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ABSTRACT
The cache Miss Ratio Curve (MRC) serves a variety of purposes such
as cache partitioning, application profiling and code tuning. In this
work, we propose a new metric, called cache miss distribution, that
describes cache miss behavior over cache sets, for predicting cache
MRCs. Based on this metric, we present FLORIA, a software-based,
online approach that approximates cache MRCs on commodity sys-
tems. By polluting a tunable number of cache lines in some selected
cache sets using our designed microbenchmark, the cache miss distri-
bution for the target workload is obtained via hardware performance
counters with the support of precise event based sampling (PEBS).
A model is developed to predict the MRC of the target workload
based on its cache miss distribution.

We evaluate FLORIA for systems consisting of a single applica-
tion as well as a wide range of different workload mixes. Compared
with the state-of-the-art approaches in predicting online MRCs, FLO-
RIA achieves the highest average accuracy of 97.29% with negligi-
ble overhead. It also allows fast and accurate estimation of online
MRC within 5ms, 20X faster than the state-of-the-art approaches.
We also demonstrate that FLORIA can be applied to guiding cache
partitioning for multiprogrammed workloads, helping to improve
overall system performance.
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1 INTRODUCTION
Modern multicore processors implement a large Last Level Cache
(LLC) to hide the long memory access latencies. Such an LLC is
usually shared by multiple cores to allow high cache utilization and
to provide convenient communication among cores. However, an un-
controlled shared cache allows CPU cores to freely access the entire
cache space, which can cause inter-application cache interference
when multiple applications compete among each other for the shared
LLC. This can increase cache misses for each individual application
and consequently degrade the overall system performance.

Even though the size of the LLC is constantly increasing, it is still
one of the most critical resources that needs to be managed well in
order to reach the performance potential of the memory hierarchy.
The Miss Ratio Curve (MRC), a performance-directed metric, was
proposed for the purpose of improving LLC management. It identi-
fies the cache miss rate of an application as a function of the amount
of cache allocated to that application, i.e., its cache occupancy.

In general, the MRC provides deep insights into the locality char-
acteristics of a program and serves as a popular tool to enable various
different types of analyses: memory management prediction [4, 5],
cache simulation [25], profiling and code tuning [20, 27] and so
on [2, 7, 28]. Online cache MRCs can also help to guide the cache
partitioning for multiprogrammed workloads running on a multi-
core processor with shared LLC to mitigate the shared cache con-
tention [13, 33, 34, 36, 42, 44].

A relatively straightforward way to obtain MRCs is to do it offline
by running the target application multiple times, each time using a
different cache size. However, in a real system, especially in data
centers, it may be impractical to profile every workload in advance.
In addition, an offline MRC might be inaccurate or even useless as it
is input dependent.

Accurate MRCs can be calculated by measuring stack distance [22,
26, 29, 35, 36]. Stack distance is the number of distinct accesses
between two consecutive accesses to the same location. To reduce
the time and space complexity of calculating stack distance, recent
works, such as StatCache [4], StatStack [12], footprint theory [41],
time-to-locality conversion [17, 31, 38] and AET model [15, 42] use
reuse interval [11] to construct MRCs more efficiently. Reuse time
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simply counts the total number of accesses between two consecu-
tive accesses to the same data location. However, those approaches
based on stack distance and reuse interval are limited by the fol-
lowing disadvantages: (1) They need the full history of memory
access traces, which requires either exhaustive binary instrumenta-
tion or interrupting the thread on every memory access. Even with
program phase-based sampling, these approaches incur substantial
slowdowns, of 21% to over 2× [30], making them too slow for
online purposes. (2) Those approaches target only caches using rela-
tively simple replacement policies like least-recently used (LRU) or
pseudo-LRU. LLCs in modern processors, however, employ high-
performance replacement policies [40] to improve their caching
performance over conventional policies like LRU.

Contributions: We make three main contributions in this work.
First, we propose a new metric that describes cache miss behavior
over cache sets, called cache miss distribution, for MRC prediction.
This metric can be measured by tracking the cache misses of a
program over a time interval. When accessing a memory address
results in an LLC miss, we count one cache miss for the LLC set
to which the address will be mapped. This metric leverages one key
observation: cache misses are normally distributed over all the cache
sets. It intrinsically differs from stack distance and reuse interval in
terms of four aspects: (1) As the cache miss behavior over all cache
sets can be represented by the behavior of a group of cache sets, it
only monitors a small group of individual cache sets, instead of the
whole cache space, (2) It only counts the number of misses over some
cache sets, without distinction of data addresses for calculating stack
or reuse distance, (3) it does not require recording every cache miss,
it is able to maintain a high MRC prediction accuracy even when
sampling cache misses at low rates, (4) Since it is not inherently tied
to any particular cache replacement policy, it is applicable to modern
LLCs.

Second, based on the proposed metric, we present the design
and practical implementation of FLORIA, a software-based, online
approach that approximates cache MRCs on commodity systems
with low overhead. More specifically, a microbenchmark, called
CACHEBUBBLE, is designed and implemented to pollute the cache
at the granularity of cache lines, forming different thrashing patterns
at cache sets. By adjusting CACHEBUBBLE’s access pressure on
some selected cache sets, the number of cache lines in those sets
that are available to the target application also changes. FLORIA
uniquely utilizes hardware performance counters with the support
of precise event based sampling (PEBS) to obtain the cache miss
distribution for the target workload. A model is developed to predict
the MRC of the target workload based on its cache miss distribution.

Third, we evaluate FLORIA for systems consisting of a single
application and a wide range of different workload mixes. Compared
with the state-of-the-art, FLORIA achieves the highest average accu-
racy of 97.29%, while it incurs negligible overhead. It also allows
fast and accurate estimation of online MRC within 5ms, 20X faster
than the state-of-the-art approaches. This is particularly useful in the
serverless computing where the execution time of workloads can be
as low as hundreds of milliseconds [18]. In these cases, FLORIA
allows to explore optimization opportunities for resource schedul-
ing and management at millisecond timescales. We performed a
sensitivity study for FLORIA and also demonstrate that FLORIA

can be applied to guiding cache partitioning for multiprogrammed
workloads, helping to improve overall system performance.

The rest of the paper is organized as follows. The background of
hardware performance monitoring units and LLC is introduced in
Section 2. Section 3 presents the observation on cache miss distribu-
tion for a target workload. Section 4 describes FLORIA, where we
also detail the design of the microbenchmark CACHEBUBBLE and
the model for MRC prediction. Section 5 presents the performance
evaluation of FLORIA. Section 6 gives an overview of related work,
after which Section 7 concludes the paper.

2 BACKGROUND
In this section, we introduce the background knowledge on hardware
performance monitoring units and LLC.

2.1 Hardware PMUs
To provide real-time microarchitectural information about the pro-
cesses currently executed on the chip, a rich set of hardware Per-
formance Monitoring Units (PMUs) are implemented in today’s
processor microarchitectures. These PMUs offer a programmable
way to count hardware events such as CPU cycles, instructions
executed, cache statistics, etc. PMUs also support advanced event
sampling, a mechanism that collects event samples at a predefined
sampling period. For example, the event-based sampling is realized
by Intel’s Precise Event-Based Sampling (PEBS) [8] and AMD’s
Instruction Based Sampling (IBS) [10].

2.2 Last Level Cache (LLC)
Caches in modern processors are organized as a hierarchy of multiple
cache levels to address the tradeoff between cache latency and hit
rate. The low level caches are usually private to cores, while the last
level caches (LLC) are shared between all cores.

The LLC consists of cache sets with a minimum unit of a cache
line or cache block. An M-way set-associative cache allows a mem-
ory address to map to one of M cache lines in a set, from way 1 to
way M. When a CPU needs to access a specific memory address, it
checks whether a cache line containing the target address exists or
not. If such a cache line is found, a cache hit occurs. Otherwise, it
results in a miss which may incur a cache replacement. The cache
replacement policy determines which block in a set is evicted for
the new data. LLCs typically follow an approximation of the least
recently used (LRU) policy for replacement.

LLC addressing. The LLC in a modern multicore processor is
usually organized into as many slices as the number of cores with
the purpose of reducing the bandwidth bottleneck when more than
one core attempts to retrieve data from the LLC at the same time.
All slices are addressable and can be accessed by all cores as a
single logical LLC. Modern processors map a physical address to a
slice in the LLC using an undocumented technique called complex
addressing.

We consider an M-way set-associative LLC with a total of K
cache sets in each cache slice. A cache line with a size of C bytes
occupies a single way of a cache set. As LLCs are physically indexed
and physically tagged (PIPT), they use the physical address for both
the index and the tag. The slice and cache set to which a physical
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Figure 1: LLC addressing. For a typical LLC with K = 2048,
C = 64, the lowest 6 bits (b0−b5) are used to determine the offset
within a cache line and b6−b16 select the cache set. Higher bits
b17 and above) are used as tag and input to a hash function to
decide the cache slice.

memory address maps is determined by its address bits, as shown in
Figure 1.

As indicated in [16], the least significant log2 C bits of the physical
address are used to address a byte or word within a cache line. The
next log2 K bits select the set that the cache line belongs to. Bits
log2 K log2 C and above are utilized as a tag for comparison when
looking for data in the cache. The hash function also takes these
higher bits as input and its output determines the cache slice.

Reverse Engineering of Complex Addressing. There have been
many efforts to find the undisclosed hash function that determines
the mapping between physical addresses and slices [16, 19, 23]. In
this work, we adopt the approach presented in [23] to perform the
reverse-engineering for the processor used in our experiments (Intel
Xeon Silver 4110). In Intel processors, each LLC slice is equipped
with a C-Box counter. C-Box can be configured to measure hardware
events for its associated slice such as the total number of lookups or
misses. The approach is applicable to any processor that is equipped
with uncore performance monitoring units e.g., C-Box counters.

In more detail, this approach involves two steps:
Step 1: mapping between physical addresses and LLC slices.

The C-Box counters are configured to count all accesses to each
slice. Next, a specific virtual address is repeatedly accessed 10,000
times to generate access events on the corresponding slice. All C-
Box counters are then read for each slice. The virtual address is
then translated to a physical address by reading the page tables in
the file /proc/self/pagemap. Finally, a C-Box counter that has the
most lookups will identify the slice to which that particular physical
address is mapped.

By applying the same technique to different addresses, we can
obtain a set of pairs (physical address, slice) that, eventually, form a
mapping table.

Step 2: constructing the hash function. As validated in [23], the
LLC hash function of an Intel CPU with 2n cores can be expressed as
a series of XORs of the bits of the physical address. This allows us to
analyze the implication of the address bits independently from each

other and reduce the analysis to only a handful subset of physical
addresses. Specifically, one can compare the slices found by the
previous step for different physical addresses that only differ by one
bit. If the two addresses are mapped to the same slice, it means that
the bit is not part of the hash function. Conversely, if the mapped
slices are different, the bit is one of the inputs of the hash function.
By performing the above analysis to each bit in a physical address,
the hash function can be constructed.

We let bi 0≤ i≤ 63 denote bit i of a 64-bit address. The number
of LLC slices in our tested machine is 8, thus the hash function
has an output of 3 (log2 8) bits. For simplicity, we express the hash
function as three boolean functions os, 0≤ s≤ 2, each determines
one bit of the output. Let Is be the set of bits that are used to calculate
os, i.e. bi ∈ Is means bit i is one of the input bits to generate os. After
performing the step 1 and 2, we found Is for our test machine as
follows, which is the same as the one identified by [23]:

I0 = {b6,b10,b12,b14,b16−18,b20,b22,b24−28,b30,b32−33,b35−36},
I1 = {b7,b11,b13,b15,b17,b19−24,b26,b28−29,b31,b33−35,b37},

I2 = {b8,b12−13,b16,b19,b22−23,b26−27,b30−31,b34−37}.
(1)

Therefore, os0≤ s≤ 2 can be calculated by:

os =⊕bi,bi ∈ Is. (2)

In general, reverse engineering of complex addressing may not
be always feasible. However, the security community was able to
recover the mapping for a wide range of platforms including Intel’s
Ivy Bridge, Nehalem and Haswell families with Intel Xeon, i5, i7
processor and so on.

In Section 4.1, we will exploit the hash function to generate
addresses mapped to different cache slices in the microbenchmark,
CACHEBUBBLE.

LLC partitioning. To provide hardware support for LLC parti-
tioning, Intel has proposed the so-called Cache Allocation Technol-
ogy (CAT), which provides software-programmable control over the
amount of cache space that can be consumed by a given application.

Machines that support CAT have a predefined number of classes
of service (CLOS), for example, 11 in our experimental machine.
Each CLOS is associated with a capacity bit mask (CBM) that con-
trols the accessibility of cache resources with cache-way granularity,
where each bit in the mask grants write access to one way in the
cache. Each application belongs to a CLOS and a particular appli-
cation can only access the cache-ways defined by the CBM for that
CLOS.

3 CACHE MISS DISTRIBUTION
Different from previous work that exploits either stack distance or
reuse time, FLORIA relies on the new metric – cache miss distribu-
tion – for predicting an MRC.

When accessing a memory address results in an LLC access, it
then checks whether the LLC set to which the address is mapped
contains the target address or not. If not, we count one cache miss for
that particular LLC set. We use a cache miss histogram to represent
the distribution of LLC misses over all the LLC sets.
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Figure 2: LLC miss histograms with respect to cache sets.

The cache miss histogram describes cache miss behavior over
cache sets. It can be obtained by the following steps: virtual ad-
dresses of the LLC misses can be obtained by using the PMU sam-
pling mechanism. The tracked virtual addresses can be translated
to the corresponding physical addresses. Given a physical address,
one can determine its associated LLC slice and the cache set within
the slice where the address is mapped to. By sampling the LLC
misses over a short execution period, one can obtain the cache miss
distribution over cache sets. We describe those steps in detail below.

PMU sampling. Intel PEBS is an event-based sampling mech-
anism that allows associating sampled performance events with
instruction pointers (IP) and effective data addresses. PEBS address
sampling in recent Intel processors (i.e., Haswell and its successors)
allows precisely monitoring cache misses. As we are interested in
LLC misses, we choose the event MEM_LOAD_UOPS_RETIRED:L3_MISS
to record addresses whose access results in an LLC miss.

Virtual-to-physical address translation. This translation is done
via Pagemap, a set of interfaces in the Linux kernel that allow user
space programs to examine the page tables and related information.

Since the default page size of most Linux systems in the vir-
tual address space is 4K bytes, during the virtual-to-physical ad-
dress translation, bits 0− 11 (b0− b11) of the virtual address that
encode the page offset are preserved. Bits 12 and above of the vir-
tual address, which encode the page number in the virtual address
space, are replaced by the physical page frame number. The mapping
from the virtual page to the physical page frame can be found in
/proc/self/pagemap, a component in Pagemap.

LLC addressing. As described in Section 2.2, given a physical
address whose access results in an LLC miss, one can determine the

associated LLC slice and the cache set within the slice where the
address is mapped to.

We performed the above steps to obtain the cache miss behavior
for each applications in the SPEC CPU2017 benchmark suite [32]
when hardware prefetchers are disabled. We calculate the average
number misses at each set across all cache slices, based on which
we count the number of LLC sets that exhibited the same number of
misses. Figure 2 illustrates such LLC miss histograms with respect
to cache sets for each application in the SPEC CPU2017 benchmark
suite.

In Figure 2, for a biomedical imaging application (510.parest),
all cache sets exhibit between 51 and 66 misses, with an average of
57.65. 97.12% of all sets experience a number of misses that ranges
from 52 to 63. Only less than 3% of cache sets exhibit misses out
of 10% of the average value. We can also observe similar cache
miss distribution for the most programs in the SPECCPU2017. Note
that there are a few exceptions: (1) for some programs such as
548.exchange2, 511.povray and 538.imagick, they have very limited
LLC misses, (2) for most programs, a few cache sets may exhibit
more/less cache misses than the median value. This can be due to
software prefetch, compiler optimizations such as alignment and so
on.

OBSERVATION 1. Cache misses are normally distributed over all
the cache sets. The cache miss behavior at some randomly selected
cache sets coincides with the behavior of all cache sets together.

As shown in Figure 1, bits 6-16 of an address select the cache
set. Given a large number of data addresses that lead to misses in
the LLC, we observe that bits 6-16 of those addresses are either 0
or 1 with the same probability. Therefore, a missed data address
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has a uniform probability of being mapped to any of the LLC sets.
Observation 1 also verifies the assumption that a program block has
the same probability of being present in any of the cache sets in the
work on analytic cache models [1].

The cache miss behavior over all cache sets can be represented
by the behavior of some individual cache sets. Instead of monitoring
the whole cache space, we can focus on the miss behavior of some
individual cache sets. By exploiting Observation 1, FLORIA creates
different degrees of contention on selected cache sets and analyzes
the cache miss behavior at those cache sets to produce an MRC.

4 FLORIA: DESIGN AND IMPLEMENTATION
In this section, we describe our approach, FLORIA, for predicting
cache performance. An overview of FLORIA is presented in Fig-
ure 3. FLORIA relies on a microbenchmark, CACHEBUBBLE, to
create contention on the shared cache with the target application.
The role of CACHEBUBBLE is to pollute the LLC sets at the gran-
ularity of cache lines, forming different thrashing patterns at some
selected cache sets. The LLC access behavior of CACHEBUBBLE
can be controlled in such a way that CACHEBUBBLE can access
a certain number of cache lines in a specific cache set within each
cache slice. By adjusting the number of cache lines accessed by
CACHEBUBBLE in different cache sets, the available cache lines
in those cache sets for the target application will differ. While the
target application executes concurrently with CACHEBUBBLE, its
cache miss distribution over the controlled cache sets is obtained by
performing the steps described in Section 3. Finally, the MRC of
the target application can be predicted using its cache miss behavior.
In the following, we explain the approach in detail. We start by
introducing the CACHEBUBBLE microbenchmark.

4.1 The CACHEBUBBLE Microbenchmark
CACHEBUBBLE acts as a cache set polluter. It first generates data
addresses and then frequently accesses them.

The procedure of CACHEBUBBLE is shown in Pseudocode 1.
The inputs to CACHEBUBBLE include the number of cache slices S,
the number of cache ways M, the execution duration of CACHEBUB-
BLE, the set of cache sets it will access: SampleSet = c1,c2, ..., and
the number of cache lines to access for each set in SampleSet : W =

wc1 ,wc2 , ....
Supposing the total number of cache sets in SampleSet is Nsample,

we set an offset x∈ 0,
⌊

K
Nsample

⌋
−1 for selecting one cache set among

every
⌊

K
Nsample

⌋
cache sets to form SampleSet. This cache set selec-

tion facilitates designing an address filter, as will be explained in
Section 4.2.

We first allocate a buffer in a huge page of 1GB by using mmap,
which is contiguous physical memory aligned on the page size (Line
2 in Pseudocode 1). The offset of a memory block in a 1GB page is
30-bit long, so the lowest 30 bits of a virtual address within a huge
page will be the same as those bits in the corresponding physical
address. Based on this property, we can generate addresses within a
huge page that map to a specific LLC set by only setting the lower
bits of virtual memory addresses without knowing precisely the

Pseudocode 1: CACHEBUBBLE
1: Input: S,M,duration,SampleSet,W
2: buffer← create_1G_hugepage()
3: for all c ∈ SampledSet do
4: addr← buffer + (c«6)
5: φc[S]← gen_addr_all_slices(addr)
6: for i← 0 to S-1 do
7: ψc,i ← gen_access_addr(φci,M)
8: end for
9: end for

10: start← read current time stamp
11: while end− start ≤ duration do
12: for iteration← 0 to 20 do
13: for c ∈ SampledSet do
14: for i← 0 to S−1 do
15: access the first wc addresses in ψc,i
16: end for
17: end for
18: end for
19: end← read current time stamp
20: end while

actual physical addresses. Note that we have no means to manipu-
late bit 30 and above in the physical address in user space, as it is
controlled by physical page allocation in the operating system.

4.1.1 Generating Addresses. To create LLC access pressure, each
data access of CACHEBUBBLE is expected to result in a L1/L2
cache miss and a LLC hit. In order to guarantee that CACHEBUB-
BLE behaves in this way, we first need to carefully generate those
data addresses.

Address mapped to a given cache set. We first construct a set of
addresses that map to the given cache set c. As shown in Figure 1,
bits b6−b16 determine the cache set and they are the same for both
virtual and physical addresses within the allocated huge page. By
setting b6− b16 to c, we can generate such an address addr that
maps to the set c (Line 4 in Pseudocode 1).

Address mapped to different cache slices. To ensure that CACH-
EBUBBLE creates the same amount of access pressure on a given
cache set at each cache slice, we need to distinguish the cache slice
an address maps to. In this way, we can expect that each memory
access of CACHEBUBBLE will result in an LLC hit, avoiding
L1/L2 cache hits or LLC misses due to the unbalanced distribution
of accesses to cache slices.

Supposing that address addr maps to cache slice with index
o2o1o02, we now generate a set of addresses that map to set c but in
other cache slices by changing those bits of an address that determine
the cache slice, as shown in Equations 1 in Section 2.2.

The mapped cache slice is calculated by Equation 2. Note that the
output of os is determined by the number of input bits that equal to
1 in Is. If the number of 1′s in Is is odd, the output of os is 1. If it is
even, then os is 0.

If one bit above b16 in Is is flipped (from 0 to 1 or vice versa), the
number of 1’s in Is will change either from odd to even or from even
to odd. Consequently, the value of os is also flipped, generating a
new address that maps to a different slice. For example, flipping b17
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of addr generates an address mapped to cache set c in cache slice
o2o1ō02, and flipping b21 produces an address mapped to cache slice
o2ō1o02.

By flipping bits in Is, CACHEBUBBLE generates addresses that
map to every cache slice. This step is done by the gen_addr_all_slices
function at Line 5 in Pseudocode 1. It returns an array φcS that stores
S addresses, one per cache slice.

Addresses mapped to the same cache set and slice
The generation of addresses that are mapped to the same cache set

and slice follows from the observation that flipping an even number
of bits in Is will not change the value of os.

For example, flipping both b24 and b28 of an address generates a
new address mapped to the same cache set and slice. CACHEBUB-
BLE generates a total number of M addresses mapped to cache set
c in cache slice i, as performed by gen_access_addr at line 7 in
Pseudocode 1. Those addresses form the set ψc,i.

4.1.2 Accessing Addresses. After address generation, CACHEBUB-
BLE frequently accesses those addresses and exploits the cache
replacement policy to create different degrees of access pressure on
the selected cache sets. If CACHEBUBBLE is configured to occupy
wc (wc ≤M) cache lines in set c of slice i, then CACHEBUBBLE
accesses the first wc addresses in ψc,i. The accessing activity is per-
formed by the while loop in Pseudocode 1 for a certain period, given
by duration.

Thrashing pattern. The set SampleSet is further divided into M
subgroups, each of which consists of L cache sets. CACHEBUB-
BLE accesses the same amount of cache lines (ways) for each
cache set in the same subgroup, forming a thrashing pattern. In
total, CACHEBUBBLE creates M thrashing patterns, one per sub-
group, by accessing different numbers of cache lines (ways) ranging
from 0 to M−1 for the M subgroups.

CACHEBUBBLE creates contention on totally L cache sets for
each thrashing pattern to reduce the measurement error. However,
with a larger L, CACHEBUBBLE evicts more cache sets per thrash-
ing pattern, which leads to performance degradation for the target
workload. In this work, we choose L = 4 as the trade-off between
prediction accuracy and application performance degradation.

4.2 Cache Miss Behavior
While the target workload and CACHEBUBBLE execute simulta-
neously on different processing cores, we monitor the cache miss
behavior for the target workload.

We implemented a kernel driver, called FLORIA Driver, to collect
runtime execution information for the target workload. We use the

MEM_LOAD_UOPS_RETIRED:L3_MISS event counter with a predefined
sampling period to drive the PEBS sampling for the target workload.
When the predefined number of LLC misses (length of a sampling
period) occurs, a PEBS record containing the linear address of a
memory reference that triggers the current LLC miss is written into
the configured PEBS buffer. When the PEBS buffer is full, it triggers
an interrupt. In the interrupt handling function, linear addresses in the
PEBS buffer are passed through a designed address filter and then are
dumped to an outside buffer through mmap. For each sampled address
in the outside buffer, virtual-to-physical address translation and LLC
addressing are performed to obtain the cache miss behavior for the
target workload, of which the details are described in Section 3.

The address filter is designed to reduce the size of the buffer stor-
ing the sampled virtual addresses and to also reduce the overhead in-
curred by unnecessary virtual-to-physical address translations. This
is motivated by the fact that PEBS samples those virtual addresses
that result in a LLC miss, no matter in which cache set the miss
occurs. However, we are only interested in cache misses in those
cache sets polluted by CACHEBUBBLE with different thrashing
patterns.

The design of the address filter. By default, the virtual page as-
signed to the target application is 4KB, within which the lower bits
b0−b11 of a virtual address are the same as those bits in the corre-
sponding physical address. As bits b6− b16 of a physical address
determine its mapped LLC cache set, bits b6−b11 of the data address
sampled by PEBS can be used to filter out uninteresting addresses.

Remember that bits b6−b16 of a physical address determine its
mapped LLC cache set and that the offset for selecting cache sets to
be accessed by CACHEBUBBLE is x (see Section 4.1). When an
address is sampled by PEBS, min6,⌈log2

K
Nsample

⌉ bits starting from
b6 of that address are extracted. Only if the extracted value equals to
x, the address will be recorded for address translation later.

For example, if CACHEBUBBLE accesses totally 64 cache sets,
each cache set with an offset 10 among every 32 cache sets is selected
to form SampleSet. Only the addresses, sampled from the target
workload, with b6−b10 that equal to 10 will be recorded. Thanks to
the address filter, only 132 of virtual addresses captured by PEBS
will be collected, which reduces both the buffer size and the overhead
of address translation by about 97%.

4.3 MRC Prediction
We now develop a model for the prediction of an MRC based on the
cache miss distribution.

As shown in Section 3, if the target application executes alone,
cache misses are normally distributed over all cache sets, thus the
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number of cache misses exhibited by each cache set is very similar.
However, if the target application co-runs with CACHEBUBBLE,
the cache miss distribution is not normal anymore. The target applica-
tion exhibits more misses in the cache sets where CACHEBUBBLE
thrashes more cache lines. This is because if more lines in a specific
cache set are polluted by CACHEBUBBLE, fewer cache lines in
that cache set are effectively available to the target application.

We obtain the cache miss distribution of 502.gcc from the SPEC
CPU2017 suite when running it concurrently with CACHEBUBBLE.
According to CACHEBUBBLE’s design, it thrashes certain (ranging
from 0 to M−1) cache lines for M subgroups of cache sets.

Figure 4: The comparison between normalized cache miss in the
sampled cache sets with different numbers of available cache
lines and real MRC for 502.gcc.

We first calculate the average number for cache misses for each
subgroup of cache sets with i cache lines effectively available for
the target application, i.e., CACHEBUBBLE thrashes M− i cache
lines in those sets. The average numbers of cache misses for each
subgroup are then normalized.

We compare the normalized cache miss numbers with the real
MRC1. The comparison is depicted in Figure 4, from which we
make the following observation:

OBSERVATION 2. The normalized cache miss numbers from the
cache sets with i cache lines effectively available for the target
application are proportional to the cache miss ratio when an i−way
set associative cache is utilized by the target application.

We denote M̂Ri as the predicted cache miss ratio of the target
application when an i−way set associative cache is utilized by the
target application. Let Ni0≤ i≤M be the average number of misses
in the cache sets where i cache lines are available for the target
application.

Following Observation 2, we need to know at least one pair of
Ni,M̂Ri to construct the MRC. Fortunately, two pairs can be derived.
The first pair is N0,100%, simply comes from the fact that cache miss
ratio is 100% if no cache is available for the target application . The
second pair is NM ,MRc, where MRc is the current cache miss ratio.
MRc can be measured by perf [9] at run time. As CACHEBUBBLE
1The real MRC is obtained offline by running the target application multiple times with
the available LLC space controlled by CAT.

only pollutes a small subset of all cache sets (Nsample << L), it has
very limited influence on the current cache miss ratio of the target
workload. Therefore, MRc is the cache miss ratio when the target
application fully utilizes cache.

Using the above two pairs, M̂Ri is computed by:

M̂Ri =

{
Ni
NM
×MRc, if Ni

NM
≤ N0

Ni
,

Ni
N0
×100%, otherwise.

4.4 Limitation of Applicability
In general, FLORIA can be applied to an architecture if (i) the map-
ping between physical addresses and cache sets/slices is known, and
(ii) the advanced event-sampling mechanism is supported. For the
first condition, normally the mapping implemented by Intel, AMD
and ARM is undocumented, but one can perform reverse engineering
to discover the mapping for a wide range of their processor. Cache
architectures in RISC-V are configurable, thus it is difficult to find
a general approach to discover the mapping for RISC-V. However,
if a RISC-V processor is open sourced, the mapping can be derived
from the implementation. For the second condition, Intel processors
provides PEBS, and AMD with IBS. ARM-based processors and
RISC-V have no direct implementation of event sampling, but they
can support it by adding related hardware performance counters.

5 EXPERIMENTS
This section evaluates the performance of our approach. The experi-
mental platform is an Intel Xeon Silver 4110 @2.1 GHZ. The L1 size
is 32K, L2 size is 1MB and the LLC size is 11MB. It has 376GB of
main memory and the maximum memory bandwidth is 119.21 GB/s,
so the memory contention will be small. Hyperthreading is disabled
to avoid intra-core interference. By default, hardware prefetching is
also disabled and the PEBS sampling period is 1.

5.1 Accuracy
We use applications from the SPEC CPU2017 benchmark suite [32].
As FLORIA is designed for online MRC prediction, we evaluate
its performance using a fixed-work methodology [14]. For each
application, it first executes for about 10 seconds to take over the
cache, which is considered as a warm up interval. The MRC of the
next 1 second execution is then predicted by FLORIA, OPMRC [42]
and DynaWay [13].

We first predict the MRC when the target workload runs alone
in the system. Figure 5 compares the real MRC and the MRCs
produced by OPMRC [42], DynaWay [13] and FLORIA for each
application in the SPEC CPU2017 benchmark suite.

The accuracy for a single application is calculated by 1
M

M
i=1 |

M̂Ri−MRi |, where MRi is the real cache miss ratio when an i−way
cache is allocated to the application using CAT.

The comparison of MRC prediction accuracy between FLORIA
and other approaches is listed in Table 1. Overall, FLORIA achieves
the best accuracy with an average of 97.29%, while the average ac-
curacy obtained by DynaWay and OPMRC are 92.63% and 94.43%,
respectively. For some programs (557.xz, 519.lbm and 544.nab), the
improvement of FLORIA is small, as DynaWay and OPMRC can
already predict MRCs with a 99% accuracy. For other programs, the
improvement is larger. For 507.cactuBSSN, the accuracy of FLORIA
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Figure 5: The LLC miss ratio (%) over cache size (MB) predicted by FLORIA, OPMRC and DynaWay, compared with real MRC.

is 90.46%, while the accuracy of DynaWay and OPMRC is 74.56%
and 85.17%. In the best case, FLORIA is 11.05% more accurate
than OPMRC (for 523.xalancbmk) and 19.73% more accurate than
DynaWay (for 510.parest).

Table 1: Accuracy of FLORIA, DynaWay and OPMRC

Benchmark FLORIA DynaWay OPMRC
500.perlbench 95.39 % 88.95 % 86.83 %

502.gcc 97.74 % 85.47 % 92.81 %
505.mcf 93.27 % 93.21 % 85.96 %

520.omnetpp 97.39 % 95.95 % 97.35 %
523.xalancbmk 96.22 % 91.45 % 85.17 %

525.x264 98.45 % 95.99 % 95.47 %
531.deepsjeng 99.50 % 99.68 % 99.48 %

541.leela 94.67 % 90.71 % 93.41 %
548.exchange2 99.99 % 89.86 % 99.99 %

557.xz 99.93 % 99.92 % 99.67 %
503.bwaves 98.42 % 98.90 % 88.18 %

507.cactuBSSN 90.46 % 74.56 % 85.60 %
508.namd 98.66 % 98.57 % 98.68 %
510.parest 98.09 % 78.33 % 96.97 %
511.povray 99.85 % 92.89 % 99.85 %

519.lbm 99.89 % 99.67 % 99.88 %
521.wrf 97.16 % 92.55 % 94.52 %

526.blender 96.45 % 95.83 % 96.78 %
527.cam4 95.35 % 90.37 % 88.58 %

538.imagick 96.01 % 95.75 % 94.71 %
544.nab 99.64 % 99.01 % 99.64 %

549.fotonik3d 99.44 % 98.38 % 96.52 %
554.roms 95.57 % 84.53 % 95.89 %

Avg. 97.29 % 92.63 % 94.43 %

FLORIA is more accurate than DynaWay because it predicts the
entire MRC in one time using the obtained cache miss behavior at
controlled cache sets. Compared with FLORIA, DynaWay requires
multiple measurements, one per each evenly spaced allocation (1,
3,..., 11 ways), to construct the entire MRC. The application can
behave differently in each measurements. Using the cache miss ratios
measured at different phases causes MRC prediction errors.

OPMRC is less accurate than FLORIA for two reasons. First,
OPMRC relies on the reuse time metric for MRC prediction, which
is designed for caches with LRU replacement policy. However, the
processor used for the experiments does not use LRU (or pseudo-
LRU) for the LLC. Second, OPMRC requires a sampling frequency
of 1, but the actual sampling frequency supported by commodity
processors usually cannot reach this ideal value. With the tested
processor, we observe a maximum sampling rate of 1:3.5. This
inevitable factor introduces some inaccuracy for OPMRC.

5.2 Overhead
The actual run time overhead incurred by the online MRC prediction
approaches depends on the frequency of phase transitions and dura-
tion of the measured execution phase. We first determine the change
of an execution phase by 10% variation of the cache miss ratio. The
average lengths of an execution phase for each application are listed
in Table 2. Due to space limitations, the applications are represented
by their indexes.

For each application, we choose an execution phase that lasts
longer than 1 seconds. FLORIA and other approaches do not need
to process the prediction during the whole phase. Instead, they only
measure part of the execution phase and then use the predicted MRC
at the measured interval as the MRC of the whole phase.
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Length of Measurement Window. By varying the measurement
lengths, FLORIA, DynaWay and OPMRC are used to predict the
MRCs of the chosen execution phase for each application. Figure 6
summaries the average accuracy of those approaches.

Table 2: Overhead of FLORIA, DynaWay and OPMRC

Phase Application Overhead
Bench length slow down2

(Second) CAT PEBS F OP Dyna
500 110.17 5.69% 1.32% 0.00% 0.00% 0.01%
502 4.11 11.93% 29.58% 0.04% 0.72% 0.29%
505 3.92 6.06% 55.22% 0.07% 1.41% 0.15%
520 609.16 4.69% 92.18% 0.00% 0.02% 0.00%
523 47.73 28.81% 8.86% 0.00% 0.02% 0.06%
525 19.58 0.71% 22.50% 0.01% 0.11% 0.00%
531 14.69 0.57% 12.40% 0.00% 0.08% 0.00%
541 38.79 0.00% 0.36% 0.00% 0.00% 0.00%
548 814.19 0.40% 0.48% 0.00% 0.00% 0.00%
557 11.75 9.28% 31.93% 0.01% 0.27% 0.08%
503 1.84 1.03% 83.33% 0.23% 4.54% 0.06%
507 0.66 5.22% 55.88% 0.42% 8.47% 0.79%
508 1.03 0.44% 25.95% 0.13% 2.52% 0.04%
510 2.03 9.77% 22.74% 0.06% 1.12% 0.48%
511 659.04 0.39% 1.06% 0.00% 0.00% 0.00%
519 371.01 4.11% 106.35% 0.00% 0.03% 0.00%
521 1.51 6.19% 37.84% 0.13% 2.51% 0.41%
526 0.84 3.01% 17.89% 0.11% 2.13% 0.36%
527 8.39 1.88% 21.54% 0.01% 0.26% 0.02%
538 37.55 0.30% 0.62% 0.00% 0.00% 0.00%
544 7.34 0.00% 17.02% 0.01% 0.23% 0.00%
549 29.32 2.94% 184.21% 0.03% 0.63% 0.01%
554 1.83 5.74% 131.65% 0.36% 7.18% 0.31%
Avg. 121.59 4.75% 41.78% 0.07% 1.40% 0.19%

Given the requirement that the prediction accuracy shall be higher
than 90%, the measurement length of FLORIA is 5ms, while 100ms
for OPMRC and DynaWay. The MRCs prediction of FLORIA is
20X faster than OPMRC and DynaWay, given the same degree of
accuracy. This feature makes FLORIA suitable for predicting the
MRCs of both programs with frequent phase changes and small jobs
that execute for less than 20ms.

Table 2 lists the application slowdown caused by the three ap-
proaches and the overhead in an execution phase with average length.
During the prediction process of FLORIA and OPMRC, the over-
head mainly comes from PEBS sampling. As FLORIA and OPMRC
adopt the same sampling rate of 1, the application slowdown caused
by PEBS sampling is same for FLORIA and OPMRC, which is
averagely 41.78%. Note that during the measurement window of
FLORIA, CACHEBUBBLE runs for 5ms on another core, resulting
in an extra overhead of 0.004% in the execution phase, which is
negligible.

In order to obtain the reuse time histogram that represents the
locality of target application, OPMRC has to sample and analyze
a sufficiently longer trace than FLORIA. The average overhead of
OPMRC during the execution phase is 1.40%, which is 20× higher
than FLORIA.
2Only occurs in the measurement window

DynaWay profiles multiple times to construct the entire MRC
for a 11-way LLC. Each time CAT is applied to change the cache
size that can be used by the application. The target application takes
time to fill and leverage the new cache allocation. Profiling with
reduced cache sizes also contributes to the slow down of the target
application. On average, the application slow down is 4.75% while
DynaWay is executing and the average overhead of DynaWay in the
execution phase is 0.19%.

Figure 6: Average accuracy of FLORIA, DynaWay and OPMRC
measured at different lengths of measurement window.

5.2.1 Co-run MRCs. We also predict the MRCs of multiple co-
scheduled applications using FLORIA. Specifically, FLORIA pro-
files one application at a time. At each time, it splits cache capacity
into two partitions: one with an M− 1 way allocation for the tar-
get application and the other with a 1-way allocation shared by all
remaining applications.

In each experiment, we randomly select 8 applications from SPEC
to form a workload mix. In those experiments, FLORIA achieves the
best average accuracy of 96.99%, while the accuracy of DynaWay
and OPMRC is 89.11% and 92.31%, respectively. We find that
the MRC prediction accuracy for each application in the workload
mixes is very similar to the ones measured in the solo-run case. The
overhead of FLORIA, DynaWay and OPMRC scales linearly with
the number of MRCs predicted for the mix.

5.3 Sensitivity Analysis
The design of FLORIA involves trade-offs in accuracy and efficiency.
In order to find the optimal parameters, we perform sensitivity stud-
ies in terms of different sampling periods. We also study the impact
of hardware prefetching and memory bandwidth.

5.3.1 Effect of Sampling period. We perform experiments to com-
pare the accuracy and overhead of FLORIA when PEBS is config-
ured at different sampling periods. Figure 7 compares the accuracy
of MRC prediction for each application when the PEBS sampling
period is set to 1, 10, and 100. As can be seen, FLORIA is able
to achieve a high average accuracy of more than 96% when the
sampling period is 100.

For most applications, a higher prediction accuracy can be achieved
if PEBS samples at a lower period. The reason is that with a lower
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Figure 7: MRC prediction with different sampling periods.

sampling period, more cache misses at each cache set can be cap-
tured. Taking 508.namd as an example, Figure 8 compares the num-
ber of sampled misses with different sampling periods. When the
sampling period increases from 1 to 100, the average number of
misses per sampled set drops from 320 to 12, which leads to a larger
measurement error.

Figure 8: Breaking down the impact of sampling period on
508.namd.

Figure 9: Breaking down the impact of sampling period on
507.cactuBSSN.

Sometimes, accuracy increases with a larger sampling period, for
example, 507.cactuBSSN. To investigate the reason, we show the
cache miss distribution when sampling cache misses at different
rates, as depicted in Figure 9. As can be seen, with a lower sampling

rate, PEBS captures more misses per cache set and it is interesting to
notice that PEBS samples more misses in the sets with more cache
lines polluted by CACHEBUBBLE. This is because Intel precise
event-based sampling (PEBS) can suffer from shadow effects [6, 24]:
PEBS tends to capture memory accesses with a long latency in the
pipeline and cache sets that exhibited more misses are sampled with
a larger probability. As a result, the predicted cache miss ratio is
lower than the actual one.

With the sampling period increasing from 1 to 100, the slowdown
for the target workload caused by PEBS sampling decreases from
41.78% to 2.59% on average, while FLORIA is running.

5.3.2 The Impact of Hardware Prefetching. Hardware prefetchers,
located in the L1/L2 caches, can have an impact on the real MRC.
We perform experiments to investigate the accuracy of FLORIA
when hardware prefetching is enabled.

With prefetching enabled, FLORIA achieves an average accu-
racy of 95.13%, which indicates hardware prefetching has very little
influence on FLORIA. However, a few applications such as 500.perl-
bench and 519.lbm experienced about 10% accuracy loss. This is
because hardware prefetching can affect the cache miss behavior at
cache sets, which is observed in [43]. When hardware prefetching is
enabled, the cache miss distribution obtained from PEBS sampling
makes MRC prediction less accurate.

5.3.3 The Impact of Memory Bandwidth. As each data access of
CACHEBUBBLE is designed to result in an LLC hit, CACHEBUB-
BLE does not access the main memory. Therefore, the performance
of cache contention created by CACHEBUBBLE is not affected by
the main memory bandwidth. We verified this by adopting the mem-
ory bandwidth allocation technique supported by Intel processors, to
control the available memory bandwidth to CACHEBUBBLE. We
found that FLORIA does not experience accuracy loss in predicting
MRCs with a wide range of available memory bandwidths.

5.4 FLORIA for guiding Cache Partitioning
We briefly evaluate the usefulness of FLORIA when deploying it for
guiding cache partitioning for multiprogrammed workloads.

Based on the MRC prediction of FLORIA, the workloads are
divided into two groups: LLC-polluters and LLC-sensitive programs.
In this experiment, we adopt a simple cache partitioning policy that
allocates a small, 1-way partition to the group of LLC-polluters
while letting the group of LLC-sensitive programs share the rest of
the cache ways. We leave more complicated partitioning strategies
as our future work.

We use an example workload that consists 8 concurrently execut-
ing programs selected from three different applications: 3× 519.lbm,
3 × 523.xalancbmk, and 2 × 510.parest. At runtime, FLORIA pre-
dicts the MRC for each program. According to the prediction, the
three instances of 519.lbm are considered as LLC-polluters while
523.xalancbmk and 510.parest are classified as LLC-sensitive. Then,
the LLC partitioning is applied. Figure 10 shows the LLC size occu-
pied by each program without and with cache partitioning. Compared
with the default case where all programs share the whole LLC, the
IPC of 523.xalancbmk and 510.parest is increased by 11.4% (from
0.309 to 0.344) and 14.3% (from 0.851 to 0.973), respectively. At
the same time, the IPC of 519.lbm is reduced by only 0.5% (from
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0.472 to 0.470). Overall, the system performance is improved by
7.75%.
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Figure 10: LLC occupancy of each program with and without
cache partitioning

6 RELATED WORK
Mars et al. [21] designed a benchmark suite called SmashBench to
quantify the sensitivity of a workload to cache and memory interfer-
ence. SmashBench creates tunable resource contention by accessing
the specified amount of caches and main memory. In comparison,
our microbenchmark, CACHEBUBBLE, creates cache contention
at the granularity of cache lines within the selected cache sets and
its memory access behavior is fully controllable.

Accurate MRCs can be calculated by measuring stack distance [22].
Qureshi et al. [26] and Suhet et al. [35] proposed hardware access
counters to record every cache access/hit to cache sets to track the
stack distance. However, those performance monitoring counters
are not available in commodity systems. FLORIA is different from
UCP [26]: UCP first randomly selects cache sets to sample. Then it
relies on monitoring units to record every cache hit to the selected
cache sets.The hits count for each cache way to infer MRCs. FLO-
RIA, on the other hand, first determines the cache sets to monitor
together with the micro-benchmark CACHEBUBBLE. After that,
PEBS is used to sample (i.e., not necessarily to record all) the misses
at those chosen cache sets. We simply count the number of cache
misses at the monitored cache sets and obtain the metric cache miss
distribution. Counter Stacks [39] that uses probabilistic counters and
SHARDS [37] that uses a splay tree are recent breakthroughs to
reduce the cost of computing stack distance in practice. However,
they target storage workloads and hence, cannot be directly applied
to construct cache MRCs.

To reduce the time and space complexity of computing stack
distance, recent studies [17, 31, 38, 41] use reuse time to construct
MRCs more efficiently. StatCache [4] and StatStack [12] use coun-
ters to record reuse times for a particular set of references, these
counters are then aggregated to form a reuse time distribution. Based
on reuse times, Beckmann et al. [3] proposed a single framework
consisting of hit, evict and age distributions to model caches with
LRU and several recent policies for constructing cache MRCs. Hu
et al. [15] proposed the AET model that monitors a fixed number of
addresses for updating the reuse time histogram, which is then used
to estimate the reuse time distribution for MRC prediction. However,
the measurement of both stack distance and reuse time needs the full

history of memory access traces, which requires either exhaustive
binary instrumentation or interrupting the thread on every memory
access. Even with program phase-based sampling, these approaches
incur substantial slowdowns, of 21% to over 2× [30], making them
too slow for online purposes.

A few tools have been developed to obtain the cache MRCs online.
Tam et al. [36] proposed RapidMRC that uses IBM POWER5’s spe-
cific SDAR performance counters for approximating L2 MRCs. Xi-
ang et al. [42] designed OPMRC to obtain an online MRC. OPMRC
first collects the LLC access trace on the fly and then constructs
an MRC for the trace using the AET model. El-Sayed et al. [13]
proposed DynaWay to construct MRCs by online profiling. By al-
locating different cache sizes to the target application using CAT,
DynaWay periodically uses cache performance counters to infer the
application’s MRC.

FLORIA, presented in this paper, is fundamentally different from
the above works in three aspects: (1) Instead of monitoring the whole
cache space, it first determines a group of cache sets to monitor
together with the micro-benchmark CACHEBUBBLE. (2) After that,
it samples, rather than recording every miss at those selected cache
sets via PEBS. (3) Instead of using metrics such as stack distance
and reuse interval to approximate an MRC, FLORIA relies on the
proposed metric, cache miss distribution, for MRC prediction.

7 CONCLUSION
In this work, we first proposed a new metric, cache miss distribution,
that describes cache miss behavior over cache sets. Based on this
metric, we presented the design and implementation of FLORIA,
a software-based, online approach that approximates cache MRCs
on commodity systems. FLORIA relies on CACHEBUBBLE to cre-
ate cache pollution at the granularity of cache lines. When running
CACHEBUBBLE together with the target application, FLORIA
exploits hardware features of performance monitoring units with
the support of PEBS to obtain the cache miss distribution for the
target workload. We evaluated FLORIA for systems consisting of
a single application as well as for a wide range of workload mixes.
Compared with the state-of-the-art approaches in predicting online
MRCs, FLORIA achieves the highest average accuracy of 97.29%
with negligible overhead. It also allows fast and accurate estimation
of online MRC within 5ms, 20X faster than the state-of-the-art ap-
proaches. We performed a sensitivity study for FLORIA and also
demonstrated that FLORIA can be applied to guiding cache parti-
tioning to improve overall system performance. FLORIA is publicly
available at https://github.com/yaochengx/FLORIA.
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