
CITTA: Cache Interference-aware Task Partitioning
for Real-time Multi-core Systems
Jun Xiao

University of Amsterdam
Amsterdam, Netherlands

J.Xiao@uva.nl

Andy D. Pimentel
University of Amsterdam
Amsterdam, Netherlands
A.D.Pimentel@uva.nl

Abstract
Shared caches in multi-core processors introduce serious
difficulties in providing guarantees on the real-time prop-
erties of embedded software due to the interaction and the
resulting contention in the shared caches. Prior work has
studied the schedulability analysis of global scheduling for
real-time multi-core systems with shared caches. This paper
considers another common scheduling paradigm: partitioned
scheduling in the presence of shared cache interference. To
achieve this, we propose CITTA, a cache-interference aware
task partitioning algorithm. An integer programming formu-
lation is constructed to calculate the upper bound on cache
interference exhibited by a task, which is required by CITTA.
We conduct schedulability analysis of CITTA and formally
prove its correctness. A set of experiments is performed to
evaluate the schedulability performance of CITTA against
global EDF scheduling over randomly generated tasksets.
Our empirical evaluations show that CITTA outperforms
global EDF scheduling in terms of task sets deemed schedu-
lable.

CCS Concepts • Computer systems organization →
Embedded software.

Keywords Shared caches, Partitioned scheduling, Schedu-
lability analysis, Real-time systems

ACM Reference Format:
Jun Xiao and Andy D. Pimentel. 2020. CITTA: Cache Interference-
aware Task Partitioning for Real-time Multi-core Systems. In Pro-
ceedings of the 21st ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES ’20),
June 16, 2020, London, United Kingdom. ACM, London, UK, 11 pages.
https://doi.org/10.1145/3372799.3394367

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LCTES ’20, June 16, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7094-3/20/06. . . $15.00
https://doi.org/10.1145/3372799.3394367

1 Introduction and Motivation
Caches are common on multi-core systems as they can ef-
ficiently bridge the performance gap between memory and
processor speeds. The last-level caches are usually shared
by cores to improve utilization. However, this brings major
difficulties in providing guarantees on real-time properties of
embedded software due to the interaction and the resulting
contention in a shared cache.

On a multi-core processor with shared caches, a real-time
task may suffer from two different kinds of cache interfer-
ences [21], which severely degrade the timing predictability
of multi-core systems. The first is called intra-core cache
interference, which occurs within a core, when a task is pre-
empted and its data is evicted from the cache by other real-
time tasks. The second is inter-core cache interference, which
happens when tasks executing on different cores access the
shared cache simultaneously. In this work, we consider non-
preemptive task systems, which implies that intra-core cache
interference is avoided since no preemption is possible dur-
ing task execution. We therefore focus on inter-core cache
interference.
It is necessary to conduct schedulability analysis when

designing hard real-time application systems executing on
multi-core platforms with shared caches, as those systems
cannot afford to miss deadlines and hence demand timing
predictability. Any schedulability analysis requires knowl-
edge about the Worst-Case Execution Time (WCET) of real-
time tasks. However, as pointed out in [28], it is extremely
difficult to predict the cache behavior to accurately obtain
the WCET of a real-time task considering cache interference
since different cache behaviors (cache hit or miss) will result
in different execution times of each instruction. In this paper,
we assume that a task’s WCET itself does not account for
shared cache interference but, instead, we determine this
interference explicitly (as will be explained later on). Hardy
and Puaut [18] present such an approach to derive a task’s
WCET without considering shared cache interference.

On multi-core systems, two paradigms are widely used
for scheduling real-time tasks: global and partitioned (semi-
partitioned) scheduling. For global scheduling, a job is al-
lowed to execute on any core. In partitioned scheduling,
on the other hand, tasks are statically allocated to proces-
sor cores, i.e., each task is assigned to a core and is always
executed on that particular core. Although the partitioned

https://doi.org/10.1145/3372799.3394367
https://doi.org/10.1145/3372799.3394367

approaches cannot exploit all unused processing capacity
since a bin-packing-like problem needs to be solved to as-
sign tasks to cores, it offers lower runtime overheads and
provides consistently good empirical performance at high
utilizations [6].
Furthermore, taking the shared cache interference into

account, partitioned approaches can achieve better schedula-
bility than global scheduling. We provide a simple example
to illustrate this. Consider three tasks τ1, τ2 and τ3 with the
same period and relative deadline of 7, the WCETs of τ1, τ2
and τ3 are 3, 3 and 2, respectively. The execution platform is
a processor with 2 cores including a last-level shared cache.
If τ1 and τ2 run concurrently, we assume that the maximum
cache interference exhibited by τ1 and τ2 is 3. We also assume
that τ3 has no cache interference with τ1 and τ2.

It is impossible to conclude that this taskset is schedulable
under global scheduling. Figure 1 shows a case where τ3
misses its deadline. At time t = 0, tasks τ1 and τ2 are sched-
uled to execute on the two cores. In the figure, the black
area of a cumulative length of 3 denotes theWCET , and the
hatched area of a cumulative length of 3 represents the extra
execution time due to the cache interference. At t = 6, τ1
and τ2 both finish their executions, after which τ3 starts its
execution. At t = 7, τ3 misses its deadline. Similarly, consider
another case: at t = 0, τ3 and τ1 (or τ2) are scheduled, at t = 2,
τ3 finishes and τ2 (or τ1) starts its execution. Since cache
interference is counted per job [31], in the worst case, the
cache interference exhibited by τ2 (or τ1) can still be 3 even
though the duration of co-running τ2 (or τ1) and τ1 (or τ2) is
less than in the previous case. Due to the cache interference,
τ2 (or τ1) could finish its execution at t = 8, leading to a
deadline miss for τ2 (or τ1).

0 2 4 6 8

τ1

τ2

τ3

Time(s)

Figure 1. Case where τ3 misses its deadline if τ1, τ2 and τ3
are scheduled globally.

However, the taskset is schedulable under the partitioned
scheduling. Consider, e.g., the partitioning scheme in which
τ1 and τ2 are assigned to core 1, and task τ3 is assigned to
core 2. Since τ1 and τ2 are assigned to the same core, they
cannot run simultaneously. As no cache interference can

occur during task execution, it can be verified that every
task meets its deadline.

Contributions. Motivated by the above example, in this
work, we propose a novel cache interference-aware task
partitioning algorithm, called CITTA. To the best of our
knowledge, this is the first work on partitioned scheduling
for real-timemulti-core systems, accounting for shared cache
interference. An integer programming formulation is con-
structed to calculate the upper bound on cache interference
exhibited by a task, which is required by CITTA. We con-
duct schedulability analysis of CITTA and formally prove its
correctness. A set of experiments is performed to evaluate
the schedulability performance of CITTA against global EDF
scheduling over randomly generated tasksets. Our empiri-
cal evaluations show that CITTA outperforms global EDF
scheduling in terms of tasksets deemed schedulable.
The rest of the paper is organized as follows. Section 2

gives an overview of related work. The system model and
some other prerequisites for this paper are described in Sec-
tion 3. Section 4 describes the proposed CITTA, where we
also detail the computation of the inter-core cache interfer-
ence and schedulability analysis of CITTA. Section 5 presents
the experimental results, after which Section 6 concludes the
paper.

2 Related work
WCET estimation. For hard real-time systems, it is essen-
tial to obtain each real-time task’s WCET, which provides
the basis for the schedulability analysis. WCET analysis has
been actively investigated in the last two decades, of which
an excellent overview can be found in [30]. There are well-
developed techniques to estimate a real-time tasks’ WCET
for single processor systems. Unfortunately, the existing
techniques for single processor platforms are not applica-
ble to multi-core systems with shared caches. Only a few
methods have been developed to estimate task WCETs for
multi-core systems with shared caches [17, 23, 36]. In almost
all those works, due to the assumption that cache interfer-
ences can occur at any program point, WCET analysis will be
extremely pessimistic, especially when the system contains
many cores and tasks. An overestimated WCET is not useful
as it degrades system schedulability.

Shared cache interference. Since shared caches make it
difficult to accurately estimate the WCET of tasks, many re-
searchers have recognized and studied the problem of cache
interference in order to use shared caches in a predictable
manner. Cache partitioning is a successful and widely-used
approach to address contention for shared caches in (real-
time) multi-core applications. There are two cache parti-
tioning methods: software-based and hardware-based tech-
niques [15]. The most common software-based cache parti-
tioning technique is page coloring [24, 29]. By exploiting the
virtual-to-physical page address translations present in vir-
tual memory systems at OS-level, page addresses are mapped

to pre-defined cache regions to avoid the overlap of cache
spaces. Hardware-based cache partitioning is achieved using
a cache locking mechanism [9, 26, 28], which prevents cache
lines from being evicted during program execution. The
main drawback of cache locking is that it requires additional
hardware support that is not available in many commercial
processors for embedded systems.

A fewworks address schedulability analysis for multi-core
systems with shared caches [16, 34], but these works use
cache space isolation techniques to avoid cache contention
for hard real-time tasks. In this work, we do not deploy
any cache partitioning techniques to mitigate the inter-core
cache interference. Instead, we address the problem of task
partitioning in the presence of shared cache interference.

Real-time Scheduling. To schedule real-time tasks on
multi-core platforms, different paradigms have been widely
studied: partitioned [4, 13, 35], global [3, 7, 22], and semi-
partitioned scheduling [8, 10, 20]. A comprehensive survey
of real-time scheduling for multiprocessor systems can be
found in [12]. Most multi-core scheduling approaches as-
sume that the WCETs are estimated in an offline and isolated
manner and that WCET values are fixed.
Real-time scheduling for multi-core systems using cache

partitioning techniques is done via two steps: it first cap-
tures the relationship between the task’s WCET and cache
allocation by analysis or measurement as the WCET of a
task depends on the number of cache partitions assigned
to that task, and then develops a strategy that determines
the number of cache partitions assigned to each task in the
system, so that the task system is schedulable. Existing ap-
proaches typically adopt Mixed Integer Programming to find
the optimal cache assignment. However, these methods incur
a very high execution time complexity, and are therefore too
inefficient to be practical [33].

Different from the above approaches based on cache par-
titioning techniques, we address the problem of task parti-
tioning in the presence of shared cache interference. Our
approach neither requires operating system modifications
for page coloring nor hardware features for cache locking,
which are not supported by most existing embedded proces-
sors.
The most relevant to our work is [31, 32], which also ad-

dresses schedulability analysis for multi-core systems with
shared caches. However, the work of [31, 32] only consid-
ers global scheduling. In this paper, we consider another
scheduling paradigm, namely partitioned scheduling, and
propose CITTA, a cache interference-aware task partitioning
algorithm. Our empirical evaluations show that CITTA out-
performs global EDF scheduling in terms of task sets deemed
schedulable.

3 System Model and Prerequisites
3.1 System Model
Task Model. A taskset τ comprises n periodic or sporadic
real-time tasks τ1, τ2, ... τn . Each task τk = (Ck ,Dk ,Tk) ∈ τ is
characterized by a worst-case computation timeCk , a period
or minimum inter-arrival timeTk , and a relative deadline Dk .
All tasks are considered to be deadline constrained, i.e. the
task relative deadline is less or equal to the task period:Dk ≤

Tk . We further assume that all those tasks are independent,
i.e. they have no shared variables, no precedence constraints,
and so on.

A task τk is a sequence of jobs J jk , where j is the job index.
We denote the arrival time, starting time, finishing time and
absolute deadline of a job j as r jk , s

j
k , f

j
k and d jk , respectively.

Note that the goal of a real-time scheduling algorithm is to
guarantee that each job will complete before its absolute
deadline: f jk ≤ d jk = r

j
k + Dk .

As explained, it is difficult to accurately estimate Ck con-
sidering cache interference of other tasks executing concur-
rently. It should be pointed out that Ck in this paper refers
to the WCET of task k , assuming task k is the only task exe-
cuting on the multi-core processor platform, i.e. any cache
interference delays are not included in Ck .

Since time measurement cannot be more precise than one
tick of the system clock, all timing parameters and variables
in this paper are assumed to be non-negative integer values.

Our system architecture consists of a multi-core processor
withm identical cores onto which the individual tasks are
scheduled.

In multi-core processors, Caches are organized as a hierar-
chy of multiple cache levels to address the trade-off between
cache latency and hit rate. The lower level caches, for exam-
ple L1, are private while the last-level caches (LLC) are shared
among all cores. The caches are assumed to be non-inclusive
and direct-mapped.

Partitioned Non-preemtive Schedulers. In this paper,
we focus on non-preemptive partitioned scheduling. Once a
task instance starts execution, any preemption during the
execution is not allowed, so it must run to completion. So
we do not have to consider intra-core cache interference. If
not explicitly stated, cache interference will therefore refer
to inter-core cache interference in the following discussion.
Since partitioning tasks among a multi-core processor

reduces the multi-core processor scheduling problem to a
series of single-core scheduling problems (one for each core),
the optimality without idle inserted time [14, 19] of non-
preemptive EDF (EDFnp) makes it a reasonable algorithm to
use as the run-time scheduler on each core. Therefore, we
make the assumption that each core, and the tasks assigned
to it by the partitioning algorithm, are scheduled at run time
according to an EDFnp scheduler.
EDFnp assigns a priority to a job according to the absolute

deadline of that job. A job with an earlier absolute deadline

has higher priority than others with a later absolute deadline.
EDFnp scheduling is work-conserving: using EDFnp , there
are no idle cores when a ready task is waiting for execution.

3.2 The Demand-Bound Function
A successful approach to analyzing the schedulability of real-
time tasks is to use a demand bound function [5]. The demand
bound function DBF (τi , t) is the largest possible cumulative
execution demand of all jobs that can be generated by τi
to have both their arrival times and their deadlines within
any time interval of length t . Let t0 be the starting time of a
time interval of length t , the cumulative execution demand
of τi ’s jobs over [t0, t0 + t] is maximized if one job arrives
at t0 and subsequent jobs arrive as soon as permitted i.e., at
instants t0 +Ti , t0 + 2Ti , t0 + 3Ti ,... Therefore, DBF (τi , t) can
be computed by Equation (0.1),

DBF (τi , t) =max (0, (
⌊
t − Di

Ti

⌋
+ 1) ×Ci). (0.1)

[1] proposed a technique for approximating theDBF (τi , t).
The approximated demand bound function DBF ∗ (τi , t) is
given by the following equation:

DBF ∗ (τi , t) =

0 t < Di

Ci +Ui × (t − Di) otherwise
(0.2)

whereUi =
Ci
Ti
.

Observe that the following inequality holds for all τi and
all 0 ≤ t :

DBF ∗ (τi , t) ≥ DBF (τi , t) (0.3)

3.3 Uniprocessor Schedulability
The schedulabity analysis of uniprocessor scheduling is well
studied. [2] presented a necessary and sufficient condition
for the feasibility test of a sporadic task system τ scheduled
by EDFnp on a uniprocessor platform.

Theorem 1. A taskset τ is schedulable under EDFnp on a
uniprocessor platform if and only if

∀t ,
n∑
i=1

DBF (τi , t) ≤ t (1.1)

and for all τj ∈ τ :

∀t : Cj ≤ t ≤ D j : Cj +

n∑
i=1;i,j

DBF (τi , t) ≤ t . (1.2)

Note that the computation of DBF (τi , t) and DBF ∗ (τi , t)
by Equation (0.1) and (0.2) and the two schedulability test
conditions (1.1) and (1.2) do not account for shared cache
interference. We will extend the computation of DBF (τi , t)
and DBF ∗ (τi , t) and the two schedulability conditions to the
cases where shared cache interference is considered.

3.4 Cache Interference
The WCET of a task can be obtained by performing a Cache
Access Classification (CAC) and Cache Hit/Miss Classifica-
tion (CHMC) analysis for each memory access at the private
caches and the shared LLC cache separately [30]. The CAC
categorizes the accesses to a certain cache level as Always
(A), Uncertain (U) or Never (N). CHMC classifies the refer-
ence to a memory block as Always Hit (AH), Always Miss
(AM) or Uncertain (U).

As an LLC is shared by multiple cores, it allows running
tasks to compete among each other for shared cache space.
As a consequence, the tasks replace blocks that belong to
other tasks, causing shared cache interference. Let τk be
the interfered and τi be the interfering task. We use I ci,k to
represent the upper bound on the shared cache interference
imposed on τk by only one job execution of τi .
I ci,k can be calculated, as indicated by Lemma 4 and its

proof in [31], using the concept of Hit Block (HB), i.e. a mem-
ory block whose access is classified asAH at the shared cache
and Conflicting Block (CB), i.e. memory block whose access
is classified as A or U at the shared cache. By calculating
the number of accesses to each τk ’s HB and the accesses to
each τi ’s CB, I ci,k can be derived by bounding the conflicting
accesses to each shared cache set between τk and τi . In the
following discussion, we assume I ci,k is known.

4 Cache interference aware task
partitioning : CITTA

Given a taskset τ comprised of n periodic or sporadic tasks
and a processing platform π with m identical cores π =
{π1,π2, ...,πm }, a partitioning algorithm decides how to as-
sign tasks to cores to avoid task deadline misses. The problem
of assigning a set of tasks to a set of cores is analogous to the
bin-packing problem. In this case, the tasks are the objects
to pack and the bins are cores. The bin-packing problem is
known to be NP-hard in the strong sense. Thus, searching
for an optimal task assignment is not practical.

[25] and [13] studied several bin-packing heuristics for the
preemptive and non-preemptive task model. Typically, each
of the bin-packing heuristics follows the following pattern:
tasks of the task system are first sorted by some criterion,
after which the tasks are assigned in order to a core that
satisfies a sufficient condition.
Let τ (πx) denote the set of tasks assigned to processor

core πx where 1 ≤ x ≤ m. τi ∈ τ (πx) means τi is assigned
to core πx . If taskset τ can be scheduled by a partitioned
algorithm, the outcome of running a partitioning algorithm
is a task partition such that:
• All tasks are assigned to processor cores:

∪1≤x ≤mτ (πx) = τ

• Each task is assigned to only one core:

∀y , x , 1 ≤ y ≤ m, 1 ≤ x ≤ m, τ (πy) ∩ τ (πx) = ∅

In Section 4.1, we describe our cache interference aware
task partitioning : CITTA. Section 4.2 derives the calcula-
tion of the upper bound on the shared cache interference.
Section 4.3 conducts the schedulability analysis for CITTA.
Before describing CITTA, we first extend the DBF to ac-

count for shared cache interference. Due to the extra execu-
tion delay caused by shared cache interference, a task τi may
execute longer than Ci . Given a task partitioning scheme,
one can compute the upper bound on cache interference
exhibited by task τi , denoted as Ī ci . We will show the method
to compute this Ī ci later. In multiprogrammed environment,
the actual execution time including cache interference of τi
can be bounded by Ci + Ī

c
i . We denote DBF c (τi , t) as the de-

mand bound function which accounts for cache interference.
DBF c (τi , t) can be computed by extending Equation (0.1):

DBF c (τi , t) =max (0, (
⌊
t − Di

Ti

⌋
+ 1) × (Ci + Ī

c
i)). (1.3)

Similarly, the approximated demand bound functionDBF c∗ (τi , t)
is given by the following equation by extending Equation (0.2):

DBF c∗ (τi , t) =

0 t < Di

Ci + Ī
c
i +U

c
i × (t − Di) otherwise

(1.4)

whereU c
i =

Ci+Ī ci
Ti

.
It can also be observed that:

DBF c∗ (τi , t) ≥ DBF c (τi , t) (1.5)

4.1 The Task Partitioning Algorithm: CITTA
We now propose CITTA, a task partitioning algorithm taking
shared cache interference into account.

We assume the tasks are sorted in non-decreasing order by
means of a certain criterion. For example, if a task’s relative
deadline is chosen as criterion, then Di ≤ Di+1 for 1 ≤ i ≤
n. More criteria for sorting the tasks will be discussed in
Section 5.

CITTA performs the following steps:
step 1: for each task τi ∈ τ :
1. Attempt to assign τi to πx ,
2. Calculate the upper bound on cache interference Ī ck for

τk ∈ τ (πx)∪ {τi }, i.e. tasks that are already assigned to
πx and τi , assuming τi is assigned to πx . We will show
the calculation procedure in the next subsection.

3. Check if the following condition holds for each
τk ∈ τ (πx) ∪ {τi }

Dk ≥
∑

τj ∈τ (πx)∪{τi }
D j ≤Dk

DBF c∗ (τj ,Dk) + max
τj ∈τ (πx)∪{τi }

D j>Dk

Cj + Ī
c
j .

(1.6)
a. If no τk violates condition (1.6), the attempt is ad-

mitted and τi is added to τ (πx).
b. If condition (1.6) is violated by at least one τk , the

attempt is rejected. We attempt to assign τi to the
next core πx+1 and repeat steps (2) and (3). If no

core can be assigned to τi , then τi is added to the
temporarily non-allocable taskset, denoted as τ tna .

step 2: after performing step 1, the resulting τ tna is either
an empty set or non-empty.

(a) If τ tna = ∅, which means all tasks have been allocated
to cores, CITTA returns Success ,
(b) Otherwise, we perform step 1 to each τt ∈ τ tna . τt

is removed from τ tna if it can be assigned to a core. We
repeatedly perform step 1 to τt ∈ τ tna until τ tna becomes
empty or no more tasks in τ tna could be allocated to cores.
If τ tna = ∅ at the end, CITTA returns Success , otherwise
CITTA returns Fail : it is unable to determine if scheduling
τ is feasible on the multi-core platform.

We briefly explain the rationale behind condition (1.6).
Given a task τk , the execution demand of tasks (including
τk) with a relative deadline no larger than Dk is calculated
by the first part (left-hand side) of the sum in condition (1.6).
Since we consider a non-preemptive task system, the second
part of the sum accounts for the blocking time due to the
execution of a task with a larger relative deadline than τk
at the time a job of τk arrives. If the sum of the execution
demand and the blocking time is smaller than Dk , the task τk
will not miss its deadline. We will prove this in Section 4.3.

A more formal version of the task partitioning algorithm
CITTA is given by Pseudocode 1. The input to procedure
CITTA is the taskset τ to be partitioned and the execution
platform π consisting ofm cores. CITTA repeatedly invokes
the procedure TaskPartition, illustrated by Pseudocode 2, to
perform step 1 of the CITTA algorithm. The input to TaskPar-
tition is the temporarily non-allocable taskset τ tna , π , and ex-
isting task assignment τ (π) = (τ (π1),τ (π2), ...,τ (πm). τ tna
is initialized as τ . Every time when TaskPartition finishes,
some tasks in the taskset τ tna can be assigned to cores, and
thus τ tna and τ (π) are updated.

Pseudocode 1: CITTA(τ , π)
1: sort τ in non-decreasing order by a selected criterion
2: τ tna ← τ , taskAssiдned ← true, τ (π1),τ (π2), ...,τ (πm)
← ∅

3: τ (π) = (τ (π1),τ (π2), ...,τ (πm))
4: while τ tna , ∅ and taskAssiдned == true do
5: τ tna , taskAssiдned,τ (π)=TaskPartition(τ tna , π , τ (π))
6: end while
7: if τ tna == ∅ then
8: return Success
9: else
10: return Failed
11: end if

Lines 5 − 7 in the procedure of TaskPartition perform step
1.(2) of CITTA to compute the upper bound on cache inter-
ference for tasks. When CITTA attempts to assign τi to πx ,
the upper bound on cache interference caused by τk ∈ τ (πx),

Pseudocode 2: TaskPartition(τ , π , τ (π))
1: taskAssiдned ← false, τ tna ← ∅
2: for all τi ∈ τ do
3: assiдnTo← NULL, coreSuccess ← true
4: for all πx ∈ π do
5: for all τk ∈ τ (πx) ∪ {τi } do
6: calculate Ī ck
7: end for
8: for all τk ∈ τ (πx) ∪ {τi } do
9: if condition (1.6) violates for τk then
10: coreSuccess ← false
11: break;
12: end if
13: end for
14: if coreSuccess then
15: τ (πx) ← τ (πx) ∪ {τi }
16: assiдnTo← πx , taskAssiдned ← true
17: break;
18: end if
19: end for
20: if assiдnTo == NULL then
21: τ tna ← τ tna ∪ {τi }
22: end if
23: end for
24: return τ tna , taskAssiдned,τ (π)

i.e. tasks that are already assigned to πx , is recomputed. This
is because a tighter bound can be possibly obtained by the
recalculation, as will be shown soon. Considering τi is more
likely to be assigned to πx if the upper bound on the cache in-
terference caused by τk ∈ τ (πx) is smaller, the recalculation
makes CITTA less pessimistic.

4.2 Calculation of The Upper Bound on Cache
Interference: Ī ck

The CITTA algorithm requires to calculate the upper bound
on cache interference before it assigns a new task to a core.
We now describe such a procedure for the calculation of Ī ck .

[31] presented an approach to calculating the upper bound
on cache interference for tasks that are globally scheduled.
By extending the approach in [31], we compute the upper
bound on cache interference for partitioned scheduling. This
is done by two steps. First, given the existing task assignment
represented by τ (π) = (τ (π1),τ (π2), ...,τ (πm) and τna as the
taskset consisting of the tasks that have not been assigned,
we construct an integer programming (IP) formulation to
calculate the upper bound on the cache interference exhib-
ited by a task within an execution window. Then, we use
an iterative algorithm to obtain the upper bound on cache
interference a task may exhibit during its job executions.

4.2.1 IP formulation
In the following discussion, we compute the upper bound
on cache interference exhibited by τk , assuming τi is the
interfering task and τk is assigned to πx .
The Execution Window (EW) of the j-th job of τk (J jk) is

defined as the time interval [s jk , f
j
k] from the staring time to

the finishing time of J jk . We use C ′k as the length of the EW
because of the iterative computation which will be described
later on.
The objective function of the IP formulation is to maxi-

mize the the total cache interference exhibited by task τk . If
Ni,k jobs of τi are executing concurrently with τk , the cache
interference that τi causes on τk is bounded by Ni,k · I

c
i,k .

The total cache interference for one job execution of τk is
bounded by the sum of the contributions of all tasks τi in
the taskset τ . So the objective function is:

max
∑

Ni,k · I
c
i,k . (1.7)

To get a bounded solution, we analyze the constraints on
Ni,k .

If tasks τi and τk are assigned to the same core πx , at each
time instance, at most one task of τi and τk executes on core
πx . No jobs from τi could interfere with τk . Therefore, we
have the following:

∀τi ∈ τ (πx),Ni,k = 0. (1.8)

Ni,k reaches its minimal value when a job of τi starts to
execute as soon as it is released and the execution finishes
just before the start of the EW . Taking the smallest execution
time of τi , Cmin

i , as 0, we have the following constraint:

∀τi < τ (πx),

⌊max(0,C ′k −Ti)
Ti

⌋
+ ξi ≤ Ni,k (1.9)

where ξi =

1 (C ′k mod Ti) − Di > 0
0 otherwise

.

The term ξi indicates whether or not the last job of τi
released within the EW interferes with τk . The maximum
value of Ni,k is taken when the first interfering job of τi
finishes just after the start of the EW and the last interfering
job of τi starts to execute at the time when it is released.
Thus, we have the second constraint on Ni,k :

∀τi < τ (πx), Ni,k ≤ 1 +
⌈max(0,C ′k −Ti + Di)

Ti

⌉
. (1.10)

If Ni,k > 2, the first and last interfering jobs of τi may
occupy almost 0 computation capacity in the EW . Let J ji be
a job among the remaining Ni,k − 2 interfering jobs of τi
between the first and the last ones. Both release time r ji and
deadline d ji of J

j
i are within the EW of τk .

If τi is (or will be) successfully assigned to core πy , at least
Ci computation capacity of the processing core is reserved
for the execution of J ji during [r ji ,d

j
i]. The total execution of

interfering tasks τi on each processor y (with y , x) cannot

exceed C ′k . Since we do not know the core assignment for
tasks in τna , those tasks are allowed to execute on any core.
Thus, we have the following inequality (1.11),

∀y , x ,
∑

τi ∈τ (πy)∪τ na
max(0,Ni,k − 2)Ci ≤ C ′k . (1.11)

The objective function (1.7) together with constraints on
Ni,k i.e. inequalities (1.8), (1.9), (1.10) and (1.11) form our IP
problem. As task parameters such as Ci , Di , Ti are known,
the input of the IP formulation is the length of EW: C ′k ,
existing task assignment: τ (π) = (τ (π1),τ (π2), ...,τ (πm),
and remaining tasks that need to be assigned: τna . Thus,
we use IP (C ′k ,τ (π),τ

na) to denote the IP problem and use
I c (C ′k ,τ (π),τ

na) to denote the optimal solution.
When CITTA attempts to assign a task τi to a core πx , the

upper bound on cache interference caused by τk ∈ τ (πx), i.e.
tasks that are already assigned to πx , is recomputed. We now
show that a tighter upper bound for task τk can be possibly
obtained by the re-computation.
Given a task τk and an execution window of length C ′k ,

let us suppose the IP formulation in the previous computa-
tion of cache interference is IP (C ′k ,τp (π),τ

na
p), and the IP

formulation for the re-computation is IP (C ′k ,τq (π),τ
na
q).

Between the two computations for the same taskτk , CITTA
may assign some tasks to cores. If a task τi is assigned to a
core πx , τi is removed from τnap and is added to τq (πx). Obvi-
ously, we have τnaq ⊆ τnap and ∀1 ≤ x ≤ m,τp (πx) ⊆ τq (πx).

Lemma 1. Given τk and C ′k ,

I c (C ′k ,τq (π),τ
na
q) ≤ I c (C ′k ,τp (π),τ

na
p).

Proof Sketch: Due to space considerations, we will only
show the proof sketch.
From condition 1.6, one can prove the following: if τi ∈

τ (πx) and τk ∈ τ (πx), then Ck + Ī
c
k ≤ Di .

By the above statement and the constraints of the IP prob-
lem, we can prove that any solution of IP (C ′k ,τq (π),τ

na
q) is

also feasible for IP (C ′k ,τp (π),τ
na
p). Thus,

I c (C ′k ,τq (π),τ
na
q) ≤ I c (C ′k ,τp (π),τ

na
p).

Lemma 1 is the reason CITTA forces the recalculation of
upper bound on cache interference caused by tasks that are
already assigned to cores by CITTA.

4.2.2 Iterative Computation
Due to the presence of cache interference, a job may execute
longer than Ck on a multi-core platform with shared caches.
However, a larger execution time may introduce more cache
interference.

We give a sufficient condition for a certain value that can
be used as an upper bound on cache interference exhibited
by τk , denoted by Ī ck .

Lemma 2. Given τ (π) and τna , if ∃C∗k ≥ Ck such thatC∗k =
Ck + I

c (C∗k ,τ (π),τ
na), then Ī ck = I c (C∗k ,τ (π),τ

na).

The equation can be solved by means of fixed point itera-
tion: the iteration starts with an initial value for the length
of EW and upper bound on cache interference, i.e. C ′k = Ck
and I c (C ′k) = 0. By solving the IP, we compute a new upper
bound of the cache interference I c (C ′k ,τ (π),τ

na) and a new
corresponding length of EW , C ′k = Ck + I c (C ′k ,τ (π),τ

na).
The iterative computation for τk stops either if no update
on I c (C ′k ,τ (π),τ

na) is possible anymore or if the computed
I c (C ′k ,τ (π),τ

na) is large enough to make τk unschedulable
i.e. I c (C ′k ,τ (π),τ

na) +C ′k > Dk .
Computational complexity: The original IP can be eas-

ily transformed to an Integer Linear Programming (ILP) prob-
lem by introducing a new integer variable yi,k for each Ni,k
with two additional constraints: yi,k ≥ 0 and yi,k ≥ Ni,k − 2.
Inequality (1.11) can be replaced by

∑
τi ∈τ (πy)∪τ na yi,kCi ≤

C ′k . In the transformed ILP problem, we have totally 2n vari-
ables and 4n +m − 1 constraints. The complexity of the IP is
the same as the complexity of solving the transformed ILP
problem, which is O ((4n +m)64n ln 4n +m) [11].

Let n represent the number of tasks in the taskset. For τk ,
let Imin

k be the smallest difference between cache interference
caused by one job of τi and τj , i.e. Imin

k = min
i, j

(I ci,k − I
c
j,k), the

iterative algorithm takes at most γ = max
k

(Dk−Ck)
Imin
k

iterations
to terminate since C ′k either stays the same or increases at
least with Imin

k in each iteration. Thus, the complexity to
compute the upper bound on cache interference exhibited by
each task is O (γ (4n2 +mn)64nln4n +m). In TaskPartition, at
most n tasks in τ are checked for at mostm cores, thus, the
complexity of TaskPartition is O (γ (4n2m+nm2)64nln4n+m).
Since the while loop in CITTA executes at most n times, the
complexity of CITTA is O (γ (4n3m +m2n2)64nln4n +m).

4.3 Schedulability Analysis
4.3.1 Uniprocessor feasibility
Task partitioning reduces the problem of multi-core proces-
sor scheduling into a set of single-core processor scheduling
problems (one for each core). Following Theorem 1, we first
propose a schedulability condition, as stated in Theorem 2,
for uniprocessor scheduling, taking shared cache interfer-
ence into consideration. Note that the condition in Theorem 2
is sufficient and not necessary as Ī cj is the calculated upper
bound on the shared interference exhibited by τj , the actual
cache interference can be smaller than Ī cj .

Theorem 2. A taskset τ (πx) is schedulable under EDFnp on
a uniprocessor platform if

∀t ,
∑

τi ∈τ (πx)

DBF c (τi , t) ≤ t (2.1)

and for all τj ∈ τ (πx):

∀t : Cj+Ī
c
j ≤ t ≤ D j : Cj+Ī

c
j +
∑

τi ∈τ (πx)
i,j

DBF c (τi , t) ≤ t . (2.2)

4.3.2 Schedulability analysis of CITTA
We first derive one property that must be satisfied for tasks
assigned to the same core by CITTA. This is useful for the
proof of the feasibility analysis conducted later for CITTA.

Lemma 3. If tasks are assigned to cores by CITTA,

∀πx ∈ π ,
∑

τi ∈τ (πx)

U c
i ≤ 1. (2.3)

Proof. Let τu be the task with the largest relative deadline
among tasks in τ (πx), so, Du = max {Di |τi ∈ τ (πx)}. Obvi-
ously,

τi ∈ τ (πx) =⇒ Di ≤ Du .

Since τu satisfies Inequality (1.6), we have

Du ≥
∑

τi ∈τ (πx)

DBF c∗ (τi ,Du). (2.4)

From Equation (1.4), DBF c∗ (τi ,Du) is computed by:

DBF c∗ (τi ,Du) = U
c
i × (Du − Di +Ti) ≥ U c

i × Du .

Replacing DBF c∗ (τi ,Du) in Inequality (2.4),

Du ≥
∑

τi ∈τ (πx)

U c
i × Du =⇒

∑
τi ∈τ (πx)

U c
i ≤ 1.

This is Inequality (2.3). □

On each core πx ∈ π , tasks in τ (πx) are scheduled under
EDFnp . The next lemma shows the feasibility of τ (πx).

Lemma 4. If the tasks are assigned to cores by CITTA, ∀πx ∈
π , τ (πx) is feasible on core πx by EDFnp .

Proof. For the sake of contradiction, assume that each task
in τ (πx) satisfies condition (1.6), but that a task’s deadline is
missed when scheduling the tasks in π (τk) on core πx . Let
tf be the time that a task misses a deadline on core πx .

By Theorem 2, either∑
τi ∈τ (πx)

DBF c (τi , tf) > tf , (2.5)

or ∃τp ,τp ∈ τ (πx) and ∃tf ,Cp + Ī
c
p ≤ tf ≤ Dp , such that

Cp + Ī
c
p +

∑
τi ∈τ (πx)

i,p

DBF c (τi , tf) > tf . (2.6)

It will be shown that if either Inequality (2.5) or (2.6) holds,
then a contradiction is reached.
We first prove the existence of τi ∈ τ (πx) that satisfies

Di ≤ tf . Assuming ∀τi ∈ τ (πx), Di > tf , from Equation (1.4),∑
τi ∈τ (πx)

DBF c∗ (τi , tf) = 0.

By the assumption, neither Inequality (2.5) nor (2.6) will
hold. So the assumption is false.
Therefore, we can always find τi ∈ τ (πx) that satisfies

Di ≤ tf . Let τs be the task with the largest relative deadline,
i.e. Ds =max {Di |τi ∈ τ (πx) ∧ Di ≤ tf }

(A) we first prove that if Inequality (2.5) holds, it would
lead to contradiction.

From Inequality (1.5) and (2.5),∑
τi ∈τ (πx)

DBF c∗ (τi , tf) > tf . (2.7)

By the definition of DBF c∗ (τi , tf), we have∑
τi ∈τ (πx)
Di>Ds

DBF c∗ (τi , tf) = 0.

∑
τi ∈τ (πx)

DBF c∗ (τi , tf)

=
∑

τi ∈τ (πx)
Di ≤Ds

DBF c∗ (τi , tf) +
∑

τi ∈τ (πx)
Di>Ds

DBF c∗ (τi , tf)

=
∑

τi ∈τ (πx)
Di ≤Ds

Ci + Ī
c
i +U

c
i × (tf − Di)

=
∑

τi ∈τ (πx)
Di ≤Ds

Ci + Ī
c
i +U

c
i × (tf − Ds + Ds − Di)

=
∑

τi ∈τ (πx)
Di ≤Ds

DBF c∗ (τi ,Ds) +U
c
i × (tf − Ds).

(2.8)

τs satisfies condition (1.6):

Ds ≥
∑

τi ∈τ (πx)
Di ≤Ds

DBF c∗ (τi ,Ds).

From Equation (2.8) and Inequality (2.7), we have

Ds +
∑

τi ∈τ (πx)
Di ≤Ds

U c
i × (tf − Ds) > tf (2.9)

=⇒
∑

τi ∈τ (πx)
Di ≤Ds

U c
i > 1 =⇒

∑
τi ∈τ (πx)

U c
i > 1.

This contradicts to Lemma 3.
(B) we now prove that if Inequality (2.6) holds, it would

also lead to contradiction.
We know that ∃τs ,τp such thatDs ≤ tf ≤ Dp . We consider

two cases (B1): Ds = Dp and (B2): Ds < Dp .
(B1) if Ds = Dp , then tf = Dp

DBF c∗ (τp , tf) = Cp + Ī
c
p

From Inequality (2.6),∑
τi ∈τ (πx)

DBF c (τi , tf) > tf .

This leads to contradiction as proved in case (A).
(B2) if Ds < Dp , we have

Cp + I
c
p ≤ max

τj ∈τ (πx)
D j>Ds

Cj + Ī
c
j ,

and ∑
τi ∈τ (πx)

i,p

DBF c (τi , tf) ≤
∑

τi ∈τ (πx)

DBF c (τi , tf).

From Inequality (2.6), we have

max
τj ∈τ (πx)
D j>Ds

Cj + Ī
c
j +

∑
τi ∈τ (πx)

DBF c∗ (τi , tf) > tf .

Replacing
∑
τi ∈τ (πx) DBF

c∗ (τi , tf) in the above inequality us-
ing equation (2.8), we have

max
τj ∈τ (πx)
D j>Ds

Cj + Ī
c
j +

∑
τi ∈τ (πx)
Di ≤Ds

DBF c∗ (τi ,Ds)+U
c
i × (tf −Ds) > tf .

(2.10)
Since τs satisfies condition (1.6),

Ds ≥
∑

τi ∈τ (πx)
Di ≤Ds

DBF c∗ (τi ,Ds) + max
τi ∈τ (πx)
Di>Ds

Ci + Ī
c
i . (2.11)

From Inequality (2.10) and (2.11),∑
τi ∈τ (πx)

U c
i > 1.

This also contradicts to Lemma 3. □

The correctness of Algorithm CITTA follows, by applica-
tion of Lemma 4:

Theorem 3. If the task partitioning algorithm CITTA returns
Success on taskset τ , then the resulting partitioning is schedu-
lable by EDFnp on each core.

5 Experiments
Weasset the performance of CITTA and the proposed schedu-
lability test in terms of acceptance ratio, that is, the number
of tasksets that are deemed schedulable divided by the num-
ber of tasksets tested. CITTA is compared against Global
EDF (GEDF), which is proposed in [32], the only, at least
to the best of our records, work on real-time multiproces-
sor scheduling, taking the shared cache interference into
account.

As mentioned in the beginning of Section 4.1, the CITTA
algorithm first sorts tasks in non-decreasing order using
some criterion and then assigns tasks to the processor cores
according to Equations (1.6).
We consider the following five sorting criteria: the recip-

rocal of a task’s WCET 1
Ci

, a task’s period Ti , the reciprocal
of a task’s utilization 1

Ui
=

Ti
Ci
, a task’s slack Si = Ti −Ci and

random order.

5.1 Workloads Generation
We systematically generated synthetic workloads by varying
i) the number of tasks n (n = 10, 20) in the taskset, ii) total
task utilizationUtot (Utot from 0.1 tom − 0.1 with steps of
0.2), iii) the cache interference factor IF (IF = 0.2 or 0.8), and

iv) the probability of two tasks having cache interference on
each other: P (P = 0.1 or 0.4). Given those four parameters,
we have generated 20000 tasksets in each experiment.

We adopted the same policy, described in [31], to generate
task parameters such as task period and utilization, and cache
interference between two tasks.
In each experiment, we measure the number of tasksets

that can be successfully partitioned by CITTA with differ-
ent sorting criteria and the number of tasksets that can be
scheduled by GEDF . The acceptance ratio is the number of
schedulable tasksets divided by the total number of tasksets.

5.2 Results
We report the major trends characterizing the experimental
results, illustrated in Figures 2 and 3. In the figures, CITTA-
<criterion> represents a variant of CITTA using <criterion>
for sorting tasks, GLB stands for the GEDF scheduler.

CITTA outperforms global EDF. Our results clearly
show that CITTA outperforms global EDF in all the test cases.
It is also evident that CITTA is highly effective for multi-core
real-time systems, accounting for cache interference.
As shown in Figure 2(a), when IF = 0.2, P = 0.1, all

the generated tasksets can be successfully partitioned by
all variants of CITTA if Utot < 2.5. while the global EDF
achieves the full acceptance ratio when Utot < 1.5. CITTA
is able to partition tasksets with the highest tested total
utilization, i.e. Utot = 3.9. Global EDF can only schedule
tasksets with a total utilization of up toUtot = 2.5.

It is important to observe that the gap of acceptance ratio
between all variants of CITTA and global scheduling is large
when Utot ∈ [2, 3.5]. Such a schedulability performance
gap also exists for different degrees of cache interference
and different numbers of tasks in the taskset, as shown in
Figure 2(b), Figure 3(a) and Figure 3(b).
We have also compared the schedulability performance

of CITTA and GEDF using heterogeneous task periods i.e.
Ti ∈ [100, 300] or Ti ∈ [100, 500] (of which the results are
omitted due to space limitations). In those tests, CITTA still
outperforms GEDF.

Performance gap amongdifferent variants ofCITTA
is small. As is depicted in Figures 2(a) and 3(a), when the
cache interference is small (IF = 0.2, P = 0.1), CITTA-T
and CITTA-random performed worse than the CITTA-1/C ,
CITTA-S and CITTA-1/U when Utot > 3. while as the de-
gree of cache interference increases, the schedulability per-
formance gap becomes smaller, as shown in Figure 2(b) and
Figure 3(b). One reason could be that even though tasks
are sorted by different criteria, all variants of CITTA force
recalculation of the upper bound on cache interference to
obtain an upper bound that is as small as possible. The cache
interference obtained by all variants of CITTA thus is likely
to be similar. Therefore, if cache interference dominates the
schedulability result, the gap of schedulability performance
among different variants of CITTA is small.

(a) IF=0.2, P=0.1. (b) IF=0.4, P=0.8.
Figure 2. Acceptance ratio with different IF and P whenm = 4, n = 10.

(a) IF=0.2, P=0.1. (b) IF=0.4, P=0.8.
Figure 3. Acceptance ratio with different IF and P whenm = 4, n = 20.

Cache interference degrades schedulability perfor-
mance. Figure 2(a) and Figure 2(b) compare the acceptance
ratio with different P and IF for tasksets consisting of 10
tasks. With the same Utot , the acceptance ratio achieved by
all variants of CITTA and global EDF decrease as P and IF
increase. This is because a larger P and IF indicate more
tasks in the taskset having larger cache interference with
each other, which can potentially increase the upper bound
on cache interference, eventually making the interfered tasks
unschedulable. Similar observation can be made from Fig-
ure 3(a) and Figure 3(b) for tasksets consisting of 20 tasks.

5.3 Average Execution Time
We measured the execution time of CITTA with different
taskset sizes. The executions are conducted on an Intel Xeon
processor using only one core running at 2.4GHz. On aver-
age, it takes 0.85 seconds to run CITTA for assignment of
the taskset consisting of 10 tasks to a processor with 4 cores,
while it takes 2.3 seconds for tasksets with 20 tasks.

6 Conclusions
Shared caches in multi-core processors introduce serious
difficulties in providing guarantees on the real-time prop-
erties of embedded software. In this paper, we addressed
the problem of task partitioning in the presence of cache
interference. To achieve this, CITTA, a cache-interference
aware task partitioning algorithm was proposed. An integer
programming formulation was constructed to calculate the
upper bound on cache interference exhibited by a task, which
is required by CITTA. We conducted schedulability analysis
of CITTA and formally proved the correctness of CITTA. A
set of experiments was performed to evaluate the schedula-
bility performance of CITTA against global EDF scheduling
over randomly generated tasksets. Our empirical evaluations
shows that CITTA outperforms global EDF scheduling in
terms of tasksets deemed schedulable. As for future work, we
plan to combine the task partitioning and cache partitioning
approaches to design a new real-time scheduling algorithm
that can achieve even better schedulability.

References
[1] K. Albers and F. Slomka. 2004. An event stream driven approximation

for the analysis of real-time systems. In Proceedings. 16th Euromicro
Conference on Real-Time Systems, 2004. ECRTS 2004. 187–195.

[2] Sanjoy Baruah. 2005. The limited-preemption uniprocessor scheduling
of sporadic task systems. In 17th Euromicro Conference on Real-Time
Systems (ECRTS’05). 137–144.

[3] Sanjoy Baruah. 2007. Techniques for Multiprocessor Global Schedula-
bility Analysis. In RTSS’07 (RTSS ’07). IEEE Computer Society, Wash-
ington, DC, USA, 119–128.

[4] S. Baruah and N. Fisher. 2005. The partitioned multiprocessor sched-
uling of sporadic task systems. In 26th IEEE International Real-Time
Systems Symposium (RTSS’05). 9 pp.–329.

[5] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. 1990. Preemp-
tively Scheduling Hard-Real-Time Sporadic Tasks on One Processor.
In In Proceedings of the 11th Real-Time Systems Symposium. IEEE Com-
puter Society Press, 182–190.

[6] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. 2010. An Empirical
Comparison of Global, Partitioned, and Clustered Multiprocessor EDF
Schedulers. In 2010 31st IEEE Real-Time Systems Symposium. 14–24.
https://doi.org/10.1109/RTSS.2010.23

[7] M. Bertogna, M. Cirinei, and G. Lipari. 2009. Schedulability Analysis
of Global Scheduling Algorithms on Multiprocessor Platforms. IEEE
Transactions on Parallel and Distributed Systems 20, 4 (April 2009),
553–566. https://doi.org/10.1109/TPDS.2008.129

[8] B. B. Brandenburg andM. GÃĳl. 2016. Global Scheduling Not Required:
Simple, Near-OptimalMultiprocessor Real-Time Schedulingwith Semi-
Partitioned Reservations. In 2016 IEEE Real-Time Systems Symposium
(RTSS). 99–110.

[9] Marco Caccamo, Marco Cesati, Rodolfo Pellizzoni, Emiliano Betti, Ro-
man Dudko, and Renato Mancuso. 2013. Real-time Cache Management
Framework for Multi-core Architectures. In RTAS’ 13 (RTAS ’13). IEEE
Computer Society, Washington, DC, USA, 45–54.

[10] Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. 2017. Semi-
Partitioned Scheduling of Dynamic Real-Time Workload: A Practical
Approach Based on Analysis-Driven Load Balancing. In 29th Euromi-
cro Conference on Real-Time Systems (ECRTS 2017) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs)), Marko Bertogna (Ed.), Vol. 76.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, 13:1–13:23.

[11] Kenneth L. Clarkson. 1995. Las Vegas algorithms for linear and integer
programming when the dimension is small. J. ACM 42 (1995), 488–499.

[12] Robert I. Davis and Alan Burns. 2011. A Survey of Hard Real-time
Scheduling for Multiprocessor Systems. ACM Comput. Surv. 43, 4, Ar-
ticle 35 (Oct. 2011), 44 pages. https://doi.org/10.1145/1978802.1978814

[13] Nathan Fisher and Sanjoy Baruah. 2006. The partitioned multipro-
cessor scheduling of non-preemptive sporadic task systems. In 14th
International conference on real-time and network systems.

[14] Laurent George, Paul Muhlethaler, and Nicolas Rivierre. 1995. Op-
timality and non-preemptive real-time scheduling revisited. Research
Report RR-2516. INRIA. Projet REFLECS.

[15] G. Gracioli and A. A. Fröhlich. 2013. An experimental evaluation of
the cache partitioning impact on multicore real-time schedulers. In
RTCSA’ 03. 72–81.

[16] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2009. Cache-aware
scheduling and analysis for multicores. In 7th ACM international con-
ference on Embedded software. ACM, 245–254.

[17] D. Hardy, T. Piquet, and I. Puaut. 2009. Using Bypass to Tighten WCET
Estimates for Multi-Core Processors with Shared Instruction Caches.
In RTSS ’09. 68–77.

[18] D. Hardy and I. Puaut. 2008. WCET Analysis of Multi-level Non-
inclusive Set-Associative Instruction Caches. In RTSS’08. 456–466.

[19] K. Jeffay, D. F. Stanat, and C. U. Martel. 1991. On non-preemptive
scheduling of period and sporadic tasks. In Proceedings Twelfth Real-
Time Systems Symposium. 129–139.

[20] S. Kato and N. Yamasaki. 2009. Semi-partitioned Fixed-Priority Sched-
uling on Multiprocessors. In 2009 15th IEEE Real-Time and Embedded
Technology and Applications Symposium. 23–32.

[21] H. Kim, A. Kandhalu, and R. Rajkumar. 2013. A Coordinated Approach
for Practical OS-Level Cache Management in Multi-core Real-Time
Systems. In ECRTS’ 13. 80–89.

[22] J. Lee, K. G. Shin, I. Shin, and A. Easwaran. 2015. Composition of
Schedulability Analyses for Real-Time Multiprocessor Systems. IEEE
Trans. Comput. 64, 4 (April 2015), 941–954. https://doi.org/10.1109/
TC.2014.2308183

[23] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. 2009.
Timing Analysis of Concurrent Programs Running on Shared Cache
Multi-Cores. In 2009 30th IEEE Real-Time Systems Symposium. 57–67.
https://doi.org/10.1109/RTSS.2009.32

[24] J. Liedtke, H. Hartig, and M. Hohmuth. 1997. OS-controlled cache
predictability for real-time systems. In RTAS’ 97. 213–224.

[25] José María López, José Luis Díaz, and Daniel F García. 2004. Utilization
bounds for EDF scheduling on real-time multiprocessor systems. Real-
Time Systems 28, 1 (2004), 39–68.

[26] Mayank Shekhar, Abhik Sarkar, Harini Ramaprasad, and FrankMueller.
2012. Semi-Partitioned Hard-Real-Time Scheduling Under Locked
Cache Migration in Multicore Systems. In ECRTS’ 12. IEEE Computer
Society, Washington, DC, USA, 331–340.

[28] Vivy Suhendra and Tulika Mitra. 2008. Exploring Locking & Partition-
ing for Predictable Shared Caches on Multi-cores. In Proceedings of
the 45th Annual Design Automation Conference (DAC ’08). ACM, New
York, NY, USA, 300–303. https://doi.org/10.1145/1391469.1391545

[29] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. 2013. Making
Shared Caches More Predictable on Multicore Platforms. In ECRTS’ 13.
157–167.

[30] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. 2008. The Worst-case
Execution-time Problem—Overview of Methods and Survey of Tools.
ACM Trans. Embed. Comput. Syst. 7, 3, Article 36 (May 2008), 53 pages.

[31] J. Xiao, S. Altmeyer, and A. Pimentel. 2017. Schedulability Analysis
of Non-preemptive Real-Time Scheduling for Multicore Processors
with Shared Caches. In 2017 IEEE Real-Time Systems Symposium (RTSS).
199–208. https://doi.org/10.1109/RTSS.2017.00026

[32] J. Xiao, S. Altmeyer, and A. D. Pimentel. 2020. Schedulability Analysis
of Global Scheduling for Multicore Systems with Shared Caches. IEEE
Trans. Comput. (2020), 1–1. https://doi.org/10.1109/TC.2020.2974224

[33] M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee. [n.
d.]. Holistic Resource Allocation for Multicore Real-Time Systems. In
RTAS’19. https://doi.org/10.1109/RTAS.2019.00036

[34] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee. 2016. Analysis and Im-
plementation of Global Preemptive Fixed-Priority Scheduling with
Dynamic Cache Allocation. In RTAS. 1–12.

[35] Maolin Yang, Wen-Hung Huang, and Jian-Jia Chen. 2018. Resource-
Oriented Partitioning for Multiprocessor Systems with Shared Re-
sources. IEEE Trans. Comput. PP (12 2018), 1–1. https://doi.org/10.
1109/TC.2018.2889985

[36] W. Zhang and J. Yan. 2009. Accurately Estimating Worst-Case Exe-
cution Time for Multi-core Processors with Shared Direct-Mapped
Instruction Caches. In RTCSA ’09. 455–463.

https://doi.org/10.1109/RTSS.2010.23
https://doi.org/10.1109/TPDS.2008.129
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1109/TC.2014.2308183
https://doi.org/10.1109/TC.2014.2308183
https://doi.org/10.1109/RTSS.2009.32
https://doi.org/10.1145/1391469.1391545
https://doi.org/10.1109/RTSS.2017.00026
https://doi.org/10.1109/TC.2020.2974224
https://doi.org/10.1109/RTAS.2019.00036
https://doi.org/10.1109/TC.2018.2889985
https://doi.org/10.1109/TC.2018.2889985

	Abstract
	1 Introduction and Motivation
	2 Related work
	3 System Model and Prerequisites
	3.1 System Model
	3.2 The Demand-Bound Function
	3.3 Uniprocessor Schedulability
	3.4 Cache Interference

	4 Cache interference aware task partitioning : CITTA
	4.1 The Task Partitioning Algorithm: CITTA
	4.2 Calculation of The Upper Bound on Cache Interference: kc
	4.3 Schedulability Analysis

	5 Experiments
	5.1 Workloads Generation
	5.2 Results
	5.3 Average Execution Time

	6 Conclusions
	References

