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Abstract This paper presents a technique for high-level
power estimation of microprocessors. The technique,
which is based on abstract execution profiles called
‘event signatures’, operates at a higher level of ab-
straction than commonly-used instruction-set simulator
(ISS) based power estimation methods and should thus
be capable of achieving good evaluation performance.
As a consequence, the technique can be very useful
in the context of early system-level design space ex-
ploration. In this paper, we also compare our power
estimation results to those from the instruction-level
simulators Wattch and Sim-Panalyzer. In these ex-
periments, we demonstrate that with a good underly-
ing power model, the signature-based power modeling
technique can yield accurate estimations (a mean error
of 3.1% compared to Wattch in our experiments). At
the same time, our signature-based power modeling
technique is at least an order of magnitude faster than
the simulations performed by Wattch or Sim-Panalyzer.
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1 Introduction

The increasing complexity of modern embedded
systems, which are more and more based on hetero-
geneous multiprocessor-system-on-chip (MP-SoC) ar-
chitectures, has led to the emergence of system-level
design. A key ingredient of system-level design is the
notion of high-level modeling and simulation in which
the models allow for capturing the behavior of system
components and their interactions at a high level of
abstraction. As these high-level models minimize the
modeling effort and are optimized for execution speed,
they can be applied at the early design stages to per-
form, for example, architectural design space explo-
ration (DSE). Such early DSE is of eminent importance
as early design choices heavily influence the success or
failure of the final product.

The Sesame modeling and simulation framework
[7, 16] facilitates efficient system-level DSE of embed-
ded multimedia systems, allowing rapid performance
evaluation of different architecture designs, application
to architecture mappings, and hardware/software par-
titionings. Key to this flexibility is the separation of
application and architecture models, together with an
explicit mapping step to map an application model onto
an architecture model.

Until now, the Sesame modeling and simulation
framework has purely focused on the performance
analysis of multimedia MP-SoC architectures. Evi-
dently, to make good design trade-offs, also power
consumption needs to be taken into account during the
process of DSE. Therefore, this paper presents the first
step towards including system-level power models in
Sesame. More specifically, we elaborate on the concept
of event signatures, which was recently introduced in
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[24], that allows for high-level power modeling of mi-
croprocessors (and their local memory hierarchy). This
signature-based power modeling operates at a higher
level of abstraction than commonly-used instruction-set
simulator (ISS) based power models and should thus
be capable of achieving good evaluation performance.
This is important since ISS-based power estimation
generally is not suited for early DSE as it is too slow
for evaluating a large design space: the evaluation of
a single design point via ISS-based simulation with a
realistic benchmark program may take in the order
of seconds to hundreds of seconds [12]. Moreover,
unlike many other high-level power estimation tech-
niques, our signature-based power modeling technique
still incorporates an explicit micro-architecture model
of the processor, and thus is able to perform micro-
architectural DSE as well.

Using several experiments, we compare the results
from our signature-based power modeling with those
from Wattch [6] and Sim-Panalyzer [1], which are
widely-used ISS-based power analysis tools. Here, we
show that with a good underlying power model, the
signature-based power modeling technique can yield
accurate estimations, while being at least an order of
magnitude faster than Wattch or Sim-Panalyzer. In or-
der to perform system-level power modeling of an
entire MP-SoC, the next step (not addressed in this
paper) will be to extend the power modeling framework
with models for the interconnect and possible dedicated
components in the MP-SoC.

In the next section, we briefly describe the Sesame
framework. Section 3 introduces the concept of event
signatures and explains how they can be used for high-
level power modeling of microprocessors. In Section 4,
we describe the power models used for modeling dif-
ferent aspects of microprocessors. Section 5 presents a
number of experiments in which we compare the results
from our models against those from Wattch and Sim-
Panalyzer. In Section 6, we describe related work, after
which Section 7 concludes the paper.

2 The Sesame Environment

To facilitate flexible performance analysis of embedded
(media) systems architectures, the Sesame modeling
and simulation environment [7, 16] uses separate appli-
cation and architecture models. An application model
describes the functional behavior of an application
while the architecture model defines architecture re-
sources and captures their performance constraints. Af-
ter explicitly mapping an application model onto an
architecture model, they are co-simulated via trace-

driven simulation. This allows for evaluation of the
system performance of a particular application, map-
ping, and underlying architecture. Essential in this
methodology is that an application model is indepen-
dent from architectural specifics and assumptions on
hardware/software partitioning. As a result, a single
application model can be used to exercise different
hardware/software partitionings and can be mapped
onto a range of architecture models, possibly represent-
ing different architecture designs or modeling the same
architecture design at various levels of abstraction. In
Fig. 1, the layered infrastructure of Sesame is illustrated
using an example in which a Motion-JPEG encoder
application model is mapped onto a bus-based MP-SoC
architecture model.

For application modeling, Sesame uses the Kahn
Process Network (KPN) model of computation [10],
which fits well to the multimedia application domain.
In a KPN, parallel processes communicate with each
other via unbounded FIFO channels, where reading
from these channels is blocking and writing is non-
blocking. The computational behavior of an application
is captured by instrumenting the code of each Kahn
process with annotations that describe the application’s
computational actions. The reading from and writing
to Kahn channels represent the communication be-
havior of a process within the application model. By
executing the KPN model, each Kahn process records
its actions in order to generate its own trace of ap-
plication events. These application events are an ab-
stract representation of the workload that is imposed
on the architecture, and drive the underlying archi-
tecture model. Application events typically are coarse
grained, such as Execute(DCT), which represents the
execution of a Discrete Cosine Transform (DCT),
or Read(channel_id,pixel-block), which represents the
reading of a pixel block from communication channel
channel_id.

An architecture model simulates the performance
consequences of the computation and communication
events generated by an application model. To this end,
each architecture model component is parameterized
with an event table containing the latencies of the appli-
cation events it can execute (illustrated for Processor
1 in Fig. 1, where the labels X, Y and Z refer to ap-
plication event names). The event table entries could,
for example, specify the latency of an Execute(DCT)
event, or the latency of a memory access in the case of
a memory component. The latency values are usually
initialized using performance numbers from literature,
and can be calibrated using measurements on avail-
able hardware or via lower-level simulations of archi-
tecture components [17]. This trace-driven simulation
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Figure 1 Modeling an
Motion-JPEG application on
a bus-based MP-SoC
architecture in Sesame.
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approach allows to quickly assess different HW/SW
partitionings by experimenting with the latency para-
meters of processing components in the architecture
model: a low computational latency refers to a HW
implementation while a high latency mimics a SW
implementation.

To bind application tasks to resources in the archi-
tecture model, Sesame provides an intermediate map-
ping layer. This layer controls the mapping of Kahn
processes (i.e. their event traces) onto architecture
model components by dispatching application events to
the correct architecture model component. The map-
ping also includes the mapping of Kahn channels onto
communication resources in the architecture model.

Extending the Sesame framework to also support
power modeling could be done fairly easily by adding
power consumption numbers to the event tables. So,
this means that a component in the architecture model
not only accounts for the timing consequences of an
incoming application event, but also accounts for the
power that is consumed by the execution of this appli-
cation event (which is specified in the event tables now).
The power numbers that need to be stored in the event
tables can, of course, be retrieved from lower-level
power simulators or from (prototype) implementations
of components. However, simply adding fixed power
numbers to the event tables would be a rigid solution

in terms of DSE: these numbers would only be valid
for the specific implementation used for measuring the
power numbers. Therefore, we propose a high-level
power estimation method based on so-called event sig-
natures that allows for more flexible power estimation
in the scope of system-level DSE.1 As will be explained
in the next sections, signature-based power estimation
provides an abstraction of processor activity in compar-
ison to traditional ISS-based power models, while still
incorporating an explicit micro-architecture model and
thus being able to perform micro-architectural DSE.

3 Event Signatures

An event signature is an abstract execution profile of
an application event that describes the computational
complexity of the application event (in the case of
computational events) or provides information about
the data that is communicated (in the case of com-
munication events). Hence, it can be considered as

1With respect to the rigidness of fixed numbers in the event
tables, the same reasoning holds for the operation latencies in
the tables. For this reason, we are also working on performance
prediction using event signatures [9], but this is out of the scope
for this paper.
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meta-data about an application event. In this paper,
we purely focus on signatures for computational ap-
plication events (i.e., Execute() events). The signatures
for these events describe computational complexity in
a (micro-)architecture independent fashion using an
Abstract Instruction Set (AIS). Currently, our AIS
is based on a load-store architecture and consists of
only a small set of abstract instructions, or rather in-
struction classes, such as ‘Simple Integer Arithmetic’,
‘Simple Integer Arithmetic Immediate’, ‘Integer Mul-
tiply’, ‘Branch’, ‘Load’, and ‘Store’. The high level of
abstraction of the AIS should allow for capturing the
computational behavior for a wide range of proces-
sors with different instruction-set architectures. To con-
struct the signatures, the real machine instructions that
embody an application event (derived from an ISS as
will be explained below) are first mapped onto the
various AIS instruction classes, after which a compact
execution profile is made. This means that the resulting
signature is a vector containing the instruction counts
of the different AIS instruction classes. Here, each
index in this vector specifies the number of executed
instructions of a certain AIS class in the application
event. We note that the generation of signatures for
each application event is a one-time effort, unless e.g.
an algorithmic change is made to an application event’s
implementation.

In Fig. 2, signature-based power modeling is illus-
trated. The Kahn application process for which a power
estimation needs to be performed, is simulated using
Sim-Cache, which is part of the SimpleScalar simula-
tor suite [2]. Using this relatively fast simulator, the
event signatures are constructed—by mapping the ex-
ecuted machine instructions onto the AIS as explained
above—for every computational application event that
can be generated by the Kahn process in question.
The event signatures act as input to our parameterized
microprocessor power model, which will be described
in detail in the next section. For each signature, Sim-
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Figure 2 Signature-based power modeling.

Cache (or any other ISS that could be used to con-
struct signatures) may also provide the power model
with some additional micro-architectural information,
such as cache missrates, branch misprediction rates,
etc. In our case, only instruction and data cache miss-
rates are used. The microprocessor power model also
uses a micro-architecture description file in which the
mapping of AIS instructions to usage counts of micro-
processor components is described. An example frag-
ment of this mapping description is shown in Fig. 3.
It specifies that for every AIS instruction (indicated
by the ‘ALL’ tag), the instruction cache (il1) is read,
the register update unit (RUU) is read and written,
and branch prediction is performed. Furthermore, it
specifies that for the AIS instruction ‘LOAD’, the ALU
is used (to calculate the address), the level-1 data cache
(dl1) is accessed, and that the integer register file (irf)
is read and written. With respect to the latter, it takes
register and immediate addressing modes into account
by assuming 1.5 read operations to the irf on average.
In addition, the micro-architecture description file also

<node name="ALL" class="AIS">

   </port>
   <port name="il1" dir="in">
      <property name="read" value="1" />
   </port>
   <port name="RUU" dir="in">
      <property name="read" value="1" />
      <property name="write" value="1" />
   </port>
</node>
<node name="LOAD" class="AIS">
   <port name="dl1" dir="in">
      <property name="read" value="1" />
   </port>
   <port name="irf" dir="in">
      <property name="read" value="1.5" />
      <property name="write" value="1" />
   </port>
   <port name="alu" dir="in">
      <property name="execute" value="1" />
   </port>
</node>

      <property name="execute" value="1" />
   <port name="bpred" dir="in">

Figure 3 Mapping AIS instructions to usage counts of the micro-
processor components.
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contains the parameters for our power model, such
as e.g. the dimensions and organization of memory
structures (caches, register file, etc.) in the microproces-
sor, clock frequency, and so on. Clearly, this micro-
architecture description allows for easily extending the
AIS and facilitates the modeling of different micro-
architecture implementations. The above ingredients
(the event signatures, additional micro-architectural in-
formation per signature such as cache statistics, and the
micro-architecture description of the processor) allow
the power model to produce power consumption esti-
mates for each computational application event. These
estimates can be performed on-the-fly during a Sesame
system simulation: application events generated by an
application model, together with their signatures and
additional micro-architectural information, are used at
the architecture model level by the power model to
dynamically estimate the power consumption. Alterna-
tively, the power consumption of the different types
of application events can also be estimated off-line
(i.e., statically) after which these estimates are stored
in Sesame’s event tables at the architecture model level
(as discussed in Section 2).

We note that the generation of event signatures can
also be performed either statically or dynamically. In
static signature generation, Sim-Cache measures the
average instruction execution behavior of code frag-
ments that represent application events and constructs
the signatures based on these averages. So, in this
case, the signature generation takes place entirely off-
line. In dynamic signature generation, the signatures
are constructed on-the-fly for every application event.
This means that the signatures of the same type of
application events may change over time due to e.g.
data dependent execution behavior inside the code of
these events. Another consequence of dynamic signa-
ture generation is that Sim-Cache must be co-simulated
together with Sesame. The above reasoning also holds
for the additional micro-architecture information, like
cache missrates, that can be provided by Sim-Cache to
the power model. This can also be done statically (i.e.,
average based) or dynamically (i.e., exact based).

4 Microprocessor Power Model

The microprocessor model that underlies our power
model is depicted in Fig. 4. It is a dynamic pipelined
machine, consisting of one arithmetic logical unit, one
floating point unit, a multiplier and two levels of caches.
For the sake of simplicity, it does not use a hard-
ware branch prediction module. This means that we
currently assume taken, not-taken or perfect branch

Figure 4 The underlying microprocessor model for our power
models.

prediction. The level 1 caches are virtually addressed
and each have a TLB for address translation. The level
2 cache is unified. All requests for this cache are issued
to a load/store queue. The same is true for level-2 cache
requests to the main memory.

The dynamic pipeline is implemented using a RUU.
This unit controls the dispatching of instructions to the
functional units and, after execution, the RUU takes
care of the (in-order) instruction commitment. This
means that in Fig. 4 the two displayed RUUs are one
and the same. We believe that the above microproces-
sor model that underlies our power model can reflect
the behavior of popular embedded processors (like
ARM10/11 or MIPS4000 based processors) in a fairly
realistic fashion, albeit at a high level of abstraction.

The various components that constitute our micro-
processor power model—which are of course based on
our underlying microprocessor model as depicted in
Fig. 4—are shown in Fig. 5. The power consumption
of an application event is calculated by accumulating
the power consumption in each of these components.
More specifically, the first step to calculate an appli-
cation event’s power consumption is to map its sig-
nature (using the micro-architecture description file,
as explained in the previous section) to usage counts
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Figure 5 The different components in our microprocessor power
model.

of the various processor components. So, here it is
determined how often e.g. the ALU (in ‘other units’
in Fig. 5), the register file and the level-1 instruction
and data caches are accessed during the execution of an
application event. For the memory components (level 1
and 2 caches, register file, etc.), we use Cacti 4.2 [22]
to determine the power consumption of read and write
accesses to these structures. These power estimates
include leakage power. Moreover, we use the cache
missrate information provided by Sim-Cache to derive
the access counts for the level-2 cache, load/store queue
and bus components. Here, we note that although we
recently also incorporated Cacti 5.0 into our tool flow,
which allows for modeling of DRAMs, this paper does
not consider the modeling of the main memory.

The non-memory components in our power model
(‘other units’, ‘bus’ and ‘clock’ components in Fig. 5)
are activity based. That is, they estimate power using
the common power equation for CMOS technology:

P = αCV2 f (1)

where C specifies the capacitance, V the voltage, and
f the frequency. The activity, which is defined as the
percentage of transistors which make a switch on each
clock cycle, is represented by the parameter α. For the
bus component, which represents the processor’s front-
side bus, we use a simple model which abstracts the
bus to a set of wires, without any logic, with input and
output pins. Currently, we use an I/O pin capacitance of
5 pF per pin, a wire capacitance of 2.15 pF per inch, and
a wire length of 3 inches. These numbers were taken
from [11]. Further, we assume an activity α of 0.5 (half
of the wires perform a state switch). For the models
of the ALU and multiplier units (in the box ‘other

units’ in Fig. 5), we use the capacitance numbers from
Wattch [6]. The activity α for these units is calculated
by dividing (an estimation of) the number of cycles in
which a unit is active, which is derived from the usage
counts of the unit (see Fig. 5), by the total number of
cycles.

For the power model of the clock component, we
base ourselves on the models used in [19, 21]. The
model recognizes three sub-components: the clock dis-
tribution wiring, the clock buffering and the clocked
node capacitance. We assume a H-tree based clock
network using a distributed driver scheme (i.e. applying
clock buffers).

To determine the wiring capacitance of the clock
network, the wire length of the network has to be
calculated. This is done in a number of steps. First, the
length of a single straight wire at a specific level in the
clock tree has to be calculated. The length of the first
straight wire at the root level is equal to half of the
width of the chip (where

√
Adie is the width of the chip).

Then, because of the H-tree form of the clock network,
going to a next level in the clock tree halves the length
of a straight wire. This means that the wire length at
tree level i equals to:

Wirelengthi = 1
2"i/2#+1

×
√

Adie (2)

With Wiresi = 2i−1, which is the number of straight
wires at tree level i, the total wire length can be cal-
culated. However, this total length cannot directly be
multiplied by the capacitance of the wire, as the capaci-
tance of the wire is not uniform in the network. Starting
form the end points in the network, the capacitance of
the wire doubles at every T-junction.

FactorCapi = 2Ntree−i (3)

This gives for the total capacitance of the distribution
wiring the following equation:

Cwiring = Cwire ×
√

Adie × 2Ntree−1 ×
Ntree∑

i=1

1
2"i/2#+1

(4)

where we retrieve the wire capacitance (Cwire) and chip
area Adie (determined by accumulating all cache and
register-file areas) from Cacti 4.2, and calculate the
depth of the clock tree (Ntree) using:

Ntree =
√

Adie
Rwire × Cwire

Skewclock
+ 1 (5)

where resistance Rwire is also retrieved from Cacti, and
Skewclock is the maximum clock skew that is allowed.

The capacitance consumed by the buffers is mod-
eled to be a fraction of the capacitance consumed by
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the wiring network. This fraction is dependent on the
number of buffers, which is calculated by first taking
the ratio of the capacitance of the wiring network and
the capacitance of a single buffer. Over this the fourth
root is taken, where the value four is actually a parame-
ter, the optimal stage ratio, but this value is fixed within
our model.

buffers = 4

√
Cwiring

Csingle_buffer
(6)

Cbuffers = Cwiring × 1

1 − ( 1
buffers )

(7)

For the clocked node capacitance, only memory com-
ponents are considered. Here, we use the number of
read and write ports and the blocksize to calculate the
capacitance:

Cclocked = ports × blocksize × Ctrans (8)

The capacity for switching a port is acquired from Cacti,
and is equal to the capacitance of a transistor. The
clocked node capacitance of each memory structure is
summed to the total clocked node capacitance.

For several components in our power model, the
execution time of an application event is needed in
order to calculate the activity parameter α (i.e., the
time that a unit is active during the execution of an
application event divided by the total execution time
of the application event). These event execution times
may be derived from the event tables in Sesame’s archi-
tecture model (e.g. in the case signatures are generated
statically), or they may be generated dynamically using
e.g. our trace calibration co-simulation technique [23].

5 Experiments

To evaluate our signature-based power estimation, we
use three benchmark applications from the MiBench
benchmark suite [8]: cjpeg (jpeg compression), susan
(edge detection), and string search. We compare our
results to those from Wattch [6] and Sim-Panalyzer
[1], which are widely-used ISS-based power analysis
tools. To compare against Wattch, we use a (in-order
issue) PowerPC microprocessor model, with a voltage
of 2.0 V and a frequency of 600 MHz. For comparison
to Sim-Panalyzer, we use an (in-order issue) ARM
microprocessor model, with a voltage of 1.8 V and a
frequency of 233 MHz. For both models, we assume a
180 nm technology.

In the first experiment, we have varied the sizes of
the level-1 instruction (il1) and data (dl1) caches as well

as of the unified level-2 cache (ul2). This is done by
increasing the number of sets in the caches. The level-
1 caches are increased in size from 4 Kb to 512 Kb,
and the level-2 cache from 32 Kb to 4 Mb. In Fig. 6a,
the power estimation results from Wattch are shown,
while Fig. 6b shows the results from our own power
model. Clearly, the absolute power predictions differ
significantly between Wattch and Sesame. As will be
demonstrated later on, this is mostly due to the dif-
ferences in the underlying power models. In Wattch,
the power consumption is dominated by the level-1
instruction and data caches and, to a lesser extent,
the clock network. In Sesame, the power is mostly
dominated by the clock network, followed by the level-
1 caches. The large discrepancy in absolute power es-
timations is mainly caused by two differences in the
power models of Sesame and Wattch: First, Wattch has
a more extensive model of the clocked node capaci-
tance. For example, not only the clocked node capaci-
tance of memory components are modeled, but also the
datapath and other components are included. Second,
whereas Sesame (in line with Cacti) only models the
power consumption related to the critical path inside
memory structures, Wattch directly relates the power
consumption of a memory structure to the size of the
memory. The latter can be clearly seen in Fig. 6a where
the power consumption of the level-1 caches rapidly
increases when increasing the number of cache sets.

Another observation that can be made is that the
power consumption of the clock network in Wattch
does not appear to increase for larger cache struc-
tures, while there is a significant increase of power
consumed by the clock in Sesame. This is due to the fact
that Sesame dynamically calculates the die area (using
Cacti) for the power modeling of the clock network,
while Wattch uses a fixed die area which evidently does
not scale with the cache size.

In Fig. 7a, the power estimation results from Sim-
Panalyzer for the same experiment are shown, while
Fig. 7b again shows the results from our own power
model but now configured to model the ARM proces-
sor. Like with Wattch, the absolute power predictions
differ significantly between Sim-Panalyzer and Sesame.
But maybe more surprising is the large increase of
power consumption of the clock when scaling the cache
sizes for Sim-Panalyzer. With the largest cache sizes
in our experiment, the fraction of clock power con-
sumption to the overall power consumption is equal
to 99%. This significant increase of clock power in
Sim-Panalyzer is mostly due to the fact that its model
for clocked node capacitance is directly dependent on
the number of sets in cache structures. In Sesame on
the other hand, correspondingly to Eq. 8, the clocked
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Figure 6 Power consumption
estimation for Wattch (a) and
Sesame (b) when varying the
cache sizes.
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node capacitance is only dependent on the block size of
memory structures and the number of ports.

Also, the increase of power consumption by the
caches is much larger in Sim-Panalyzer than in Sesame.
As is the case with Wattch, this is again due to the
fact that Sim-Panalyzer directly relates the power con-
sumption of a memory structure to its size, rather than
relating the power consumption to the critical path
inside memory structures like Sesame does. We further
note that the discrepancies in Sesame’s results for e.g.
cjpeg for cache configurations between 64-256-1K and
512-2K-4K are caused by the reduced activity at the

lower levels of the memory hierarchy due to the in-
creasing cache sizes. In these cases, the increased hit-
rate seems to amortize the higher dynamic and static
power consumption of the larger caches.

From the above experiments, we learn that although
Sesame can predict the total power consumption trend
reasonably well (e.g. when compared to Wattch), its
power model still needs to be improved considerably to
better reflect the correct absolute power consumptions
of the various architectural components. Moreover, the
current differences in the underlying power models of
Sesame, Wattch and Sim-Panalyzer make it impossible
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Figure 7 Power consumption
estimation for Sim-Panalyzer
(a) and Sesame (b) when
varying the cache sizes.

Sim-Panalyzer

0

1000

2000

3000

4000

5000

6000

7000

32-128-1K

64-256-1K

128-512-1K

256-1K-2K

512-2K-4K

1K-4K-8K

2K-8K-16K

4K-16K-32K

32-128-1K

64-256-1K

128-512-1K

256-1K-2K

512-2K-4K

1K-4K-8K

2K-8K-16K

4K-16K-32K

32-128-1K

64-256-1K

128-512-1K

256-1K-2K

512-2K-4K

1K-4K-8K

2K-8K-16K

4K-16K-32K

Cache sets (dl1-il1-ul2)

P
ow

er
 (m

W
)

JPEG
Encoder Susan

String
Search

clock

alu

ul2

dl1

il1

irf

bus

(a)

(b)

Sesame

0

100

200

300

400

500

600

32-128-1K

64-256-1K

128-512-1K

256-1K-2K

512-2K-4K

1K-4K-8K

2K-8K-16K

4K-16K-32K

32-128-1K

64-256-1K

128-512-1K

256-1K-2K

512-2K-4K

1K-4K-8K

2K-8K-16K

4K-16K-32K

32-128-1K

64-256-1K

128-512-1K

256-1K-2K

512-2K-4K

1K-4K-8K

2K-8K-16K

4K-16K-32K

Cache sets (dl1-il1-ul2)

P
ow

er
 (m

W
)

JPEG
Encoder Susan

String
Search

lsq
inst. window
clock
alu
ul2
dl1
il1
irf
bus

to actually evaluate the signature-based power mod-
eling technique and the consequences (no notion of
separate instructions nor of the data that they use)
that come with it. For this reason, we also present an
experiment in which we use the access power consump-
tions from Wattch for the various components in our
power model. This way, we try to align both power
models such that we can actually measure the effects
of the high abstraction level at which Sesame operates.
Figure 8 shows the power consumption estimates for
both Sesame and Wattch for all three benchmark ap-
plications. Here, we have executed cjpeg with three

different input pictures of varying complexity: Cats
(1.15 MB), Rain (150 KB) and Water (40 KB).

Using these aligned power models, the mean differ-
ence between Sesame and Wattch is only 3.1%, with a
worst case of 4.2%. Individual components which are
data dependent may have a larger mean error (and
standard deviation σ ), as indicated by Table 1. For
example, the difference in power estimation for the
instruction register file is 11% and for the level-2 cache
even 22.6%. However, these components only account
for a small fraction of the total power consumption.
More importantly, for the level-1 caches—currently
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Figure 8 Comparing Sesame
and Wattch when the same
underlying power models are
applied.
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modeled with double-ended bitlines in both Sesame
and Wattch, making their access energies largely data
independent—the mean error is relative small: 2.1% for
the level-1 instruction cache and 6.1% for the level-1
data cache. From these numbers, we can conclude that
our high-level method may yield power estimations that
are fairly close to those from tools such as Wattch.

We should note that Wattch and Sim-Panalyzer are
also relatively high-level power simulators (in compari-
son to circuit-level power simulators such as Spice) and
thus suffer from inaccuracies as well. Typically, they
can be accurate within 10% [1, 5, 6]. But, as explained
and demonstrated in [5], DSE studies can tolerate some
error because relative accuracy is more important than
absolute accuracy. Nevertheless, it would have been
interesting to also compare our signature-based power
estimates to power consumption numbers from real
ARM or PowerPC processors. This is however consid-
ered as future work.

Since our initial aim was to speed up the power esti-
mations in comparison to traditional ISS-based power
simulators, we also measured the execution times of

Table 1 The mean difference in power estimation between
Wattch and Sesame at component level.

Component Mean difference σ

Window 1.7% 1.6
irf 11% 7.5
il1 2.1% 2.6
dl1 6.1% 2.9
ul2 22.6% 22.9
alu 1.9% 1.7

both the Sesame and Wattch2 frameworks. Here, we
should note that for Sesame we used a set-up in which
Sim-Cache was co-simulated together with Sesame to
provide our power model with exact cache missrates for
application events (see Section 3). Decoupling Sesame
and Sim-Cache (i.e., using average cache missrates
for application events in Sesame rather than exact
ones) would result in even much better performance
of our power estimations. For the studied benchmark
applications, Sesame is on average 10.5 times faster
than Wattch. The largest speed-up we measured was
25. Given the fact that—with an appropriate power
model—good power estimates can be achieved (see
Fig. 8), this is a very promising result.

6 Related Work

High-level microprocessor power modeling techniques
range from analytical methods [4, 15], based on e.g. sta-
tistical or information-theoretic techniques, to micro-
architecture level instruction set simulators (ISSs) such
as Wattch [6], Sim-Panalyzer [1] and SimplePower [25].
Clearly, within this range, there is a trade-off between
accuracy and estimation performance. A fair number
of efforts also address microprocessor power estima-
tion at a level that is in between analytical and ISS-
level models. Many of these efforts estimate power
based on a-priori knowledge about instructions or seg-
ments of instructions. For example, the power con-
sumption of separate instructions (or instruction pairs

2We note that Wattch is slightly faster than Sim-Panalyzer.
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[14]) can be measured (using a real processor or a low-
level simulator) after which the power consumption
of an entire application involves the accumulation of
these per-instruction power consumptions [20]. Such
measurement-based power estimation can also be per-
formed at a coarser granularity such as at the level of
entire functions [18].

Another interesting high-level microprocessor pow-
er estimation approach is functional-level power anal-
ysis (FLPA) [12, 13]. In FLPA, a processor is
modeled using a relatively small number of func-
tional blocks, for which parameterized analytical power
models are determined. These power models, which
only have a few high-level parameters (like internal/
external data access rate and average number of
processing units used per cycle), are determined using
linear regression with a set of power measurements in
which the aforementioned high-level parameters are
varied. For these measurements, real processors or
lower-level simulators are used together with a set of
benchmark programs (scenarios) that stress the differ-
ent functional blocks in the processor. In [3], a hy-
brid FLPA and instruction-level microprocessor power
estimation approach is proposed. They have shown
that by incorporating instruction dependent behavior
in the FLPA models, the accuracy of the models can
be further improved.

In terms of abstraction level, our signature-
based power estimation technique is also in between
analytical and ISS-based models. Compared to the
methods described above, we abstract from single
instructions while still being able to apply an explicit
micro-architecture model to perform power estimation.
This allows us, in contrast to e.g. instruction-level
power modeling and FLPA, to perform micro-
architectural DSE. Also, unlike instruction-level power
modeling and FLPA, we do not need to perform power
measurements to determine the power consumption
of (blocks of) instructions or, in the case of FLPA,
functional blocks in the processor.

7 Conclusions

In this paper, we have presented a technique for high-
level power estimation of microprocessors. This tech-
nique, which is based on abstract execution profiles
called ‘event signatures’, operates at a higher level of
abstraction than commonly-used instruction-level pow-
er simulators and should thus be capable of achiev-
ing good evaluation performance. The signature-based
power modeling technique has been integrated in our
Sesame system-level simulation and DSE framework

and will eventually be extended to allow for system-
level power modeling of an entire MP-SoC (i.e., also
support the power modeling of the interconnect, shared
memory, dedicated IP blocks, etc.).

We compared the results from our signature-based
power modeling to those from the instruction-level sim-
ulators Wattch and Sim-Panalyzer. Here, it was shown
that although the underlying power model we applied is
able to show approximately the correct overall trends, it
needs to be improved considerably to show the correct
absolute power consumptions of the various architec-
tural components. However, we also demonstrated that
with a good underlying power model, the signature-
based power modeling technique can yield accurate
estimations (a mean error of 3.1% compared to Wattch
in our experiments). Important to note here is that
the power estimations based on our event signature
technique are at least an order of magnitude faster
than with Wattch (being the fastest of the two used
instruction-level simulators).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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