Type and Parameters.

Tasks Type Pi Ci Ui

T1 HRT 50 20 0.4
T2 HRT 90 30 0.333
T3 HRT 140 50 0.357
T4 SRT 190 30 0.157
T5 SRT 350 80 0.228
T6 SRT 500 170 0.34
T7 SRT 1000 [200, 700] [0.2, 0.7]
T8 SRT 1300 [500, 900] [0.385, 0.692]
T9 BE [1000, 5000] 200 [0.04, 0.2]
T10 BE [3000, 9000] 500 [0.056, 0.167]
T11 BE [5000, 15000] 1500 [0.1, 0.3]

simulations with three kinds of schedulers on different ar-
chitecture models. EDF and FPS schedulers are tested with
systems containing 2 to 8 processors, and a partitioned-based
scheduler (PS) has been tested for systems with 3 to 5 cores.
For the latter, Table IV lists the local scheduling policies and
scheduled task(s) on each processor. The simulation is aborted
if a HRT task misses a deadline.

TABLE IV: Patitioned-based Scheduler Configuration.

Processors Processor Local Scheduler Tasks
1 FPS T1,T2,T9,T11

3 2 EDF T3,T4,T6
3 RR T5,T7,T8,T10
1 P-FAIR T1,T2,

4 2 FPS T3,T4,T6
3 EDF T5,T7,T8
4 RR T9,T10,T11
1 P-FAIR T1,T2,T5
2 FPS T3

5 3 NP-EDF T4,T7
4 EDF T6,T8
5 RR T9,T10,T11

The average deadline miss ratio of the five SRT tasks is
shown in Fig. 6(a). The deadline miss ratio decreases as
the number of processors increases and becomes 0 for five
processors. HRT tasks are not schedulable under EDF if the
number of processors is less than four, thus no results are

(a) (b)

Fig. 6: (a) Average deadline miss ratio (b) Scheduling over-
head.

plotted for EDF for 2 and 3 processors.
Fig. 6(b) shows the scheduling overhead including the

total number of context switches and task migrations. It is
interesting to observe that partitioned schedulers have no task
migration but suffer from a large number of context switches
incurred by P-FAIR, which serves as a local scheduler.

Fig. 7 illustrates the average response times of the BE tasks.
As the number of processors increases, the average response
time becomes smaller. The response times are very large if the
number of processors is less than 4, thus they are not plotted.
Evidently, such system performance estimates as obtained by
SysRT are helpful to make design decisions at the very early
system design stages.

Fig. 7: Response time of BE tasks.

VII. CONCLUSION

In this paper, we presented SysRT, a generic and high-level
SystemC-based multiprocessor RTOS simulator. It provides
the unique and novel combination of being highly accurate,
efficient and easy to extend to facilitate early DSE. To this

end, it contains different types of application models and a
modular RTOS kernel model. Efficient and precise modeling
of preemptive scheduling is achieved via an event-driven
simulation approach. Its modular design allows for easy plug-
in of new schedulers as well as new resource sharing protocols.
Comparing SysRT with state-of-art simulators, it achieves
faster simulation speeds with the same small simulation error.
We demonstrated the flexibility of SysRT by experiments with
a mixed workload executing on multiprocessor platforms with
different numbers of cores.

For future work, we plan to establish co-simulation with
more advanced hardware simulators developed in SystemC.
Moreover, we are interested in designing and studying new
schedulers for mixed application workloads executing on em-
bedded platforms.

REFERENCES

[1] SystemC, http://www.accellera.org.
[2] SpecC, http://www.cecs.uci.edu/ specc/.
[3] SysRT, https://github.com/jxiao90/SysRT.
[4] Y. Yi, D. Kim, and S. Ha, “Fast and time-accurate cosimulation

with os scheduler modeling,” Des. Autom. Embedded Syst.,
vol. 8, no. 2-3, pp. 211–228, Jun. 2003. [Online]. Available:
http://dx.doi.org/10.1023/B:DAEM.0000003963.20442.29

[5] H. Zabel, W. Müller, and A. Gerstlauer, Accurate RTOS modeling and
analysis with SystemC. Netherlands: Springer Netherlands, 2009, pp.
233–260.

[6] R. L. Moigne, O. Pasquier, and J. P. Calvez, “A generic rtos model
for real-time systems simulation with systemc,” in Proceedings Design,
Automation and Test in Europe Conference and Exhibition, vol. 3, Feb
2004, pp. 82–87 Vol.3.

[7] P. Hastono et al., “Real-time operating system services for realistic
systemc simulation models of embedded systems,” in Proc. of FDL’04,
2004, pp. 380–391.

[8] R. S. Khaligh and M. Radetzki, “Modeling constructs and kernel
for parallel simulation of accuracy adaptive tlms,” in 2010 Design,
Automation Test in Europe Conference Exhibition (DATE 2010), March
2010, pp. 1183–1188.

[9] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and accurate
resource conflict simulation for performance analysis of multi-core
systems,” in 2011 Design, Automation Test in Europe, March 2011, pp.
1–6.

[10] P. Razaghi and A. Gerstlauer, “Host-compiled multicore system simu-
lation for early real-time performance evaluation,” ACM Trans. Embed.
Comput. Syst., no. 5s, pp. 166:1–166:26, Dec. 2014.

[11] G. Schirner and R. Dömer, “Introducing preemptive scheduling in ab-
stract rtos models using result oriented modeling,” in Proc. of DATE’08,
New York, NY, USA, 2008, pp. 122–127.

[12] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in Proceedings of
the 2011 IEEE 32Nd Real-Time Systems Symposium, ser. RTSS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 217–226.
[Online]. Available: http://dx.doi.org/10.1109/RTSS.2011.27

[13] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, Jan. 1973. [Online]. Available:
http://doi.acm.org/10.1145/321738.321743

[14] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
ALGORITHMICA, vol. 15, pp. 600–625, 1996.

[15] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: an approach to real-time synchronization,” IEEE Transactions on
Computers, vol. 39, 1990.

[16] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson,
“Litmusrt: A testbed for empirically comparing real-time multiprocessor
schedulers,” in Proc. of the 27th IEEE Real-Time Systems Symposium,
2006, pp. 111–123.

