
Scenario-based Design Space Exploration

Andy D. Pimentel and Peter van Stralen

Abstract Modern embedded systems are becoming increasingly multifunctional
and, as a consequence, they more and more have to deal with dynamic applica-
tion workloads. This dynamism manifests itself in the presence of multiple applica-
tions that can simultaneously execute and contend for resources in a single embed-
ded system as well as the dynamic behavior within applications themselves. Such
dynamic behavior in application workloads must be taken into account during the
early system-level Design Space Exploration (DSE) of multiprocessor system-on-
a-chip (MPSoC)-based embedded systems. Scenario-based DSE utilizes the con-
cept of application scenarios to search for optimal mappings of a multi-application
workload onto an MPSoC. To this end, scenario-based DSE uses a multi-objective
genetic algorithm (GA) to identify the mapping with the best average quality for all
the application scenarios in the workload. In order to keep the exploration of the
scenario-based DSE efficient, fitness prediction is used to obtain the quality of a
mapping. This fitness prediction implies that, instead of using the entire set of all
possible application scenarios, a small but representative subset of application sce-
narios is used to determine the fitness of mapping solutions. Since the representa-
tiveness of such a subset is dependent on the application mappings being explored,
these representative subsets of application scenarios are dynamically obtained by
means of co-exploration of the scenario subset space. In this chapter, we provide an
overview of scenario-based DSE and, in particular, present multiple techniques for
fitness prediction using representative subsets of application scenarios: stochastic,
deterministic, and a hybrid combination.

Andy D. Pimentel
University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
e-mail: a.d.pimentel@uva.nl

Peter van Stralen
Philips Healthcare, Veenpluis 4, 5684 PC, Best, The Netherlands
e-mail: peter.van.stralen@philips.com

c© Springer Science+Business Media Dordrecht 2017,
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI:10.1007/978-94-017-7358-4 10-1

1

Contents

Scenario-based Design Space Exploration . 1
Andy D. Pimentel and Peter van Stralen

1 Introduction . 5
2 Application Dynamism . 6
3 Scenario-based DSE Framework . 9
4 Design Explorer . 11

4.1 System Model . 11
4.2 Mapping Procedure . 13
4.3 Exploring mappings using a Genetic Algorithm 15

5 Subset Selector . 18
5.1 The Updater Thread . 19
5.2 Subset Quality Metric . 21
5.3 The Selector Thread . 24

6 Related work . 29
7 Discussion . 29
References . 31

3

Acronyms

ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor

DSE Design Space Exploration
ESL Electronic System Level
FIFO First In First Out
FS Feature Selection
GA Genetic Algorithm
KPN Kahn Process Network
MJPEG Motion JPEG
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
SBS Sequential Backward Selection
SFS Sequential Forward Selection

1 Introduction

To cope with the design complexities of Multi-Processor System-on-Chip (MPSoC)
based embedded systems [14], Electronic System Level (ESL) design [6, 11] has be-
come a promising approach for raising the abstraction level of design, and thereby
increasing the design productivity. Early design space exploration (DSE) is an im-
portant ingredient of such ESL design, which has received significant research at-
tention in recent years [7, 18, 9]. The majority of all these DSE efforts still eval-
uates and explores MPSoC architectures under single-application workloads. This
is, however, increasingly unrealistic since modern embedded devices, especially in
the consumer electronics domain, are nowadays highly multi-functional and fea-
ture dynamic application workloads. For example, a mobile phone has become a

5

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

multimedia device that is not only used for calling, but it is also connected to the
Internet and has become a decent camera. With the increased capabilities of cur-
rent smart phones, they have almost the same possibilities as desktop computers.
Another trend is to make consumer devices ”smart”. Smart digital cameras are able
to directly share photos on the Internet. Photos can be edited on the camera and
can also be tagged with a GPS location. Similarly, smart televisions also enhance
the functionality of the television as they not only show an incoming video stream
from a decoder, but can, e.g., also show photos from a memory card or install ad-
ditional applications. This trend of smartness does not only increase the number
of applications, but also the dynamism of the application workloads on these em-
bedded systems. For old analogue televisions with CRT the characteristics of the
incoming video stream was exactly known: the size of the frames, the frame rate,
etc. Currently, however, these streams become more dynamic: High Definition (HD)
television may, for example, have varying frame rates and frame sizes. Additionally,
3D television may double the number of frames that need to be decoded.

This chapter will therefore use the concept of application scenarios [16, 22] to
introduce scenario-based DSE [28, 30]. Application scenarios are able to describe
the dynamism of embedded applications and the interaction between the different
applications on the embedded system. The concept of application scenarios is illus-
trated in Figure 1. An application scenario consists of two parts: an inter- and an
intra-application scenario. An inter-application scenario describes the interaction
between multiple applications, i.e. which applications are concurrently executing
at a certain moment in time. Inter-application scenarios can be used to prevent the
overdesign of a system. If some of the applications cannot run concurrently, then
there is no need of reserving resources for the situation where these applications
are running together. Intra-application scenarios, on the other hand, describe the
different execution modes (or operation modes) for each individual application. In
the example application scenario in Figure 1, the left hand side shows the selected
inter-application scenario. In this case, the Video and the MP3 applications are ac-
tive while the GSM application is inactive. In the middle, the intra-application sce-
narios are shown. The Video application can, for example, decode video using a
simple profile and an advanced simple profile. For the intra-application scenario, it
is decided to decode video using a simple profile and to play mono music with the
MP3 application. As the GSM is inactive, no operation mode needs to be selected
for the GSM application. Hence, the application scenario is the sum of the inter- and
intra-application scenarios: the Video application is decoding using a simple profile
and the MP3 application is playing music in a mono sound.

2 Application Dynamism

To illustrate the consequences of dynamic application behavior in terms of extra-
functional aspects (like system performance and power consumption), this section
presents a small, motivational case study in which a Motion JPEG (MJPEG) decoder

6

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Inter-Application Scenario

video:

Active

mp3:

Active

Intra-Application Scenario

mp3:
Mono
sound

Stereo
sound

video:

Simple
profile

Advanced
Simple
Profile

gsm:

Send Receive

Application Scenario

video:

Simple Profile

mp3:

Mono Sound

+ =

gsm:

Inactive

Fig. 1: An illustration of application scenarios.

application – with different intra-application scenarios – is mapped onto a hetero-
geneous bus-based MPSoC architecture with four processors and a single shared
memory. First, we have randomly picked three mappings of the MJPEG applica-
tion on our bus-based architecture. For each of these mappings, we used the Sesame
system-level MPSoC simulation framework [17, 3] to determine the fitness values
(in this case, execution time and power consumption) for each individual intra-
application scenario. The resulting fitness values of these mappings are shown in
Figure 2, where the horizontal and vertical axes refer to execution time and power
consumption, respectively. These values are only used to compare different map-
pings and intra-application scenarios. Therefore, they do not have a unit. In this
graph, the letters A-C are the different mappings, whereas 0-10 are the different
intra-application scenarios of the MJPEG application.

Irrespective of the mapping, scenario 7 is the intra-application scenario that con-
sumes the least amount of power. The scenario with the highest power consumption,
on the other hand, depends on the mapping. For mappings A and C, scenario 0 has
the highest power consumption. In case of mapping B, however, scenario 3 has the
highest power consumption. To explain this behavior, both the scenarios and the
mappings must be analyzed. Scenario 3 involves the decoding of a frame that has
a much higher compression ratio than scenario 0. As a consequence, scenario 3 re-
quires less communication than scenario 0. Moreover, for mapping B the shared bus
is fully utilized, while in mappings A and C there is still some capacity left on the
shared bus. As a result, the reduction in communication between scenarios 0 and 3
has more effect on the execution time of mapping B than it has on mappings A and
C. Although the consumed energy for scenario 3 is lower than the consumed energy
for scenario 0 for all of the three mappings, the larger difference in execution time
results in higher power consumption for mapping B.

Figure 2 also shows other interesting behavior with respect to scenario 6. For
example, scenario 6 with mappings A and B has the same fitness as scenario 7.

7

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022

A
ve

ra
ge

 P
ow

er

Time

The dynamism of 3 different mappings
Scenario 0
Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6
Scenario 7
Scenario 8
Scenario 9

Scenario 10

A

B

C

A

BC

A

BC

A
B

C A

BC

A

B

C

A

B

C

A

BC

A

BC

A

BC
A

BC

Fig. 2: An illustration of the dynamism of different scenarios. For three different
mappings the fitness of each individual scenario is shown.

For mapping C, however, the execution time of scenario 6 is much lower than for
scenario 7. Without going into details, scenario 6 would lead to the conclusion that
mapping C consumes more power than mapping A. This conclusion contrasts with
the conclusion that can be drawn from comparing the power consumption using the
other scenarios (i.e., the power consumption of mapping C is lower than mapping
A). In a sense, scenario 6 gives a deceiving view of the quality-ordering relation
between the different mappings.

To provide more insight into this problem, the potential Pareto dominance re-
lations between the mappings of the experiment illustrated in Figure 2 are listed in
Table 1. In the three columns in the middle of the list in Table 1, the unique mapping
comparisons are shown: mapping A versus B, mapping A versus C and mapping B
versus C. Next, for each individual intra-application scenario, the fitness values for
the different mappings are compared. In this way, three different types of relations
are obtained: 1) a mapping is equal to or fully dominates the other mapping (≤),
2) a mapping is dominated by another mapping (>) and 3) the mappings are not
comparable using the Pareto dominance relation (||). Finally, the last column shows
the Pareto front based on the fitness values of the specific intra-application scenario.

As a first observation, one can see that for none of the relations it is the case
that all scenarios fully agree on the type of the relation. For the first two relations
(where mapping A is compared with mappings B and C) only one scenario differs
with respect to the relation type. In case of the comparison between mapping A and
mapping B, the fitness values for most of the scenarios determine that mapping A
is incomparable with mapping B. Only the fitness values of scenario 3 leads to a
different conclusion: mapping A dominates mapping B. Similarly, mapping C dom-

8

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Scenario A ... B A ... C B ... C Front
0 || > > C
1 || > || B, C
2 || > || B, C
3 ≤ > > C
4 || > > C
5 || > > C
6 || || || A, B, C
7 || > > C
8 || > || B, C
9 || > || B, C
10 || > > C

Table 1: The Pareto dominance relations comparing the mappings from Figure 2 for
each individual scenario. The symbol || stands for incomparable fitness values.

inates mapping A for most of the intra-application scenarios. Only the fitness values
of scenario 6 are incomparable for mappings A and C.

The problem arises with the relation between mapping B and mapping C. Judging
on 6 out of the 11 scenarios, mapping B is better than mapping C. Based on the other
5 scenarios, however, one comes to the conclusion that mapping B is incomparable
with mapping C. These kinds of uncertainties complicate the scenario-based DSE.
The DSE ends up with a Pareto front, but not all the intra-application scenarios agree
on what the Pareto front should be. In the example of Table 1, three different Pareto
fronts are observed, from which the front with only mapping C is the most common.

Based on the most common Pareto front with only mapping C, one could con-
clude that the set {0,3,4,5,7,10} of intra-application scenarios is representative for
the MJPEG application. This representativeness, however, is completely dependent
on which mappings are evaluated. In case only mappings A and B would have been
taken into account, intra-application scenario 3 would have been interpreted as an
unrepresentative scenario. However, if this scenario 3 is excluded for the compari-
son between mapping B and mapping C, there is no majority anymore for one of the
Pareto dominance relation types. In the next section, which introduces our scenario-
based DSE framework, we will explain how we deal with the above problem.

3 Scenario-based DSE Framework

Conceptually, scenario-based DSE [28, 30] is an exploration technique for embed-
ded systems with a dynamic multi-application workload. In this chapter, an explo-
ration framework for scenario-based DSE is presented that aims to provide a static
mapping of a multi-application workload onto an MPSoC. The mapping is to be
used during the entire lifetime of an embedded system. Consequently, the average
behavior of the designed MPSoC must be as good as possible for all the different
application scenarios. Currently, we assume an equal likelihood for each application

9

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

�����
����	��

Application
Model

Application
Model

Application
Model

Architectural
ModelScenario

Database

Scenario-Based
Design Space

Exploration

Candidate
Designs

Parameters
���������	����

Trainer

Selector

Updater
Sample
Designs

Best
Subset

Sesame

Sesame

mp3 video

0 0 1 1 1 2 0 2 2 2 2 2 0

ChannelsProcesses

0: CPU-A
1: CPU-C
2: CPU-E

0: INTERN
1: MEM - 2
2: MEM - 3

Fig. 3: The exploration framework for scenario-based DSE.

scenario. The approach, however, can easily be generalized to different probability
distributions.

In this work, we assume that a multi-application workload mapping implic-
itly consists of two aspects: 1) allocation and 2) binding. The allocation selects
the architectural components for the MPSoC platform architecture. Only the se-
lected components will be deployed on the MPSoC platform. These components
include processors, memories and supporting interconnects like communication
buses, crossbar switches and so on. Subsequently, the binding specifies which appli-
cation task or application communication is performed by which (allocated) MPSoC
component.

Figure 3 shows the exploration framework. The left part of the picture pro-
vides a general flow, whereas the right part illustrates the scenario-based DSE in
more detail. As an input, the scenario-based DSE requires a scenario database,
application models and an MPSoC platform architecture model. Binding is per-
formed for a multi-application workload and the description of this workload is
split into two parts: 1) the structure and 2) the behavior. The structure of applica-
tions is described using application models. For these models, the Kahn Process
Network (KPN) model of computation is used [10], which models applications as
a network of concurrent processes communicating via FIFO channels. Next to the
KPN application models, a scenario database [29] explicitly stores all the possible
multi-application workload behaviors in terms of application scenarios (i.e., intra-
and inter-application scenarios).

An important problem that needs to be solved by scenario-based DSE is the fact
that the number of possible application scenarios is too large for an exhaustive eval-
uation of all – or even a restricted set of – the design points with all the scenarios
during the MPSoC DSE. Therefore, a small but representative subset of scenarios
must be selected for the evaluation of MPSoC design points. This representative
subset must compare mappings and should lead to the same performance ordering
as would have been produced when the complete set of the application scenarios
would have been used. However, the selection of such a representative subset is not
trivial, as was already explained in Section 2 and studied in more detail in [27]. This

10

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

is because the representative subset is dependent on the current set of mappings that
are explored. Depending on the set of mappings, a different subset of application
scenarios may reflect the relative mapping qualities of the majority of the applica-
tion scenarios.

As a result, the representative subset cannot statically be selected. For a static
selection one would need to have a large fraction of the mappings that are going
to be explored during the MPSoC DSE. However, since these mappings are only
available during DSE, a dynamic selection method must be used. Thus, both the
set of optimal mappings and the representative subset of scenarios need to be co-
explored simultaneously such that the representative subset is able to adapt to the
set of mappings that are currently being explored.

In the scenario-based exploration framework (see Figure 3), two separate com-
ponents are shown that simultaneously perform the co-exploration tasks: the design
explorer searches for the set of optimal mappings while the subset selector tries to
select a representative subset of scenarios. As these components are running asyn-
chronously, a shared-memory interface is present to exchange data. For the design
explorer, a sample of the current mapping population is stored in the shared mem-
ory, whereas the subset selector makes the most representative subset available for
the fitness prediction in the design explorer. One of the main advantages of the strict
separation of the execution of the design explorer and the subset selector is that the
running time of the design explorer becomes more transparent. From a user per-
spective, this is the most important component, as it will identify the set of optimal
mappings.

4 Design Explorer

In this section, the design explorer, the component that is responsible for identifying
promising mappings, is described. First, our system model is described. This system
model formally describes both the applications and the architecture. Next, the sys-
tem model is used to describe the complete mapping procedure that will be applied
during the search for good mappings, which has been implemented using a Genetic
Algorithm (GA).

4.1 System Model

Our system model is based on the popular Y-chart design approach [12] which im-
plies that we separate application models and architecture (performance) models
while also recognizing an explicit mapping step (or layer) to map application tasks
onto architecture resources [24]. The system model has been implemented in the
Sesame system-level MPSoC simulation framework [17, 3], as illustrated in Fig-

11

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Sample EncodeQuality

Ap
pl

ic
at

io
n

La
ye

r
Ar

ch
ite

ct
ur

e
La

ye
r

Mapping Layer

CPU-A

CPU-E

MEM
2BU

S

D

A B

C

Fig. 4: The different layers in the Sesame model and their connections.

ure 4. The system model formalizes each of the application, mapping and architec-
ture layers:

Application (model) layer The application model describes each individual ap-
plication as a Kahn Process Network (KPN) [10]. A KPN is formally defined as
a directed graph GK(V,EK). The vertexes V are the process nodes. In Figure 4, an
example application model is depicted in which the set V is equal to {SAMPLE,
ENCODE, QUALITY}. The communication channels of the application are repre-
sented by directed edges EK = V ×V . If, for example, (SAMPLE, QUALITY) is
defined in EK , it means that there is a communication channel from SAMPLE to
QUALITY.

Architecture (model) layer The architecture is represented by a directed graph
GR(R,ER). In this case, the set R contains the architectural components like pro-
cessors, communication buses, crossbar switches, FIFO buffers and memories.
Edges ER = R×R, on the other hand, describe the communication links in the
architecture.
There are three types of architectural elements: 1) processors, 2) buffers and 3)
interconnects. The processors RP ⊂ R are architectural elements that are capable
of executing processes. Buffers RB ⊂ R are the FIFO buffers/memories used for
the communication between the different processors. If two communicating pro-
cesses are mapped onto the same processor, the communication may also be done
internally. This is only possible when a processor supports internal communica-
tion. If a processor p ∈ RP supports internal communication, a buffer b ∈ RB is

12

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

added to the architecture. Additionally, the buffer is connected to enable reading
and writing of data: (p,b) ∈ ER ∧ (b, p) ∈ ER. Finally, the set of interconnects
RI ⊂ R is purely meant to connect the various system components.
In the example of Figure 4, the architectural processors RP consist of CPU-A
and CPU-E. Next, the FIFO buffers in the architecture are MEM-2 and CPU-
E. This means that CPU-E supports internal communication. Finally, the BUS
belongs to the set of interconnects. There are 8 edges in the architecture. Six
of these links are connected to the bus (for reading and writing). Additionally,
the internal communication buffer of CPU-E is connected to the processor for
reading and writing. In this example, all communication links are bidirectional.

Mapping Layer The mapping layer connects the application layer to the archi-
tecture layer. Hence, it contains only edges: computation edges and communica-
tion edges. Computation mapping edges EX assign KPN processes to the archi-
tectural resources. To be precise, the edge (v, p)∈ EX assigns KPN process v∈V
to processor p∈ RP. A KPN process can only be mapped on processing elements
that are feasible of running that task:

(v, p) ∈ EX ⇐⇒ Feasible(p,v) (1)

This allows for modeling processors that range from general-purpose processors
(i.e., those processors p ∈ RP for which holds that ∀v ∈V : Feasible(p,v)) to pro-
cessors that are able to perform only a limited set of tasks like, e.g., ASICs. Here,
we would like to note that it is also possible to map multiple KPN processes onto
a single processor if the (modeled) processor type allows this (e.g., in the case
of a general-purpose processor, ASIP, etc.). The communication is mapped us-
ing communication edges EC. A communication edge (c,b) maps FIFO channel
c ∈ EK to FIFO buffer b ∈ RB.

4.2 Mapping Procedure

While the application and the architecture layers are predefined before a DSE is
started, the mapping layer is the part of the MPSoC design that needs to be opti-
mized. As discussed before, the mapping consists of two steps: allocation and bind-
ing. Allocation can reduce the resource usage of the MPSoC design, whereas the
binding maps all processes and channels on the allocated resources. The procedure
is as follows:

Allocation First, the architecture resources are selected to use in the allocation α .
All types of architecture resources are selected at once: αP =α∩RP, αB =α∩RB
and αI = α ∩RI . More precisely, the allocation α contains a subset of resources
such that α ⊆ R:

13

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration(
∑
r∈α

area(r)

)
≤MAX AREA (2)

Hence, Equation 2 implies that the total area of the allocated resources may not
be larger than the maximal area of the chip. Part of the system model is also
the feasibility of the mapping: for each of the processes there must be at least
one processor that is capable of executing the specific process. This is defined as
follows:

∀v ∈V : |p ∈ αP : Feasible(p,v)| ≥ 1 (3)

Once the allocation α is known, a set of potential communication paths ψ =
(αP×αB×αP) can be defined:

ψ = {(p1,b, p2) : PATHα(p1,b)∧PATHα(b, p2)} (4)

The set of communication paths ψ is the set of paths such that (:) there is a path
from processor p1 to buffer b and a path from buffer b to processor p2 (Equation
4). This path may span multiple resources as long as they are allocated:

PATHα(r1,r2) :=(r1,r2) ∈ ER∨ (5a)
∃ri ∈ αI : (r1,ri) ∈ ER∧PATHα(ri,r2) (5b)

The PATH function is recursively defined. There is a path between resources
r1,r2 if there is a direct connection between them (Equation 5a). An interconnect
ri can also be used as part of the path. In this case, there must be a direct connec-
tion between resource r1 and interconnect ri and a path between interconnect ri
and resource r2 (Equation 5b). An allocation is only valid if there is at least one
communication path between each set of processors:

∀p1, p2 ∈ αP : ∃(p1,b, p2) ∈ ψ (6)

By enforcing at least a single communication path between each set of proces-
sors, the automatic exploration of mappings is guaranteed to find at least one
valid mapping. As will be explained later, the procedure randomly picks the pro-
cessors after which one of the communication paths is selected.

Binding Binding maps all the KPN process nodes onto the allocated resources.
There are two steps: 1) computational binding and 2) communication binding.
Computational binding βX maps the processes onto the processors such that βX ∈
EX :

∀v ∈V : |{p : (v, p) ∈ βX ∧ p ∈ αP}|= 1 (7)

Equation 7 enforces that each process v is mapped on exactly one allocated pro-
cessor p. After the computational binding, the communication binding can be
done. Recall from Equation 6 that we have enforced that between each set of

14

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

processors at least one communication path is present in ψ . Therefore, for each
communication channel in the application, a communication path in the allocated
architecture can be selected. More strictly, for each communication channel in the
application, an architectural buffer is selected such that βC ∈ EC:

∀(v1,v2),b ∈ βC :(v1, p1) ∈ βX∧ (8a)
(v2, p2) ∈ βX∧ (8b)
(p1,b, p2) ∈ ψ (8c)

∀c ∈ EK : |{b : (c,b) ∈ βC}|= 1 (9)

Multiple conditions must be enforced. First, the architectural buffer b on which
the communication channel (v1,v2) of an application is mapped must be a valid
communication path. This means that processes v1 and v2 must be mapped on
processors p1, p2 (Equation 8a and 8b) and that (p1,b, p2) is within the set of
communication paths ψ (Equation 8c). Processor p1 and processor p2 do not
necessarily need to be different as both of the processes in the communication
link may be mapped onto the same processor. Next, all communication channels
c (which is a tuple of the two communication processes) must be mapped on
exactly one buffer (Equation 9).

A mapping m is the combination of an allocation α and the bindings βX and
βC. It is only valid if all the preceding constraints (Equations 2, 3, 6, 7 and 9) are
fulfilled.

4.3 Exploring mappings using a Genetic Algorithm

Our aim is to optimize the mapping of an embedded system. Hence, the space of
possible mappings must be explored as efficiently as possible. For this purpose, an
NSGA-II based multi-objective GA [4] is used. Figure 5 shows the chromosome
design for exploring the mapping space. The mapping chromosome consists of two
parts: 1) a KPN process part and 2) a KPN communication channel part. Within
these parts, all of the applications are encoded consecutively. The gene values en-
code the architecture components on which the elements of the applications are
mapped: the KPN processes are mapped onto processors and the KPN channels are
mapped onto memories. A special memory is the internal memory, as was previ-
ously explained.

The example chromosome in Figure 5 has 11 genes. Five genes are dedicated to
the processes and six genes are dedicated to the communicational channels. As there
are three potential processors, the gene value for the KPN process part is between 0
and 2. For the memories there are three possibilities: two memories and a reserved
entry for the internal memory. In this way, the binding to architectural components
is encoded for all of the processes and channels. The first process gene of the MP3

15

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Pl
at

fo
rm

Encoded Mapping

Mapping Chromosome
Kahn process part
MP3

0 0 1
Video

1 1

Kahn channel part
MP3

0 2 1 1 2
Video

0

MPSoC

CPU-A

CPU-E

MEM-2

MEM-3

Sample Encode

Quality
Control

Decode

Display

Sample->Encode

Decode->Display Sample->Quality

Encode->Quality

Quality->Encode

Quality->Sample
MPSoC

CPU-A

CPU-E CPU-C

MEM-2 MEM-3

0

1 2

1 2

MP3

EncodeSample

Quality
Control

0 1

2

0

1 2
34

Video

Decode

Display

3

4

5

Application

Architecture

Fig. 5: Chromosome representation of a mapping. Both the gene sequence is shown
and the mapping that is encoded by the gene sequence.

application, for example, has gene value 0. Looking at the platform, gene 0 is the
SAMPLE process. This process is mapped on the first processor: CPU-A. Similarly,
the channel 4 (QUALITY → SAMPLE) is mapped on MEM-3. The complete en-
coded mapping is illustrated in Figure 5.

The NSGA-II GA is an elitist selection algorithm that applies non-dominated
sorting to select the offspring individuals. Non-dominated sorting ranks all the de-
sign points based on their dominance depth [2]. Conceptually, the dominance depth
is obtained by iteratively removing the Pareto front from a set of individuals. After
each iteration the rank is incremented. An example is shown in Figure 8(c). The
main reason for choosing an NSGA-II based GA is because of its use of the dom-
inance depth for optimization. As will be discussed in Section 5.2, the dominance
depth can easily be used for rating the quality of the representative subset of scenar-
ios.

The dominance of the individuals is based on their fitness. As discussed before,
the predicted fitness is used instead of the real fitness. Let S be the total set of
scenarios and S̃ j the representative subset of scenarios at time step j. The fitness
objectives of a mapping m are as follows:

F(m) =
1
|S|∑s∈S

(time(m,s),energy(m,s),cost(m)) (10)

F̃S̃ j
(m) =

1
|S̃ j| ∑

s∈S̃ j

(time(m,s),energy(m,s),cost(m)) (11)

Given the mapping m and the application scenario s, the functions time(m,s)
for execution time and energy(m,s) for energy consumption are evaluated using the

16

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Design
Explorer

Export
Population

Read

Evaluation

Selection

Reproduction

Init

F̃S̃j

S̃j

Fig. 6: The genetic algorithm for the design explorer extended with the required
steps to communicate with the subset selector. The steps that are emphasized involve
communication.

Sesame system-level MPSoC simulation framework. The cost of a mapping is in-
dependent of the scenario and can be determined statically by adding up the costs
of the individual elements within the allocation α . There is an important difference
between the real fitness F and the estimated fitness F̃S̃ j

. The real fitness uses all
possible application scenarios to determine the fitness, whereas the estimated fit-
ness only uses a (representative) subset of the scenarios (S̃ j ⊆ S). As a result, the
real fitness is independent of the current generation. The predicted fitness, on the
other hand, may vary over the different generations. The fitness F̃S̃ j

is only valid for
generation j as the representative subset S̃ j+1 may change over time.

In order to update the representative subset of scenarios between the generations,
the GA of the design explorer must be extended to support the communication be-
tween the design explorer and the subset selector. This extension is shown in Figure
6. Before any individual (i.e., mapping) can be evaluated, the currently most repre-
sentative subset of scenarios S̃ j must be acquired. Using the representative subset of
scenarios, the design explorer can quickly predict the fitness of all the individuals in
the population. This means that, depending on the number of changed scenarios in
the representative subset of scenarios since the previous generation, the parent pop-
ulation also must be partially reevaluated. This predicted fitness is used to select the
individuals for the next generation. In case the scenario subset is representative, the
decisions made by the NSGA-II selector are similar to those where the real fitness
would have been used. If this is not the case, the scenario subset should be improved.
For this purpose, the selected population is exported to the subset selector. Finally,
reproduction is performed with the selected individuals. During reproduction, a new
population of individuals is generated for usage in the next generation.

17

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Select Candidates

Evaluate New
Trainer Mappings

Import Population
Design Explorer

Select Training
Mappings

Export Most
Representative Subset

Get Trainer

Search Representative
Subset

InitInit

Updater Thread

Trainer

Selector Thread

Fig. 7: The design of the subset selector.

5 Subset Selector

To work properly, the design explorer requires a representative subset of application
scenarios. The better the fitness prediction in the design explorer, the better the
outcome of the scenario-based DSE is. Therefore, the subset selector is responsible
for selecting a subset of scenarios. This subset selection is not trivial. First of all,
there are a potentially large number of scenarios to pick from. This leads to a huge
number of possible scenario subsets. On top of that, the scenario subset cannot be
selected statically as the representativeness of the scenario subset is dependent of the
current set of mappings. This set of mappings is only available at runtime. Therefore,
the scenario subset is selected dynamically.

At the end of the previous section, it was already explained that the design ex-
plorer communicates its current mapping population to the subset selector. This set
of mappings can be used to train the scenario subset such that it is representative
for the current population in the design explorer. As the population of the design ex-
plorer slowly changes over time, the subset will change accordingly. The overview
of the scenario-based DSE (see Figure 3) shows that the subset selector contains
two threads of execution: the selector thread and the updater thread. Figure 7 shows
these threads in more detail. The updater thread obtains the mapping individuals
from the design explorer and updates the training set Ti of application mappings.
This set of training mappings is used by the selector thread for selecting a represen-
tative subset of scenarios. The most representative subset of scenarios is exported to
the design explorer.

In the remainder of this section, we provide a detailed overview of the subset
selector. Before doing so, however, we will first describe the updater thread that is
responsible for updating the trainer. Next, the metric used to judge the quality of the

18

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

scenario subsets is described. The final subsection will show how the subset quality
metric is used within the selector thread to select scenario subsets.

5.1 The Updater Thread

During the search of a representative subset of scenarios it is crucial to have a set of
training mappings Ti. Without a set of exhaustively evaluated mappings, one cannot
judge if the predicted fitness of a scenario subset makes a correct prediction. As a
training mapping is evaluated for all scenarios, it is relatively expensive to evaluate
a mapping that needs to be added to the trainer. Therefore, it is important that the
training mappings are selected carefully. Figure 7 illustrates the trainer update from
Ti to Ti+1. The steps are as follows:

Import Population Design Explorer: To keep the training set Ti up to date with
the mapping population in the design explorer, the current design explorer popu-
lation g j is imported.

Select Candidates: The current population is used to update the list of candidate
mappings Ci+1:

maximize
Ci+1

∑
m∈Ci+1

last gen(m)

subject to (1) Ci+1 ⊆Ci∪g j

(2) Ci+1∩Ti = /0
(3) |Ci+1| ≤ C SIZE

While updating the candidate mappings there are three conditions. First, the new
set of candidate mappings is the union of the previous set of candidate mappings
and the population g j that was just received from the design explorer. Secondly,
condition (2) makes sure that all the candidate mappings are not yet in the trainer.
Using these two conditions, the procedure selects a set of candidate mappings
that is new to the trainer. Still, the first two conditions do not provide any control
on the size of the set of candidate mappings. As the selection of training map-
pings involves computational overhead, the size of the set of candidate mappings
must be limited as well. Therefore, condition (3) makes sure that the size of the
set of candidate mappings is not larger than the predefined constant C SIZE. As
the optimization goal is to maximize the sum of the last generation that each of
the training mappings was used (as returned by the function last gen), the most
recently used mappings will be kept in the set of candidate mappings (these have
the highest value for last used generation). Additionally, the optimization of the
total sum tries to get the number of candidate mappings as large as possible: the
least recently used candidate mappings will be removed until the set of candidate
mappings is smaller or equal to C SIZE. In this way, the representative subset of

19

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

scenarios can be optimized to predict the fitness of the current population of the
design explorer.

Select Training Mappings: For each of the candidate mappings, the predicted
fitness using the currently most representative subset of scenarios is obtained. For
the candidate mappings that have just been imported from the design explorer,
this should not require any new Sesame simulations (the population is quite likely
evaluated using the same representative subset). For older candidate mappings,
some computational overhead may be required for the partial reevaluation of
the mapping fitness. Together with the mappings in the current trainer Ti, an
estimated Pareto front P̃j is obtained.
The main goal of the representative subset is to correctly identify good mappings.
Therefore, the trainer will focus on the mappings that are the closest to the Pareto
front. Any mapping may have a fitness that is hard to predict (a mapping with a
high quality or a mapping with a poor quality), but the scenario-based DSE only
suffers from high quality mappings that have an incorrectly predicted fitness. As
long as both the real and predicted fitness of a mapping is bad, it does not re-
ally matter how bad the predicted fitness is. However, it is still an issue if the
predicted quality of a mapping is poor, whereas the real quality is good. In this
case, the mapping will not be added to the trainer. Although this is undesirable,
without exhaustively evaluating the candidate mappings these kind of incorrect
predictions cannot be detected. As the exhaustive evaluation is expensive, the
gain in the trainer quality does not outweigh the additional computational over-
head that is required to identify the high quality mappings where the predicted
mapping quality is low. Over time the predicted ordering of the mappings near
the predicted Pareto front will be improved. Likely, this will also improve the
prediction of other mapping individuals.
Therefore, the k new training mappings Mc are selected from the set of candidate
mappings Ci+1 by optimizing the distance to the estimated Pareto front:

minimize
Mc

∑
m∈Mc

min
mp∈P̃j

(
d
(

F̃S̃ j
(mp), F̃S̃ j

(m)
))

subject to (1) Mc ⊆Ci+1

(2)|Mc|= min(|Ci+1|,k)

The mappings are ordered on their normalized Euclidean distance to the closest
mapping in the estimated Pareto front P̃j. Here, the normalized Euclidean dis-
tance d between solutions x1 and x2 (with f being the fitness function and n the
number of optimization objectives) is defined as:

fi(x) =
fi(x)− f min

i

f max
i (x)− f min

i

d(x1,x2) =

√
n

∑
i=1

(fi(x1)− fi(x2))2

20

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

The normalized distance translates all the objectives to a range between 0 and 1.
For this purpose, the minimal (f min

i) and maximal value (f max
i) for the objective

must be known. From the candidate mappings (condition 1), the k mappings are
selected (condition 2) that are the closest to the estimated Pareto front.

Evaluate New Training Mappings: The mappings that are selected are exhaus-
tively evaluated using Sesame. For this purpose, a separate pool of Sesame work-
ers is used (just as the design explorer has a pool of Sesame workers). Once the
real fitness is known, the mappings can be used to generate trainer Ti+1 out of
trainer Ti. Before the new training mappings are added, the trainer is truncated to
fit the new training mappings. This is done in such a way that the trainer always
contains real Pareto front P:

minimize
Ti+1

∑
m∈Ti+1

min
mp∈P

(
d (F(mp),F(m))

)
subject to (1) Ti+1 ⊆ Ti

(2) |Ti+1|= min(|Ti|,T SIZE−|Mc|)

The truncated new trainer is a subset of the old trainer (condition 1) and it does
not exceed the predefined trainer size. If trainer mappings must be discarded,
the mappings that are the furthest from the real Pareto front are removed. This
is done because of the second purpose of the trainer: at the end of the scenario-
based DSE it contains the best mappings that are found over time with their real
fitness. Hence, we assume that the maximal trainer size is picked in such a way
that it is significantly larger than the size of the Pareto front P. After truncation,
the next trainer can be finalized: Ti+1 = Ti+1∪Mc.

5.2 Subset Quality Metric

Having a set of training mappings is not sufficient for judging the quality of the sce-
nario subsets. To determine the actual quality of a subset of representative scenarios,
we use the misclassification rate metric. The misclassification rate counts the num-
ber of ranks that are predicted incorrectly. Before we go into the definition of the
misclassification rate, we first take a look into the Pareto ranking [31]. There are
several approaches to rank individuals using the Pareto dominance relations, but in
this chapter we only focus on two of those: Boolean ranking and Goldberg’s ranking
(also called non-dominated sorting).

The ranking schemes are visualized in Figure 8. Goldberg’s ranking approach
uses the dominance depth of the individuals. This is the same approach as the
NSGA-II selector. Boolean ranking, on the other hand, follows a more simple ap-
proach: if the solution is non-dominated, the rank is one, otherwise the rank is two.
As the design explorer uses an NSGA-II based GA, it may be straightforward to
use Goldberg’s ranking scheme for the misclassification rate. The boolean ranking,

21

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

2

2

1 2

2

1 2
2

2

2

2

2

f1

f2

(a) Boolean ranking, real fitness

8.3% Misclassification

2

22

2

2

1 2
2

2

2

2

2

f1

f2

(b) Boolean ranking, predicted fitness

2

2

1 2

3

1 3
3

4

4

4

3

f1

f2

(c) Goldberg’s ranking, real fitness

75% Misclassification

3

32

2

4

1 4
3

5

5

5

4

f1

f2

(d) Goldberg’s ranking, predicted fitness

Fig. 8: A set of Pareto fronts showing the effect of a small error in the prediction (as
shown with the dashed arrow) on the misclassification rate using the boolean and
Goldberg’s ranking scheme.

however, can be obtained more efficiently than the Goldberg’s ranking. On top of
that, the misclassification rate may be deceiving when Goldberg’s ranking is used.

In Figure 8, an example of such a deceiving case is given. The used trainer con-
sists of 12 training mappings. Figures 8(a) and 8(c) show the exact fitness of the
training mappings, whereas Figures 8(b) and 8(d) show the predicted fitness of a
specific scenario subset. This scenario subset provides a relatively good prediction:
eleven out of the twelve training mappings are predicted correctly (the circular map-
pings). The incorrectly predicted training mapping (the square mapping) is slightly
off as shown by a dashed arrow. Due to the incorrect prediction, the square mapping
seems to be dominated by the leftmost training mapping. For both ranking schemes,
the rank of the square mapping becomes ranked second instead of first. In case of
the boolean ranking, this is the only rank that is incorrect. For Goldberg’s ranking,
however, all the training mappings that are dominated by the square mapping are
also incremented by one. As a result, the Goldberg’s ranking has a misclassification
rate of 3

4 , whereas the boolean ranking has a misclassification rate of 1
12 . Our exam-

ple clearly shows that a high quality mapping that is incorrectly ranked can affect all
of its dominated solutions. However, as the main purpose of scenario-based DSE is

22

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

that the Pareto front is predicted correctly, it is not a problem that the poor mappings
are incorrectly ranked.

This is exactly what is determined with boolean ranking. Each rank is based
on the correct prediction of a non-dominated individual. A formal definition of the
boolean ranking is given in the following equation:

relF ′(m1,m2) :=

1 F ′(m1) dominates F ′(m2)

−1 F ′(m2) dominates F ′(m1)

0 else
(12)

rankF ′(m,T) :=

{
2 ∃m′ ∈ T (relF ′(m′,m) = 1)
1 else

(13)

Equation 12 formally defines the Pareto dominance between two mappings m1 and
m2. The mappings are evaluated using fitness function F ′. This can be the real fitness
F , but also the predicted fitness F̃S̃. In this case, the scenario subset S̃ is used to
predict the fitness of the mappings.

Based on the relF ′ function the rankF ′ is defined. This function ranks mapping
m given trainer T (see Equation 13). In case any of the mappings in the trainer
dominates the mapping, the rank is equal to two. Otherwise, the mapping is Pareto
optimal and the rank is equal to one. Given the ranking function, the misclassifica-
tion rate can be defined:

rrank(S̃,T) :=
|{m ∈ T : rankF(m,T) 6= rankF̃S̃

(m,T)}|
|T |

(14)

The rate of misclassified boolean ranks is too coarse-grained to be used in isola-
tion. In contrast to, e.g., Spearman’s rank correlation [26], a lower misclassification
rate is always better (the more non-dominated individuals that are correctly identi-
fied, the better). However, the probability of an equal misclassification rate is quite
likely.

In this case, the number of misclassified relations is used as a tiebreaker. The
number of misclassified relations can be defined quite straightforwardly:

rrel(S̃,T) :=
|{m1,m2 ∈ T : relF(m1,m2) 6= relF̃S̃

(m1,m2)}|
|T |2

(15)

By definition, when the number of misclassified relations is zero, the number of
misclassified ranks is also zero. For the other cases, the number of misclassified re-
lations can suffer from the same problem as we showed with Goldberg’s ranking.
An example is shown in Figure 9. Figure 9(a) shows the real Pareto front, where
the fronts of Figure 9(b) and 9(c) are obtained using a predicted fitness. The first
prediction (Figure 9(b)) only has two mispredicted relations (A↔ E and D↔ J),
whereas the second prediction (Figure 9(c)) has four mispredicted relations. Still,

23

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

D

C
B I

G

A

H

J

F

E

f1

f2

A <
 < < < <

 < < < <
 <

B C D E F G H I J

B
C

D
E

F
G

H
I

(a) Real

2 Mispredicted Relations

DC
B I

G

A

H

J

F

E

f1

f2

A >
 < < < <

 < < < <
 >

B C D E F G H I J

B
C

D
E

F
G

H
I

(b) 50% error ratio

J
C

B

I
G

E

H

D

F

A

f1

f2

A <

 < < < <
 <

B C D E F G H I J

B
C

D
E

F
G

H
I

4 Mispredicted Relations

(c) 0% error ratio

Fig. 9: A larger number of misclassified relations does not strictly correlate with the
Pareto front quality. The Pareto front in (c) has more mispredicted relations than the
front in (b), but the error ratio with respect to the real front is better.

the Pareto front of the first prediction is only correct for 50% (E and J are not Pareto
optimal). The second prediction, which is worse according to the number of mis-
classified relations, correctly identifies the Pareto front. As we are using the number
misclassified relations as a subordinate metric, and not as a main metric, this is no
problem in our case. Figure 9(b) has a misclassification rate of 20% that is worse
than the misclassification rate of 0% in Figure 9(c).

5.3 The Selector Thread

The selector thread uses the subset quality metrics to select the representative subset
of scenarios. More specifically, the goal of the selector thread is as follows:

minimize
S̃

rrank(S̃,T) : minimize
S̃

rrel(S̃,T) (16)

As discussed in the previous subsection, the main goal is to optimize the quality
of the predicted ranking. In the case of ties, the number of mispredicted relations will
determine which of the scenario subsets is the best. Whenever a better representative
subset is found, the subset is shared with the design explorer in order to improve its
fitness prediction. The subset may be of any size, as long as it does not exceed
a user-defined limit. This means that a smaller subset that has a better or equal
representativeness is preferable to a larger counterpart (the smaller the subset is, the
faster the fitness prediction is).

24

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Subset Chromosome

Representative subset
Scenarios

3 12 18 9 3

Encoded Subset
Scenario

3

Scenario
18 Scenario

9

Scenario
12

Scenario
Database

Fig. 10: Chromosome representation of a subset. Both the gene sequence is shown
and the representative subset of scenarios that is encoded by the gene sequence.

This leaves us with the question of how to dynamically search for the represen-
tative subset of scenarios. In [28], it was shown that a random pick of scenarios
does not result in a representative subset of scenarios. In the following subsections,
we describe three different techniques for this searching process, using 1) a genetic
algorithm, 2) a feature selection algorithm and 3) a hybrid combination of both a
genetic algorithm and feature selection.

5.3.1 GA-based search for scenario subset

Our first subset selection technique uses a genetic algorithm (GA) to select the rep-
resentative scenario subsets. The GA of the subset selector is somewhat similar to
the GA in the design explorer: a population of individuals is evolved over time in
order to find the individual with the highest fitness. In order to describe the individ-
ual, a chromosome is used that enumerates the scenarios that are contained in the
scenario subset. This chromosome, as illustrated in Figure 10, is simply a sequence
of integers that refer to scenarios from the scenario database. As the length of the
chromosome is equal to the limit of the scenario subset size, the scenario subset can
never become too large. Smaller scenario subset sizes are achieved in two ways: 1)
scenarios may be used more than once within the same chromosome and 2) there is
a special value for an unused slot in the scenario subset.

Scenario subsets can change size as an effect of the mutation or crossover that
is applied during the search of a GA. The evolutionary process uses mutation and
crossover to prepare individuals for the next generation of scenario subsets. Where
the mutation replaces the scenarios in the subset one by one with other scenarios,
the crossover partly exchanges the scenarios of two subsets. Only the successful
modifications will make it to the next generation, leading to a gradual improvement
of the representative subset of scenarios.

This approach has several benefits. First, the computational overhead is relatively
small. Most time is spent in judging the quality of the scenario subsets and modify-
ing the population of scenario subsets. Additionally, selecting scenario subsets for
the next generation is relatively cheap. Apart from the low computational overhead,
the search can also quickly move through the total space of scenario subsets. Due
to crossover and mutation, the scenario subset can quickly change and the alterna-

25

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

SBS (-δ)

SFS (+δ) U
p

Sw
in

g
D

ow
n Sw

ing

X'k = Xk

δ+=.5

δ=1

F(Xk)≤F(X'k)

F(Xk)>F(X'k)

Xk = X'k

Initial
Subset

Xk

Xk+δ
Xk

Xk

Xk

Xk-δ X'k = Xk

δ+=.5

δ=1

F(Xk)≤F(X'k)

F(Xk)>F(X'k)

Xk = X'k

Fig. 11: An illustration of feature selection by means of the dynamic oscillation
search procedure.

tives can be evaluated and explored. This also means that local optima can easily be
avoided. A local optimum is a solution that is clearly better than all closely related
solutions. A small change of a local optimum does typically not result in a better
subset, but the local optimum may still be much worse than the global optimal solu-
tion. As a genetic algorithm always has a small probability that the scenario subsets
are changed significantly in the next generation, there is always a probability that
the search will escape from the local optimum.

Unfortunately, this is also the downside of the approach. Just when the search
comes close to the optimal solution, the mutation can quickly move the search into
a completely different direction. Although the likeliness of this all depends on the
choice of parameters such as mutation and crossover probability, it may be quite
hard to pick the parameters in such a way that the search space is completely ex-
plored in the promising regions. Elitism in GAs assures that the points close to the
local optimum will be retained as part of the population, but not that the neighbor-
hood of each solution is carefully explored.

5.3.2 FS-based search for scenario subset

It would be better if the approach was less dependent on the choice of the parameters
of the search algorithm. The Feature Selection (FS) technique has less parameters
and it basically performs a guided search that tries to improve a single scenario sub-
set step by step. There are many different feature selection techniques, each giving a
different trade-off between computational overhead and its quality. In fact, the fea-
ture selection techniques with the lowest computational overhead actually use a GA.
In our case, we have chosen to use the dynamic sequential oscillating search [25]
as, in general, it provides better classifiers (i.e., the scenario subset that classifies the
non-dominated mapping individuals), with a moderate computational overhead.

Figure 11 illustrates the dynamic oscillating search. The most fundamental part
of the algorithm is the up- and downswing. These swings are named according to
their effect on the size of the scenario subset. Where the upswing will modify the
subset by first adding a number of scenarios to the subset and then removing the
same number of scenarios, the downswing will first remove scenarios before new

26

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

scenarios are added again. This explains the name of the upswing and downswing:
in case of the upswing, the size of the subset swings upward and for a downswing it
swings downward. For adding and removing scenarios, the Sequential Forward Se-
lection (SFS) and Sequential Backward Selection (SBS) are used. These techniques
will iteratively add or remove a scenario in the most optimal way. This means that
SFS will increase the scenario subset size by iteratively adding the most optimal
scenario. This most optimal scenario is determined by trying out all possible sce-
narios from the scenario database and the scenario that results in the best scenario
subset will be added to the larger subset. Similarly, the SBS will iteratively choose
the optimal scenario to remove from the scenario subset. This means that all the
scenarios that can be removed from the scenario subset are tried and the scenario
removal that results in the best scenario subset will be applied.

As simple as it sounds, it makes the computational overhead of the swings largely
dependent on the number of scenarios that are added or removed. The number of
possibilities will grow linearly with respect with the number of scenarios that are
added and removed during the swing. For each scenario that is added, all scenarios
in the scenario database must be analyzed. Since this leads to a quick increase of
computational overhead once the swings become larger, the size of the swing (or δ

as used in Figure 11) is initialized to one and slowly increased. During the search,
the up- and downswing are alternated and whenever both the up- and downswing
do not result in a better scenario subset, the size of the swing is incremented by one.
This can be seen in Figure 11, at the cases where F(Xk) ≤ F(X ′k). The subset X ′k is
the current best subset and the subset Xk is the subset that is obtained after the up- or
downswing. As a higher value for the function F means a better scenario subset, the
case where F(Xk)≤F(X ′k) is an unsuccessful attempt to improve the scenario subset
by a swing. Therefore, the currently best subset is restored and the size of the swing
is increased by 0.5. The value 0.5 is used to increment the swing by one after two
unsuccessful swings: the number of scenarios that are added is the truncated integer
value of δ . Of course, the swing can also be successful: in that case the current best
subset X ′k is updated and the swing size is reset to one.

In a sense, the dynamic oscillating search is a kind of hill climbing technique. It
oscillates the size of the scenario subset by exhaustively exploring all possibilities
to change the scenario subset. Whenever a better subset is found, the current best
representative subset is updated. Important to realize is that the current best subset
can also be updated during a swing. As SFS and SBS analyze the quality of the
scenario subset for each scenario that is added, it can be the case that a better repre-
sentative subset is found during the swing. If the size of this subset is smaller than
the maximal size, the currently most representative subset is updated and sent to the
design explorer.

The FS method is more directed than the GA and, therefore, it will only move
closer to the optimal scenario subset. Unfortunately, this comes at a price: the FS is
much more sensitive to local optima than the GA approach.

27

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

Genetic
Search

Feature
Selection

Best undone subset

Improved subset

Fig. 12: The hybrid subset selection approach that alternates between a GA and a
FS algorithm.

5.3.3 A hybrid approach for searching scenario subsets

Ideally, we want to combine the strengths of the GA and the FS approaches. The
hybrid approach (as shown in Figure 12) tries to achieve this by alternating the
GA and the FS methods. During the search for the representative subset, a GA will
quickly prune the design space of potential scenario subsets, whereas the FS will
thoroughly search the small neighborhood around the high-quality scenario subsets
that are found by the GA. The tricky point is the moment of alternation. When one
of the methods starts to converge, the other method should be activated.

At first sight, the feature selection may be interpreted as a custom variation op-
erator for the GA, but this is absolutely not the case. Both the GA and the FS will
keep state over time and, thus, if the same subset is sent to the FS more than once
the oscillating search will be continued where it stopped in the previous invocation.

As the GA keeps a population of scenario subsets and the FS only works on a
single scenario subset, it must be determined which scenario subset from the GA
population is sent to the FS selection method. The most obvious method is to send
the most representative subset from the GA to the FS. This can, however, not be
done indefinitely. If the same subset is sent to the FS too often, the hybrid approach
will again be susceptible for getting stuck in local optima as all the effort of the FS
will be spent on the same subset. Therefore, the amount of effort spent by the FS
to improve a single scenario subset is limited. If the FS has spent sufficient time on
the same scenario subset (this time can be spread over multiple invocations of the
FS), the subset is done and it will not be sent to the FS anymore. So, the subset is
only sent if it is ”unfinished”: the size of the swing in the oscillating search does not
exceed a predefined maximal margin. This margin is chosen in such a way that the
computational overhead of a single swing is still acceptable.

28

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

6 Related work

In recent years, much research has been performed on high-level modeling and sim-
ulation for MPSoC performance evaluation as well as on GA-based DSE [7, 5].
However, the majority of the work in this area still evaluates and explores systems
under a single (fixed) application workload. Some research has been initiated on rec-
ognizing workload scenarios [16, 22] and making DSE scenario aware [15, 32]. In
[22], for example, different single-application scenarios are used for DSE. Another
type of scenario is the use-case. A use-case can be compared with what we call inter-
application scenarios, and consequently, a use-case describes which applications are
able to run concurrently. Examples of frameworks utilizing use-cases for mapping
multiple applications are MAMPS [13] and the work of Benini et al. [1]. MAMPS is
a system level synthesis tool for mapping multiple applications on a FPGA, whereas
Benini et al. use logic programming to reconfigure an embedded system when a new
use-case is detected. Another way of describing the use of multiple applications is a
multimode multimedia terminal [8], in which the inter-application behavior is cap-
tured in a single, heterogeneous Model of Computation (MoC) combining dataflow
MoCs and state machine MoCs.

7 Discussion

Scenario-based DSE efficiently explores the mapping of dynamic multi-application
workloads on an MPSoC platform. Crucial for the efficiency of such mapping ex-
ploration is the subset selector that dynamically selects the fitness predictor for the
design explorer. This fitness predictor is a subset of application scenarios that is
used by the design explorer to quickly identify the non-dominated set of MPSoC
mappings. In this chapter, we have given a detailed description of how the represen-
tativeness of a scenario subset can be calculated and which techniques can be used
to select the fitness predictor (i.e., the subset of scenarios).

The three different fitness prediction techniques that were presented are: 1) a ge-
netic algorithm (GA), 2) a feature selection (FS) algorithm and 3) a hybrid method
(HYB) combining the two aforementioned approaches. A genetic algorithm is ca-
pable of quickly exploring the space of potential scenario subsets, but due to its
stochastic nature it is susceptible for missing the optimal scenario subsets. This is
not the case with the feature selection algorithm as it more systematically explores
the local neighborhood of a scenario subset. Unfortunately, this approach is rel-
atively slow and can suffer from local optima. The solution is to combine these
approaches in the hybrid approach, leading to a fitness prediction technique that can
quickly prune the design space, can thoroughly search the local neighborhood of
scenario subsets and is less susceptible to local optima.

To give a feeling of the performance of the three different fitness prediction tech-
niques, Figure 13 shows the results of a scenario-based DSE experiment in which
the three techniques are compared for three different subset sizes (1%, 4%, and

29

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

1% 4% 8%

N
or

m
al

iz
ed

 D
is

ta
nc

e
to

 O
pt

im
al

 F
ro

nt

Subset Size

Quality of the DSE

HYB
GA
FS

Fig. 13: Quality of the DSE for the different subset selection approaches. The qual-
ity is determined based on the distance between the estimated Pareto front and the
optimal front.

8% of the total number of application scenarios). In this experiment, the mapping
of ten applications with a total of 58 processes and 75 communication channels
is explored. The multi-application workload consists of 4607 different application
scenarios in total. The target platform is a heterogeneous MPSoC with four general-
purpose processors, two ASIPs and two ASICs, all connected using a crossbar net-
work. In this experiment, we have measured the required exploration time for the
scenario-based DSE to identify a satisfying mapping. After all, the faster the DSE
can provide results that match the requirement of the user, the better it is. For this
purpose, a DSE of 100 minutes is performed for all three subset selector approaches.
The results have been averaged over nine runs. To determine the efficiency of the
multi-objective DSE, we obtain the distance of the estimated Pareto front (execution
time versus energy consumption of mapping solutions) to the optimal Pareto front.
For this purpose, we normalized execution time and energy consumption to a range
from 0 to 1. As the optimal Pareto front is not exactly known since the design space
is too large to exhaustively search it, we have used the combined Pareto front of all
our experiments for this.

When increasing the subset size two effects will occur: 1) The larger the subset,
the more accurate the fitness prediction in the design explorer is, and 2) the larger
the subset, the longer it takes to obtain the fitness of a single mapping causing a
slower convergence of the search. This can be seen in Figure 13. The GA and the
FS subset selection have worse results when the subset becomes larger (the smaller
the distance, the better). The hybrid selector, however, shows a somewhat different
effect. With a subset size of 4% it is able to benefit from a subset with a higher
accuracy. The slower convergence only starts to effect the efficiency for the 8%
subset. Comparing the different methods, the hybrid method shows the best results.
The only exception is for the 1% subset. In this case, the GA is still able to search

30

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

the smaller design space of possible subsets. Still, the result of the hybrid method
at 4% is better than the result of the GA at 1%. With the larger subset sizes, the
hybrid method can exploit both the benefits of the feature selection and the genetic
algorithm.

For more extensive experimental evaluations of scenario-based DSE, and the dif-
ferent fitness prediction techniques in scenario-based DSE in particular, we refer the
interested reader to [28, 30]. These studies compare scenario-based DSE with regu-
lar DSE in the context of multi-application workloads. Moreover, they scrutinize the
quality of the mapping solutions obtained by the different variants of scenario-based
DSE as well as the efficiency with which these solutions are obtained.

The scenario-based DSE presented in this chapter aims at providing a static map-
ping of a multi-application workload onto an MPSoC. Evidently, the application
dynamism as captured by application scenarios can of course also be exploited at
run time to dynamically optimize the embedded system according to the application
workload at hand. For example, in [23, 20, 19, 21], various approaches are pro-
posed for adaptive MPSoC systems that allow for such dynamic system optimiza-
tion. These methods typically consist of two phases: A design-time stage performs
DSE to find an optimal mapping for each application. At runtime, the occurrence
of different application scenarios is detected, after which the system can be recon-
figured by dynamically adapting the application mapping. This could, e.g., be done
by merging the pre-optimized mappings of each separate, active application in the
detected application scenario to form a first-order mapping for the entire scenario.
Subsequently, this first-order mapping can then be further optimized by using run-
time mapping optimization heuristics [21].

References

1. Benini, L., Bertozzi, D., Milano, M.: Resource management policy handling multiple use-
cases in MPSoC platforms using constraint programming. In: Logic Programming, Lecture
Notes in Computer Science, vol. 5366, pp. 470–484 (2008)

2. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-
Objective Problems Second Edition, 2 edn., chap. Alternative Metaheuristics. Genetic and
Evolutionary Computation. Springer US (2007)

3. Coffland, J.E., Pimentel, A.D.: A Software Framework for Efficient System-level Performance
Evaluation of Embedded Systems. In: Proc. SAC 2003, pp. 666–671 (2003)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

5. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolutionary al-
gorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE
Transactions on Evolutionary Computation 10(3), 358–374 (2006)

6. Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski, D., Teich, J.: Electronic System-
Level Synthesis Methodologies. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28(10), 1517–1530 (2009)

7. Gries, M.: Methods for evaluating and covering the design space during early design develop-
ment. Integration, the VSLI Journal 38(2), 131–183 (2004)

31

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

8. Ha, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.P.: Hardware-software codesign of multimedia embed-
ded systems: the peace approach. In: Proc. of the IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pp. 207–214 (2006)

9. Jia, Z., Bautista, T., Nunez, A., Pimentel, A., Thompson, M.: A system-level infrastructure for
multidimensional mp-soc design space co-exploration. ACM Trans. on Embedded Computer
Systems 13(1s), 27:1–27:26 (2013)

10. Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In: Proc. IFIP
Congress 74. North-Holland Publishing Co. (1974)

11. Keutzer, K., Newton, A., Rabaey, J., Sangiovanni-Vincentelli, A.: System-level Design: Or-
thogonalization of Concerns and Platform-based Design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 19(12), 1523–1543 (2000)

12. Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.A.: A Methodology to Design
Programmable Embedded Systems: The Y-Chart Approach. In: Embedded Processor Design
Challenges, pp. 18–37. Springer, LNCS 2268 (2002)

13. Kumar, A., Fernando, S., Ha, Y., Mesman, B., Corporaal, H.: Multiprocessor systems synthe-
sis for multiple use-cases of multiple applications on FPGA. ACM Transactions on Design
Automation of Electronic Systems 13(3), 1–27 (2008)

14. Martin, G.: Overview of the MPSoC Design Challenge. In: Proc. Design Automation Confer-
ence (DAC’06), pp. 274–279 (2006)

15. Palermo, G., Silvano, C., Zaccaria, V.: Robust optimization of soc architectures: A multi-
scenario approach. In: Proc. of the IEEE Workshop on Embedded Systems for Real-Time
Multimedia (2008)

16. Paul, J.M., Thomas, D.E., Bobrek, A.: Scenario-oriented design for single-chip heterogeneous
multiprocessors. IEEE Trans. Very Large Scale Integr. Syst. 14(8), 868–880 (2006)

17. Pimentel, A., Erbas, C., Polstra, S.: A Systematic Approach to Exploring Embedded Sys-
tem Architectures at Multiple Abstraction Levels. IEEE Trans. on Computers 55(2), 99–112
(2006)

18. Piscitelli, R., Pimentel, A.: Design space pruning through hybrid analysis in system-level de-
sign space exploration. In: Proc. of DATE’12, pp. 781–786 (2012)

19. Quan, W., Pimentel, A.D.: An iterative multi-application mapping algorithm for heteroge-
neous MPSoCs. In: Proc. of ESTIMedia’13, pp. 115–124 (2013)

20. Quan, W., Pimentel, A.D.: A scenario-based run-time task mapping algorithm for MPSoCs.
In: Proc. of DAC’13, pp. 131:1–131:6 (2013)

21. Quan, W., Pimentel, A.D.: A hybrid task mapping algorithm for heterogeneous MPSoCs.
ACM Transactions on Embedded Computing Systems 14(1), 14:1–14:25 (2015)

22. S. V. Gheorghita et al.: System-scenario-based design of dynamic embedded systems. ACM
Transactions on Design Automation of Electronic Systems 14(1), 1–45 (2009)

23. Schor, L., Bacivarov, I., Rai, D., Yang, H., Kang, S.H., Thiele, L.: Scenario-based design flow
for mapping streaming applications onto on-chip many-core systems. In: Proc. of CASES’12,
pp. 71–80 (2012)

24. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core systems: sur-
vey of current and emerging trends. In: Proc. of DAC’13, pp. 1:1–1:10 (2013)

25. Somol, P., Novovicova, J., Grim, J., Pudil, P.: Dynamic oscillating search algorithm for feature
selection. In: Proc. of the International Conference on Pattern Recognition 2008 (ICPR 2008),
pp. 1–4 (2008)

26. Spearman, C.: The proof and measurement of association between two things. The American
Journal of Psychology 15(1), 72–101 (1904)

27. van Stralen, P.: Applications of scenarios in early embedded system design space exploration.
Ph.D. thesis, Informatics Institute, University of Amsterdam (2014)

28. van Stralen, P., Pimentel, A.D.: Scenario-based design space exploration of MPSoCs. In: Proc.
of IEEE International Conference on Computer Design (ICCD’10) (2010)

29. van Stralen, P., Pimentel, A.D.: A trace-based scenario database for high-level simulation of
multimedia mp-socs. In: Proc. of SAMOS’10 (2010)

32

A.D. Pimentel and P. van Stralen Scenario-based Design Space Exploration

30. van Stralen, P., Pimentel, A.D.: Fitness prediction techniques for scenario-based design space
exploration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 32(8), 1240–1253 (2013)

31. van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: Analyzing the
state-of-the-art. Evolutionary Computation 8(2), 125–147 (2000)

32. Zaccaria, V., Palermo, G., Castro, F., Silvano, C., Mariani, G.: Multicube explorer: An open
source framework for design space exploration of chip multi-processors. In: Proc. of the Int.
Conference on Architecture of Computing Systems (ARCS), pp. 1–7 (2010)

33

