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Abstract—As reconfigurable architectures are gaining an increas-
ing research and industrial attention, there is a significant need for
intelligent tools and methodologies to assist designers with explo-
ration and performance evaluation of such architectures. Towards
this goal, we make a first attempt to present a generic system-level
modeling and simulation framework which can explore and evaluate
reconfigurable systems at design-time as well as at runtime. In this
paper, we show the methodology behind the framework and study
its key features.

I. INTRODUCTION

Reconfigurable architectures are becoming increasingly pop-
ular as they bear a promise of combining the flexibility of
software with the performance of hardware. These architectures
are typically formed with a combination of a General Purpose
Processor (GPP) and a Reconfigurable hardware e.g. an FPGA.
Computational intensive application fragments can be mapped
onto the FPGA to speed-up their execution while control in-
tensive application fragments can be mapped onto the GPP. As
reconfigurable architectures are gaining popularity in acedemia
and industry, there is a significant need for intelligent tools and
methodologies to assist the designers with the exploration and
performance evaluation of such architectures.

Design Space Exploration (DSE) tools and methodologies help
designers to systematically explore trade-offs between various
design choices for hardware/software partitioning, application-to-
architecture mapping, task scheduling, task allocation, etc. The
current state-of-the-art shows a great variety of tools and method-
ologies used for carrying out DSE for dynamically reconfigurable
systems. These methodologies can loosely be categorized based
on two aspects: 1) the approach used to evaluate a design
candidate and 2) the stage at which this evaluation is done
(see Figure 1). We identify two main evaluation approaches
for DSE: the algorithmic ad-hoc approach and the framework-
based modeling/simulation approach. In the former approach,
algorithms of various computational complexity are used to
quickly evaluate a set of criteria for a set of alternative designs.
This typically consists of a custom evaluator (analytical) together
with a (partial) simulator. These approaches may obtain the
required results quickly. However, these results are difficult to
reproduce in case of comparison and/or re-evaluation. Such
algorithms include: dynamic programming, branch and bound,
integer linear programming, graph partitioning, simulated an-
nealing, genetic algorithm, ant colony optimization [1], [2], [3],
[4], [5], etc. Similarly, in the framework-based modeling and
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Fig. 1. Classification of DSE Tools and Methodologies

simulation approach, a standardized framework is used to model,
simulate and explore reconfigurable system behavior at various
design stages. Such a framework offers modeling methodologies
and simulation tools to evaluate different design criteria. Ad-
vantages of such approaches include higher model (component)
re-usability and easy customization of the design according to
the system requirements. This provides a standardized framework
for developing benchmarks standards which 1) can perform fast
and easy comparison between various competing alternatives,
and 2) can provide easy evaluation and testing of various model
components. Examples of such approaches can be found in [9],
[10], [11] and [12].

The approaches used to evaluate a design candidate are further
categorized based on the evaluation time: offline and online.
Offline evaluation refers to the condition where a design candi-
date is evaluated for fixed system constraints. Offline evaluation
is often performed at design-time where no changes in the
system (application, architecture and/or environment) are given as
feedback to the evaluation process. Examples of such evaluation
can be found in [1], [2], [3], [5] and [4]. Alternatively, online
evaluation refers to runtime evaluation of the design candidates
where a design candidate is evaluated for (dynamically) varying
system constraints. Any changes in the system (application,
architecture and/or environment) are given as a feedback to the
evaluation process. As a consequence, the design parameters are
adjusted during the evaluation based on the changes encountered
by the system. In [6], the authors present a simple approach
for online evaluation of the task mapping in which a mapping
module evaluates the most frequently executed tasks at runtime
and maps them onto reconfigurable hardware. This work [6],
however, focuses on the low design level and targets only loop
kernels. Similar approaches for high-level runtime evaluation of
application mapping are presented in [7], [8], [20] and [21].
Offline evaluation is generally faster, however, it can be less
accurate as the runtime behavior of a system is mostly captured
by offline (static) estimations. On the other hand, the online



evaluation of the design candidates can be more accurate but it
is typically harder due to the enormous size of the search space
generated by the runtime system parameters.

This classification shows that the trend of most current DSE
research efforts focuses either on the top two quadrants or
the left two quadrants in Figure 1. Even though there is no
absolute separation between these quadrants and some efforts
overlap each other (the arrows in the classification Figure 1).
For example, the approaches in [13] and [14] combine a design
time exploration together with runtime management to trade-off
faster exploration with accuracy. There is still a huge gap for
tools and methodologies that fit the bottom-right quadrant in the
classification diagram. To the best of our knowledge, there is no
existing standardized modeling and simulation infrastructure for
DSE which allows designers to model and evaluate reconfigurable
systems’ behavior at runtime. As a consequence, various research
groups rely on their custom-built proprietary models/simulators
for evaluating architectures and algorithms. This results in the
following problems: a) the evaluation procedure is immensely
complex and b) the comparison between different evaluations is
extremely hard. To address these problems, it is crucial to have
a standard modeling and simulation infrastructure to evaluate
reconfigurable systems, which can be re-used between different
research groups. Such an infrastructure could provide a standard
platform allowing easy comparison between various evaluations
and hence it can also be used as a reference tool for future
research. We believe, providing such a standardized framework
will provide an excellent vehicle for research by adding a
tremendous breakthrough in this particular research domain. At
the same time, it could also provide invaluable insight to future
generations of (partially) dynamically reconfigurable systems
from the academic research perspective. A parallel example can
be found in the field of micro-architecture with the revolution
brought by the Simplescalar [19] infrastructure in the academics
as well as the industrial research practice.

Towards this goal, we make a first attempt towards this goal
and presented a generic modeling and simulation infrastructure
which can explore and evaluate reconfigurable systems at both
design-time and runtime [15]. In [16], we presented a model
for system-level DSE, which can perform rapid exploration
of different reconfigurable design alternatives at design time.
Following up this approach, in [15], we introduced a modeling
and simulation technique for two level mapping exploration of
reconfigurable systems, which can explore a system at design
time as well as at run time. In this paper, we extend and
generalize the technique from [15] to form a generic modeling
and simulation framework. Furthermore, we demonstrate the
methodology behind the framework by instantiating an example
model for a generic reconfigurable architecture . We also describe
the behavior of the model and study its key features. The main
contributions of this paper are as follows:
• Extension of the modeling and simulation framework pre-

sented in [15] with detailed elaboration of the runtime
mapping manager in order to make mapping decisions of
reconfigurable systems at runtime;

• Instantiation of an example model instantiated from the
framework for a generic reconfigurable architecture and the
study of its key features.

II. MODELING RUNTIME MAPPING BEHAVIOR

The modeling of a system that allows runtime mapping of
tasks to processing resources can be divided in two parts: the
spatial and the temporal mapping behavior. Spatial mapping is
the process of identifying which part of the application can be
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Fig. 2. The runtime mapping manager incorporated within rSesame framework.

implemented on the reconfigurable hardware (HW tasks) and
which part should be executed as software (SW tasks). Not all
HW tasks may fit on the reconfigurable device at the same time.
Therefore, a logical configuration has to be defined for a set of
HW tasks for which the functional logic has been loaded on the
reconfigurable device at a given moment. Temporal mapping is
the process of determining a sequence of these configurations at
runtime, such that all HW tasks can run efficiently. In summary,
spatial mapping determines where to map a task and temporal
mapping determines when to map a task.

With the rSesame framework, a task can be modeled either as a
HW task or as a SW task. A task tagged as HW is always mapped
onto the hardware component of the architecture and a task
tagged as SW is always mapped onto its software counterpart.
Task assignment for the SW and HW categories is done at design
time. At runtime, these tasks are mapped onto their corresponding
resources based on time, architectural resources and conditions
of the system. If more than one task is mapped onto the RP and
if all of them do not fit on the RP at once, they are divided
into logical configurations and mapped sequentially. In this way
the temporal mapping is addressed at runtime with the rSesame
framework.

In order to model the spatial mapping behavior at runtime, the
framework supports a third task type: pageable. Unlike HW and
SW tasks, a task tagged as pageable does not have a fixed spatial
mapping. Basically, a pageable task can be both a HW task and/or
a SW task and it can be mapped onto any of the resources. For
pageable tasks, the spatial mapping decision is made at runtime.
These tasks are mapped either as HW or SW depending on the
runtime conditions of the system (e.g. resource availability).

For HW and SW tasks, only the decision of when to map is
made at runtime and for the pageable tasks the decisions of when
and where to map are made at runtime. In other words: without
pageable tasks, only the temporal mapping behavior takes place at
runtime, whereas with pageable tasks, both temporal and spatial
mapping take place at runtime. Designers can play with these task
sets depending on the system requirements and their evaluation
purpose (online and offline).

III. RUNTIME MAPPING MANAGER

In any kind of reconfigurable system, in order to perform
mapping of application tasks onto architectural components at
runtime, there is a need for a runtime decision making entity.
Within our framework we defined the Runtime Mapping Manager
(RMM) component to make intelligent mapping decisions based
on the dynamic system conditions and according to a specified
policy. Most importantly, it has to identify whether the current
mapping is sufficient to satisfy the given system constraints or
not. If not, then it should also be able to identify for which tasks



to change the mapping. Note that such a mapping change may in
turn affect the spatial and temporal mapping of the entire applica-
tion. Therefore, it is crucial for the RMM to understand both the
application requirements and the architecture behavior. Figure 2
provides an abstract outline of the structure of an rSesame system
model and shows the location and interaction of the RMM. This
structure is the basis for our proposed framework, which we
believe to be generic enough to match many other industrial and
academic platforms with runtime mapping management, thereby
enabling wide range deployment of our framework. Consider for
example the case that the runtime manager is placed between
the application and the architecture (see again Figure 2). In the
actual system implementation the RMM entity may be part of the
application, middleware, operating system or even implemented
as a hardware component, without loss of generality of the model
created within the rSesame framework. In the following part, we
present a general description of a each component involved in
the runtime mapping management and their respective roles and
responsibilities:
• Application Manager : interacts with the application layer

and monitors any changes in the application user require-
ment, arrival of sporadic tasks, priority of tasks, real time
constraints, etc. It deals with these task requirements and
administers QoS management e.g. in case to ensure the
execution at a particular frame rate to maintain required
image quality. The application manager is a platform in-
dependent component and is only responsible for dealing
with applications. In case of any changes in the application,
it notifies the RMM for optimizing the mapping decision.

• Resource Manager: is a platform dependent component
and gathers information about the architecture platform. It
administers the architecture behavior and provides various
architectural information to the mapping manager such as
free resources, timing information, etc. In case of any
changes in the architecture (e.g. component failure, power
safe mode), it reflects these changes to the RMM for
optimizing the mapping decision.

• Runtime Mapping Manager: is responsible for making actual
mapping decisions. Based on application information from
the application manager and architecture information from
the resource manager, the mapping manager finds the “best”
mapping at runtime. The mapping manager can be designed
to learn from its historical data, predict future requirements
and can even employ several mapping policies to optimize
the mapping. These mapping policies are implemented as
a modular component, and as a result, a variety of policies
can be easily plugged in and out of the system.

IV. RSESAME FRAMEWORK

rSesame is a generic framework in the sense that it is not
restricted to modeling one type or class of reconfigurable systems.
Instead it can be deployed to model and evaluate any kind
of reconfigurable architecture running a wide set of streaming
applications from the multimedia domain. Using rSesame, a
designer can instantiate a model for their architecture and any
additional architectural specifics can be augmented in the model
as required. Figure 3 presents a scenario where several models are
instantiated from the rSesame framework for different types of
reconfigurable architectures running different sets of applications.
In Section V an example (shown in Figure 4) will be given of
one such instance for a specific architecture running a particular
application.

The rSesame framework employs the Sesame [17] framework
as a modeling and simulation platform for system level DSE.
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Fig. 3. Instantiation of the rSesame framework for various architectures

Sesame adheres to a transparent simulation methodology where
the concerns of application and architecture modeling are sep-
arated via a mapping layer, and as a result, applications and
architectures can be independently modeled. For the application
modeling, we use Kahn Process Networks (KPNs) [18] at the
granularity of coarse-grain tasks. A KPN consists of concurrent
processes with explicit communication over FIFO channels.
KPNs are deterministic and can capture the parallel and dynamic
nature of streaming applications in the multimedia domain,
which is our target domain. These processes contain functional
application code together with annotations that generate events
(Read, Write and Execute) describing the actions of the process.
These events are collected as traces and are forwarded onto
architecture layer using an intermediate mapping layer.

The mapping layer consists of Virtual Processors (VPs) that
schedule the event traces from the application processes onto
the architectural components. These VPs can be considered as
a distributed form of the application manager as they bring
information about the application to the RMM. The RMM is
modeled as a separate mapping layer component (Figure 4).
Before forwarding events from the application to the architecture,
a VP asks the RMM on which processor to execute the event.
Based on the current system conditions and the policy imple-
mented, the RMM returns a target processor identifier (either the
CCU or the GPP) and the VP forwards events accordingly. In
this way, the RMM can model spatial and temporal mapping
decisions at runtime. To support its decision making process, the
RMM may request additional information about the architecture
from the Resource Manager (RM) or application information
from the VPs. The RMM can employ an arbitrary set of user-
defined policies for runtime mapping. These policies can be
simply plugged in and out of the RMM, making the framework
flexible to evaluate such policies. The RM can be modeled
as an architectural specific component and can reside on the
architecture layer. Based on the architecture modeled, the RM
may have several specific functions defined and it may provide
different architecture information.

The architecture layer in the framework models the architec-
tural resources and constraints. These architectural components
are constructed from generic building blocks provided by a
library which contains components for processors, memories,
on-chip networks components and so on. Thus, any kind of
reconfigurable architecture can be constructed from these generic
components. Besides the regular parameters such as computation
and communication delays, other architectural parameters like
reconfiguration delay and area for the reconfigurable architecture,
can be provided as extra information to these components.

V. MODEL INSTANTIATION

Figure 4 depicts an example of a model that can perform run-
time task mapping for a dynamic reconfigurable architecture. This
architecture consists (in this case) of a GPP and a dynamically
Reconfigurable Processor (RP). Application tasks can be executed
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Fig. 4. Instantiation of the rSesame for a generic reconfigurable architecture

on the GPP, on the RP or on both of them. The RP can contain
one or more computing units. Tasks to be accelerated on the RP
are mapped onto these units. Tasks run on the GPP as regular
(compiled) microprocessor code or on the RP as a hardware IP
core.

In the example model, the GPP and the RP are modeled as
generic processor components with some additional parameters
such as area occupancy and reconfiguration delay (in case of
the RP). A CCU represents an RP’s custom computing unit
(see Figure 4). The RMM resides between the VPs and the
architecture layer. It collaborates with the RM for performing
runtime mapping decisions. The RM is modeled as part of the
architecture layer and it keeps track of the resource information
(e.g. available area). It does this by monitoring which custom
units are configured on the RP at any given time. A CCU can
only process events when it has been configured. If it is not
configured, it requests the RM to be scheduled for configuration.
The RM configures CCUs according to the policy implemented
(eg. as soon as area becomes available).

In general we can summarize the key features of a model
created with the rSesame framework as follows:

• Flexibility by Modular Design : In the presented model,
an application model is independent of the architectural
specifics. As a result, application and/or architecture models
can be re-used and altered without influencing each other.
This separation of concerns makes it easier to accommodate
any kind of modification to the model, permitting design
variations and even completely different architectures to be
modeled with ease. Moreover, a well defined structure of
the RM and the RMM makes the flexible model. Therefore,
any kind of mapping policy can be plugged into the model
and can be evaluated without affecting other components.

• Performance by Abstraction : The applications are mod-
eled at the granularity of tasks where application behavior
is abstracted as read, write and execute events. The model
operates based on discrete-event simulation of these events
leaving out all the minute details that might otherwise
hinder the model’s performance. Therefore, we provide easy
construction of the models and fast simulation. There is
always a trade-off between detailed modeling and fast model
performance and, in this case, we compromise details for
performance. This is a fair trade-off for a system-level model
which is targeted at very early design stages. At this level,
where the design space is enormous, quick exploration is
more vital than detailed exploration.

• Ease of Use : The modular design and the higher abstraction
level together facilitate the ease of use of the model. In case
of application modeling, the Kahn application models can
be either automatically converted or manually derived from
sequential C/C++ code. Similarly, any kind of architecture

model can be constructed from generic building blocks
provided by a library, which contains templates for pro-
cessors, memories, on-chip networks and so on. Moreover,
any policy can be implemented with a minimal effort and
without having detailed knowledge of all parts of the model.
Thus, the learning curve is rather moderate.

• Input/Output : The input given to the model consists of var-
ious architecture parameters such as hardware and software
latencies, area and reconfiguration delay. The model simu-
lates the application characteristics, architecture responses
and the runtime spatial and temporal mapping behavior.
As a result, it produces various system evaluation attributes
such as performance, number of reconfigurations, mapping
behavior of a task, area utilization, number of HW and SW
tasks, percentage of HW and SW execution, etc.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a generic modeling and simulation
framework for runtime task mapping for reconfigurable architec-
tures. We instantiated an example model from the framework for
a generic reconfigurable architecture and explained the method-
ologies behind the framework. We discussed the key features of
the model and studied its benefits such as flexibility, performance
and ease of use, etc. In future work, we will evaluate these key
features of the framework by simulating and by comparing a
range of different run-time heuristics from various domains.
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