
1

OnHybrid Abstraction-level Modelsin Architecture
Simulation

A.W. vanHalderen A. Belloum A.D. Pimentel L.O. Hertzberger
ComputerArchitecture& ParallelSystemsgroup,Universityof Amsterdam

Abstract— In the life cycle of a hardware design,it is of-
ten neededto start first with a grossevaluation, typically
performed usingabstract simulation models,then refinethe
design in a step-wiseapproach towards more detailed and
accurateevaluation. This progressive refinementprocessof
the designmay bring the systemevaluation in a statewhere
parts of the designare expressedin a high level of abstrac-
tion, while others are more detailed. This resultsin hybrid,
or mixed-level, architecturesimulation models.

To support hybrid models, designersoften apply inter-
mediatecomponentsthat translate transactionsto a unique
abstraction level. The processof translating fr om one ab-
straction level to another can have someside effectson the
accuracy of the model being studied. The study presented
in this paper, which hasbeenconductedwithin the scopeof
the Artemis project, shows how dramatic the impact of the
hybrid modeling canbe on the accuracyof the system.

The aim of this study is to point-out the impact of hybrid
modeling when applied to very simple and common archi-
tecture models. The results show a number of interesting
phenomenanot expectedbeforehand. A detailed discussion
of the simulation is presentedaswell asthe first stepsto solve
the statedproblems.

Keywords—hybrid simulations, designspaceexploration,
computer architecturesimulation

I . INTRODUCTION

The rapid prototyping of an application is becoming
moreandmore importantfor a successfuldesign. Tools
and methodsthat allow performanceevaluationsat an
earlystagearethekey elementin thedesignprocess.In the
top-down designapproachtheinitial versionsof thedesign
areveryabstract,they mainlydescribethefunctionalityof
the system. At this stage,the descriptiondoesnot con-
tain any detailson therealimplementation.Abstractionis
a conceptusedto hide a numberof detailswhich allows
the systemdesignerto focus only on specificissues. In
the RASSPtaxonomy[1] abstractionlevel is definedas:
“an indicationof thedegreeof detailspecifiedabouthow
the function is to be implemented”. Most of the simula-
tion environmentsallow thearchitectto createandexplore
a designat different levels of abstraction[2], [3]. In the
literaturethehigh abstractionlevelsaremostlycomposed
of behavioral modelswhich give only a descriptionof the
functionality of the systems.A moreaccuratedefinition

of thehigh level abstractionlevels, is theoneproposedin
thework of Williams [4] wheretwo distincthigh levelsof
abstractionareidentified:
Performance Model: Performancemodels focus mostly
on the flow of the information they do not considerthe
form nor the value. This modelinglevel is referredto as
uninterpreted since the componentscannotinterpret the
information.
Behavioral Models: Behavioral modelscontainmorede-
tail thantheperformancemodel.As describedby Williams
et al. in [4] “behavioral componentscontainfunctionality
responsiblefor mappingvaluesat their input to valuesat
their outputsandtypically containsmoredetailedtiming
andeventgranularity.”

Having partsof thearchitecturemodeldescribedat dif-
ferent levels of abstractionsrequires,in general,compo-
nentsthat translatethe informationbetweenthe different
abstractionlevels. Thesehybrid components,calledalso
“hybrid interface” receive informationdefinedat a certain
level of abstractionandgeneratethematchingrepresenta-
tion of anotherabstractionlevel. The datageneratedby
thehybridcomponentscanbejustarefinementof thedata
they receive or completelya different type of data. For
example,thehybrid componentsusedin theADEPT pro-
totyping tool convert the tokensusedat the high abstrac-
tion level into the type dataacceptedby the low level of
abstraction[5]. In all cases,the hybrid componentshave
to dealwith two mainchallenges:thetiming anddataab-
straction. The more the low abstractionlevel addsfunc-
tional detailsthemorethetiming andthedataabstraction
canplay an importantrole in the accuracy of the simula-
tion model.A hybrid simulationmodelcanbeexecutable
but not valid; in this study, we distinguishbetweentwo
typesof models,namely: executablesimulationmodels
andvalid simulationmodels.An executablemodelallows
the simulationto completesuccessfully, however, it may
not bevalid becausetheperformancestudyperformedus-
ing this modelcanbe heavily affectedby the translation
within thehybrid components.Thus,a simulationmodel
is consideredto bevalid if andonly if it is executableand
independentfrom theabstractioninterfacingprocess.

After describinghow hybrid simulationswill be used,
this paperwill introducea very small applicationandin-

2

troducethe abstractionlevels for it. This applicationis
usedto seehow a hybrid simulationbehaves on a basic
architecturalconstruct.Theresultswill pointoutacombi-
nationof two problems,oneof which is looked in further
in asecondexperiment.

I I . HYBRID ABSTRACTION MODELS

Whenin thedesignprocessthedesignerdescendsfrom
a high level of abstractionin his designto a lower level, it
is a benefitif this canbedonegradually. This may imply
that onepart of the architectureis refined,while leaving
other partsmore abstract. In this way the designercan
concentrateon the featuresof a specificpartof thearchi-
tecturewithoutbeingbotheredby otherpartsandreceiving
the benefitof a potentially fastersimulationbecausethe
modelis partiallystill moreabstract.Especiallyin explor-
ing architecturalpathsthis comesasa real feature,prun-
ing thebehaviour of individualpathsin thearchitecture.In
suchsimulationstwo or moreabstractionlevelsarepresent
within asinglemodel,which inevitably connectandinter-
actwith eachother.

When model componentsare developed,they are not
developedcompletelyindependently. There is a certain
strategy involved, suchthat thecomponentsagreeupona
commonprotocolto interact.Includedin thisarenotonly
theeventssentfrom onecomponentto another, but alsoa
commonunderstandingon how resourcesareclaimedand
latenciesareaccountedfor.

Whenmodelcomponentsfrom differentabstractionlev-
els are mixed, the coherencein the model which would
make a simulationconsistentandvalid may not be there.
Theproblemsthatoccurin makinghybrid modelsof dif-
ferentabstractionlevels within a singlesimulationsetup
canbe illustratedandinvestigatedusingsomesimplear-
chitectural constructs,which commonly occur. In this
studywe will usetwo caseswheretwo differentabstrac-
tion levelsarecombinedwithin asinglemodel.

I I I . APPLICATION AND ITS ABSTRACTION LEVELS

In the first example,datais passedfrom oneproducer
componentto anothercomponent—the consumer— by
anintermediatecomponent,which is a FIFO buffer mem-
ory. This is an exampleof a data-flow orientednetwork,
wherethe modeledcomponentsreceive, processandfor-
ward data. No complex interactiontakes placein these
systems,andtheabstractionlevel in suchsystemscanbe
definedsimply by the sizeof the databeinghandled. A
typical applicationwhich is representedby this modelis a
filter operationon images.

On a relatively high abstractionlevel we defineopera-
tions on the whole image: readimagefrom source,filter

image,forward imageto next component.In reality, such
anapplicationwouldneverbedevelopedthisway. Instead
of usingcoarsegrainedoperations,it wouldfetchonly part
of theimage,processit andpassit outandonly thenfetch
thenext partof theimage.Thenumberof partsinto which
theimagewouldbesplit dependsontheapplicationand/or
thearchitecture.For now we will call thesizeof a partof
the imagethe line-size, which leaves undecidedwhether
this is applicationor architecturedependent.

As a frame of referencewe assumethat the applica-
tion usingthefiner grainedoperations,alsoshown in fig-
ure 1(a), embodiesthe real-world application. Any de-
viancein behavior which thehigherabstractionor hybrid
modelsshow arethereforetheerrormadeby thesemodels.

In a designprocess,onewould first modeltheapplica-
tion on the coarsegrainedlevel, yielding a high abstrac-
tion level andwould endup after oneor morestepswith
themoredetailedmodel.Now ourapplicationis relatively
simple,andwe could easilygo from the high to the low
abstractionlevel in onestep. However theprocessof de-
tailing will becomemoreimportantin thispaperto warrant
pursuingthis issue. A commonmethodfor lowering the
abstractionlevel is usingstepwiserefinement.Using this
methodeachcomponentor operationon a high level of
abstractionis individually decomposedinto smallerunits.
Theoperationto retrieve animagefrom asourcewill thus
bedecomposedinto operationsto retrieve line-sizedparts
of theimage.

LOAD(linesize)
COMPUTE(linesize)

LOAD(linesize)
COMPUTE(linesize)

LOAD(linesize)
COMPUTE(linesize)

� � � � � � � � � � � � � 	
 � � � � � �

 � 	 � � � � � � � � � � 	
 �

(a)Expectedexecutionpattern.

LOAD(linesize)
LOAD(linesize)
COMPUTE(linesize)
COMPUTE(linesize)
COMPUTE(linesize)

LOAD(linesize)LOAD(image)

COMPUTE(image)

� � � � � � � � � � � � � � � � � � 	
 � 	 � � � � � � � � � � � � � ! � " � ! # $

(b) Refinementof High-level abstraction.

Fig. 1. Discrepancy betweenmodelderived usingrefinement
andactualexecutionpattern.

In figure 1(b) this processis depicted. The high-level
load and computeoperationsare decomposedinto three
sequencesof operationseach.This patterndoeshowever

3

task
ConsumerProducer

task

Buffer

ProcessorProcessor

Fig. 2. Producer-consumerarchitecture.

not conformto theactuallow-level sequencebeingmod-
eled (seefigure 1(a)). Throughstepwiserefinementwe
cannotcapturethedesiredscheduling.Still it is a logical
andoftenusedmethodin modelingandhybridsimulation.

Becausethe modelobtainedthroughrefinementis ex-
pressedin operationsthatareof a finer grainsizethat the
abstractmodel,onecould arguethat the refinedmodelis
moredetailedthanthe high-level model. In a classifica-
tion this meansthat both the refinedmodelandthe low-
level abstractionmodel are hierarchicalbelow the high-
level model. However the refinedand low-level models
bothusethesamegrainsizeof operations,just thesched-
ule is different.Thismakesit questionablethattherefined
modelrepresentsthe low-level modelat a higherabstrac-
tion level.

IV. PRODUCER-CONSUMER EXPERIMENT

A fundamentalconstruction(figure2) in many architec-
turesis whereoneprocessingcomponentinsertsdatainto
a buffer andanothercomponentretrievesthedata.An ab-
stractmodelof aproducer-consumermodelmayrepresent
thefollowing actuallow-level implementation:

% & ' () * +, * & - + (. - *% & ' () * +, * & - + (. - *% & ' () * + (. - *, * & - + (. - */ 0 1 2 3 4 5 6 0

7 + * % 8 (. - *% & ' () * +7 + * % 8 (. - *% & ' () * +7 + * % 8 (. - *% & ' () * +7 + * % 8 (. - *% & ' () * +/ 0 1 2 3 4 5 6 0

Producer task: Consumer Task:

In this casewe seethe producingtask subdivides the
imagein threepartsandtheconsumingtaskprocessesthe
sameimagein four parts, the line-sizeratio is therefore
3:4. Sincehigh-level operationsoperateon whole images
this distinctionis notpresentin a high-level model.When
suchahigh-level modelis loweredin abstractionthesede-
tailsareuncovered,openingarangeof possibleimplemen-
tations.

We map this applicationto the simple architectureof
figure 2 wherewe can vary the delaysfor computation
and storing or retrieving datafrom the buffer. For easy
comparisonthetotal communicationandcomputationfor
asingleprocessingcomponentiskeptconstant,andwecan
expressour resultsfor differentcommunicationto compu-
tation ratios. For simplicity we alsoassumethedelayfor

computationat theproducerto bethesameasfor thecon-
sumer, andlikewise for latenciesof storingandretrieving
datafrom thebuffer.

Theperformanceof this examplesystemcanbe evalu-
atedusingthe metric throughput. Over a periodof time,
thenumberof whole imagesthathave beenprocessedby
theconsumeris counted.

12

14

16

18

20

22

24

26

1:7 1:5 1:4 1:3 1:2 2:3 4:5 1:1 5:4 3:2 2:1 3:1 4:1 5:1 7:1

th
ro

ug
hp

ut
 (

im
ag

es
/ti

m
e-

pe
rio

d)

9

communication:computation ratio

producer-consumer experiment

modelled at high abstraction level
low abstraction level 1:4
low abstraction level 1:1
low abstraction level 4:1

Fig. 3. Throughputof the producer-consumersystemasmea-
suredin imagesthathavebeenprocessedentirelyatthecon-
sumersideoverafixedinterval. Thetoptwo lines(whichal-
mostcoincide)aretheresultsof thehigh-levelmodelandof
alow-levelmodelwheretheproducerandconsumertransfer
equallysizedblocks. Theothertwo linesareresultswhere
eithertheconsumerof producerusesa line size-ratiowhich
is four timeslargerthantheother(andthususesfour times
lessoperationsto processanentireimage).This is thecon-
sumer:producerratio. On thex-axisan increasingcommu-
nicationto computationratio is set,howeverfor comparison
purposesthe total of the communicationplus computation
latenciesis keptconstant.Ideally theresultshouldbeahor-
izontal line, and the drop in performanceis causedby the
contentionfor thesharedresource.

Figure3 shows thethroughputasa functionof thecom-
municationto computationratio for both the high-level
abstractionmodel and the detailedmodel. The detailed
modelshows that for threedifferentcombinationsof line-
sizeswe obtaindifferent results. This shouldbe no sur-
prise. Higher abstractionlevels do not considercertain
factorsandthereforewe only getanapproximationof the
intendedresult.

From the resultswe can furthermoreseethat as the
communicationto computationratio shifts to an increas-
ing communicationimportance,performancewill logi-
cally drop, becauseboth tasksaccessa sharedresource
which becomesthelimiting factor. However theinfluence
of theline-sizeratio in adetailedmodelis not immediately
apparent.Figure4 providesclarity in thisrespect.It shows

4

that for certain“right” combinationsof reader/writerline-
size ratios the systemis more effective, especiallywhen
communicationis aboutas importantas computationin
thearchitecture.For thesecombinations,thecommunica-
tion with thebuffer of bothprocessorscanbeinterleaved,
while for othersboth processorstry to accessthe buffer
at the sametime. The contentioncreatesstalls and the
communicationof oneprocessorcannotbe efficiently be
overlappedby thecomputationof theother.

12

14

16

18

20

22

24

26

1:7 1:5 1:4 1:3 1:2 2:3 4:5 1:1 5:4 3:2 2:1 3:1 4:1 5:1 7:1

th
ro

ug
hp

ut
 (

im
ag

es
/ti

m
e-

pe
rio

d)

9

consumer:producer linesize ratio

producer-consumer experiment

modelled at high abstraction level
modelled at high abstraction level
modelled at low abstraction level

Fig. 4. Throughputplottedagainstconsumerto producerline-
size ratio. Otherwisethe sameexperimentas in figure 3.
Resultsfrom the high-level modelwhich hasno consumer
to producerline-sizeratio is representedby the small lines
in thecenterof theplot. Theotherlinesshow thethrough-
put for highercommunicationto computationratiosasthe
throughputgetsoverall smaller.

Theabstractmodelandthemoredetailedareverymuch
alike. In principle, the only actualdifferencein the sim-
ulation implementationis thesizeof thedatabeingtrans-
ferred. Oneoperateson whole imageswhile theotheron
parts. It is easyto merge both models,wherethe buffer
is ableto servicerequestsfor wholeimagesor partsalike.
Thismodelis executable,however thequestionshouldrise
whetherit is valid. For this reason,we applya roughclas-
sificationof architecturesimulationmodels:

Functional model A simulationis functionalwhentheop-
erationsand operationsmodeledare actually performed.
When a multiplication is modeled,the result is actually
computed,andanoperationto retrieve a memoryaddress
actuallyreturnsthevaluepreviously stored.
Operational model Operationalcorrectnessis requiredfor
any simulationand involves that the operationsare per-
formedin theright circumstancesandwith thecorrectpro-
tocol. Whena processorstoresinformationin a memory,
it needsto contactthe bus componentand instruct it to
passthe informationto thememorycomponent.Retriev-

ing informationfrom a buffer needsto take into account
thepossibilityof anemptybuffer.
Behavioral model Correct behavior involves introducing
the right latenciesto operationsand the allocationof re-
sourcesat thepropersequence.
A correctoperationallevel typically involves modelver-
ification, while correctbehavior typically involvesmodel
validation.

We regardperformancemodelsto be either functional
or non-functional.Thefunctionallevel is notof verymuch
interestfor our studysinceit is not a factor in this simu-
lation outcome.The simulationrunsidenticalto whether
it is functionally implementedor not. Operationallythe
simulationof hybridmodelshasbeenmadecorrecttoo. A
buffer canbedesignedin suchaway thatbothimagescan
beservedaswell aspartsof them.By keepingtrackof the
amountof datain the buffer in bytes,the buffer canop-
erateindependentlyof whetherincoming requestsare in
imagesor line-sizedparts. A requestfor a whole image
canbequeuedwhenonly a partof an imageis presentin
thebuffer.

Valid behavior of a model is however a moredifficult
concept.Wehave composeda systemfor which it is more
difficult to definewhich behaviour would becorrect.The
behaviour of the systemis determinedby the interaction
of both theproducerandconsumertask. Now thesehave
beenmodeledat differentabstractionlevelsandthuswith
differentbehaviour. For now we make the intuitive state-
mentthat thebehaviour of themixed-level systemshould
be somewherebetweenthehigh level abstractionandthe
low level abstraction.

A buffer is intrinsically suitedto make the translation
of one abstractionlevel to another. This is becausethe
requestsmodeledat differentabstractionlevelsarenot di-
rectly relatedto eachother. Effectively the requestson
theabstractionlevelsareuncoupledandtheconnectionis
madein an internaldatatransferin thebuffer. But, aswe
will demonstrate,thereis still a differentbehaviour in the
hybrid modelevaluationcomparedto both high andlow-
level abstractionmodels.

In figure 5 the resultsof somehybrid simulationsare
shown for differentcommunicationto computationratios.
In thesimulationoneprocessorprocessesdataat thegrain
sizeof images,while theotherprocessesdataon theline-
size grain size. We can clearly seethat the hybrid sim-
ulation resultcandiffer quite from the high- or low-level
modelsimulationresults.

We canstudythis differenceusinga smallexperiment.
In thisexperimentwe take thearchitectureand:

: make thebuffer largeenoughto fit anentireimageplus
largestline-size;

5

12

14

16

18

20

22

24

26

1:7 1:5 1:4 1:3 1:2 2:3 4:5 1:1 5:4 3:2 2:1 3:1 4:1 5:1 7:1

th
ro

ug
hp

ut
 (

im
ag

es
/ti

m
e-

pe
rio

d)

9

communication:computation ratio

hybrid model at 1:1 linesize ratio

modelled at high abstraction level
low abstraction level

hybrid model
hybrid model with translation

Fig. 5. Evaluationof a hybridmodelof theproducer-consumer
system.As a referencethe low-level modelof the1:1 line-
size ratio (as in figure 3) is alsoshown. The naive hybrid
modelusesa buffer which is accessedby the producerus-
ing high-level (image)transfers,while the consumeruses
low-level operations,fetching line sizedparts. Many ap-
proachesto hybridabstraction-level simulationsusea trans-
lation from high-level operationsusingthe refinementpro-
cess(seefigure 1(b)), for which the resultsas shown are
muchbetterthanthenaive hybrid simulation.However the
inability of thesystemto predicttheperformancekneeis a
substantialdeficiency.

A largebuffer ensuresthattheconsumernever hasto wait
for theproducerto supplyenoughdatafor it to continue.

: modify thebuffer suchthataccessto it is no longerex-
clusively, i.e. make thebuffer dualported.
Thereforetheconsumernever hasto wait for theproducer
becauseof theaccessto theresourceis serialized.

Under thesecircumstancesall differencesdisappear.
This points to two issueswhy hybrid modelsare work-
ing operationallyperfectlyfine, but cannotbe considered
asvalid without concern.Interactiontakesplacebetween
thedifferentabstractionlevelsat two ways:

1. Thesynchronizationbetweenthetaskswhicharemod-
eled at a different abstractionlevel. When the buffer is
empty, theconsumertaskblocksuntil theproducingtask,
operatingatahigherabstractionlevel, hasprogressed.
2. When two tasksaccessthe sameresource(the buffer
in this case),eventhroughthereis no synchronizationbe-
tweenthetasks,thesharedresourceschedulestherequests.
Schedulingis adifferentform of synchronization.

In eachof thesecasesoneof the abstractionlevels has
a coarsernotion of time in the simulationthanthe other.
Synchronizationinvolves sequencingin time, and there-
fore thesimulationis invalid becausedifferentnotionsof
time framesareconfused.

V. RESOURCES THAT ARE ACCESSED ON MULTIPLE

ABSTRACTION LEVELS

medium
Transport Memory

Memory

Processor

Processor

Task 1

Task 2

Fig. 6. Sharedresourcearchitecture.

In a different architecturalconstructwe can highlight
the effect of multiple abstractionlevels which accessa
sharedresourceattheirdifferentlevelsof abstraction.Two
taskswhich do not communicatewith eachother, have
their individual memoryto access.The processorsexe-
cutingthetasksdo needto accesstheir memoriesthrough
asharedtransportmedium(seeconfigurationin figure6).

Figure7 shows the resultsof simulatingthis architec-
tureexecutingtaskslike theproducertaskin theprevious
experiment.Thefactthatthehighlevel simulationresultis
almostthesameasthatof thelow level simulationshould
not betakentoo significantly. Whatis striking is thatwith
thehybridsimulation,whereoneof theprocessorsis mod-
eledat high level of abstractionandoneof theprocessors
at low level of abstractionyieldssuchadifferentresult.

The explanationcanbe found in the way the two pro-
cessorsalternateaccessto thesharedresource.Bothat the
fine grainedlevel andon thecoarseabstractionlevel, the
accesspatternis exactly interleaved. Granted,at thehigh
abstractionlevel this interleaving is at the granularityof
imageswhile for thelow-level of abstractiontheinterleave
patternis at a line-sizegranularity(which is alsowhy the
fact thatbothreachanidenticalresultis not self-evident).
Thedropin performanceatrelativehighercommunication
to computationratioscanbeexplainedby thistoo. Whena
computationcycle at oneof theprocessorsfinishesearlier
that the communicationcycle of the other, the communi-
cationcycle of the first mentionedcannotyet take place,
creatingstalls.

Theinterleaving patternatthehybridsimulationis how-
evermuchmoredifferent.Whenthehigh-level abstraction
taskobtainsaccessto thesharedmediumit cantransferan
entireimage,while thetaskoperatingat lower abstraction
only transfersa singleline-sizebeforeit needsto gainac-
cessto thesharedmediumagain.This way, thetaskat the
lower level of abstractionis at a disadvantagewhencom-

6

0

20

40

60

80

100

120

1:7 1:5 1:4 1:3 1:2 2:3 4:5 1:1 5:4 3:2 2:1 3:1 4:1 5:1 7:1

th
ro

ug
hp

ut
 (

im
ag

es
/ti

m
e-

pe
rio

d)

9

communication:computation ratio

common resource

high abstr
low abstr

naive hybrid

Fig. 7. Experimentusinga simulationat high- and low-level
abstraction.At eachof the two processorsthe numberof
imagesbeing processedis countedover a fixed period of
time. The throughputof bothprocessorsis almostequalto
eachother for the high- and low-level models. The high-
andlow-level modelsalsogive thesameresult.A naivehy-
brid simulationis alsoshown wheretheprocessoraccessing
thesharedresourceat ahigherlevel of abstractionobtainsa
muchhigherthroughputandthe processorat a lower level
of abstractiona muchlower throughput.

peting for the sharedmedium. This can clearly be seen
in theresult: whenthecommunicationfactoris relatively
high,thetaskmodeledatahigherlevel of abstractionhasa
higherthroughputthanthetaskmodeledat thelower level
of abstractionwithin thesamesimulation.

Approachesto performhybridabstractionlevel simula-
tionsoftenincludetheuseof moduleswhich translateone
level of abstractionto another. Themethodusedis compa-
rableto stepwiserefinement.A modulebetweenthepro-
cessorandthesharedmediumtranslatesanoperationat a
high level (load an image)to a sequenceof operationsat
a lower level (loadsof a line-sizedpart). This translation
makessurethatoperationsatasharedresourcearrivewith
thesamegrainsize,howeverasin stepwiserefinementthe
scheduleis different.

Figure8 shows theresultof thisapproach.Althoughon
averagetheresultlooksbetterthenthenaivehybridmodel,
the clear transition shown by the detailedsimulation at
equalcomputationto computationratio is not present.In
thesesimulationswe would like to know whetherour op-
erationhasagracefuldegradationor a transition.

The figure also shows the deviation from the average
throughputmeasuredin thesimulation.Thehigh-andlow-
level modelandthefirst hybridmodelsshowedavery sta-
blesimulationresult,while in therefinementmethodmany
differentvalueswheremeasured.This makesusquestion
avalid interpretationof oursimulation,whennostochastic

0

20

40

60

80

100

120

1:7 1:5 1:4 1:3 1:2 2:3 4:5 1:1 5:4 3:2 2:1 3:1 4:1 5:1 7:1

th
ro

ug
hp

ut
 (

im
ag

es
/ti

m
e-

pe
rio

d)

9

communication:computation ratio

common resource

refinement hybrid
low abstr

Fig. 8. Simulation resultsfor a hybrid simulation obtained
throughthe processof refinement.Oneprocessoris mod-
eledat a low-level of abstraction,and the otherat a high-
level of abstraction.The latter doeshowever translatethe
operationto transferanentireimageinto smallerindividual
requestsjustbeforeaccessingthesharedresource.However,
dueto the fact that the processorsdo not executethe same
schedule,the resultsarenot thesameasa completelylow-
level model. Also shown in this figure are the lowestand
highestthroughputmeasuredat eachconfiguration(shown
usingtheverticalbars).Themodelsusingrefinementshow a
farmoreirregularbehavior, whichmakesit difficult to draw
conclusionsfrom theseresults.

processeswhereinvolved.

VI. TOWARDS BETTER HYBRID MODELS

It is relatively easyto explain why onegetsthe results
shown in theprevious section.However this doesnot ac-
tually tell whatthefundamentalcauseis.

The principal error we have madeis that we usedtwo
modelswhichhavedifferentstrategiesandplacedthemto-
gether. In eachof thestrategiesthereis adifferentview on
the time scale.Thehigh-level modelallocatestheshared
mediumto transferanentireimage,andhasthusa coarse
conceptof time. Conversely, low-level modelshave a
finer-grainedconceptof time.

Theseconceptsshouldnot be mixed andthereforeone
cannotlet bothabstractionlevelsusethesamesharedcom-
ponent. The high-level abstractionlevel shouldaccessa
sharedresourcemodeledat high-level of abstraction,and
likewisetheprocessortaskat thedetailedlevel shouldac-
cessa low-level sharedresourcecomponent.But this is
a sharedcomponent,so the effect of contentionfor the
sharedresourcewould be missingif we would introduce
separateinstancesfor thesharedresource.

Webelievethatit is still agoodideatouseseparatecom-
ponentsfor thesamesharedresourcefor eachabstraction

7

level beingmixed. This hastheadvantagethatwe largely
avoid complicatedmodelcomponentswhich canperform
operationsat multiple abstractionlevels.

Even more important,high-level componentscontinue
to be interfaced with the normal high-level (sharedre-
source)components,andlow-level componentswith other
low-level components,keepingthedistinctionbetweenab-
stractionlevels and their correspondingstrategies intact.
This underthe presumptionthat a mechanismis embed-
dedin the sharedresourcewhich performsthe correction
for contentionfor thesharedresource.

Earlier was statedthat the expectedresult of a hybrid
systemshouldbe somewherebetweenthe corresponding
high-level and low-level models. This is a fairly useless
statementin complex systemswith morethantwo metrics
or morethantwo abstractionlevels. Furthermoreit does
not tell anything abouthow abstractionlevels shouldbe
integrated.With in mindthatwecanseparateacomponent
whereabstractionlevelsmeetintoseparatecomponentsfor
eachabstractionlevel, wecanmakethepreviousstatement
moreprecise:

In a hybrid system, a component modeled at a certain
abstraction level should be able to observe the same be-
haviour from another component with which it is inter-
faced and which is part of the hybrid interface (i.e. the
bridge between different abstraction levels) as if all the
components in the model would have been modeled at the
same abstraction level.

A simulationmodelof the two abstractionlevels with
differentcomponentsfor the sharedresourcefor eachof
the abstractionlevels has been built, which includesa
methodunderdevelopmentfor incorporatingcontention
for asharedresource.This mechanismworksby influenc-
ing the internal latency in the sharedresource.Normally
whenanoperationsfrom theprocessoris received by the
sharedresource,a delayis introducedby theresourcebe-
fore forwardingthe operationto the destinationto model
the latency of the resource.In theearliermodelsthis de-
lay only dependson the size of the datarequest. If the
sharedresourceis still processinga requestfrom theother
processor, theoperationis queueduntil it hasfinalizedear-
lier requests.This is thebasisfor contentionandthevari-
able time neededper request.In our implementationthe
queuingeffect doesnot occur anymore, but insteadit is
observed how long in the internal latency the resourceis
alsoaccessedby theotherabstractionlevel. This timerep-
resentsa possibleequallysizeddelaythat could have oc-
curredby theexclusiveaccessto theresource.Onemethod
is for the resourceto completethe requestandreturnthe
result,but remainto beblockedfor a periodof time equal
to the time the resourcewas actually sharedby two ab-

stractionlevels. Anotherway is to introduceanadditional
latency for thesameperiodof time. Thesetwo resultsare
shown in figure9.

0

20

40

60

80

100

120

1:7 1:5 1:4 1:3 1:2 2:3 4:5 1:1 5:4 3:2 2:1 3:1 4:1 5:1 7:1

th
ro

ug
hp

ut
 (

im
ag

es
/ti

m
e-

pe
rio

d)

9

communication:computation ratio

common resource

low abstr
new hybrid

Fig. 9. Comparisonbetweena purelow-level abstractionand
the adaptedhybrid model. In the new hybrid model the
componentsthat modelthe sharedresourcefor an abstrac-
tion level returntheresultimmediatelyto theprocessorafter
performingtherequest,but canremainblockedfor a longer
period.

Thetwo methodsareactuallytwo extremesof therange
of anexplorationparameter, whichrepresentsthepossibil-
ity for an abstractmodel to overlapcommunicationwith
computation.

VII . CONCLUSION

In this paperwe have looked at someof the problems
thatoccurwhenbuilding hybridsimulationmodels,where
multiple modelingabstractionlevels are placedwithin a
singleexecutablesimulation.Althoughthesemodelswere
executable,they are not immediatelyvalid. Somevery
simple architectureconstructswere used in this study,
which doeshowever not meanthat thesearejust toy-like
models. Rather, it concentrateson how multiple abstrac-
tion levels canreally interactwithin a singlemodel. One
or multiple componentswill be facedwith operationson
multiple levels of abstraction. Whetherthis is a buffer,
bus,co-processoror othertypeof componentis ratherir-
relevant. Whatis important,is that this hybrid interfaceis
facedwith differentconcepts,especiallyconcerninggran-
ularity of time-steps.

This leadsto problemswhensynchronizationoccursbe-
tweencomponentson different abstractionlevels. Syn-
chronizationbecauseonecomponenthasa direct depen-
dency on the other, e.g. it needsdatafrom the other, or
synchronizationbecausea commonsharedresourceis be-
ing accessed.This paperhasmainly focussedon the se-

8

quencingand interleaving of operationsof the latter and
within the; Artemis project [6] we are looking into meth-
odsto resolve thisproblem.

REFERENCES

[1] RASSPTaxonomyWorking Group, “VHDL modelingterminol-
ogyandtoxonomy,” TechnicalReportVersion3.1,RASSPTaxon-
omyWorkingGroup,1999.

[2] P.S.Coe,F.W. Howell, R.N. Ibbett,andL.M. Williams, “A hierar-
chicalcomputerarchitecturedesignandsimulationenvironment,”
ACM Transactions on Modeling and Computer Simulation, vol. 8,
no.4, October1998.

[3] M Bacis, G Buonanno,F Fummi, L Gerli, and DSciuto, “Ap-
plicationof a testingframework to VHDL descriptionat different
abstractionlevels,” in Proceedings IEEE Conference on Computer
Design, October12-151997.

[4] MosheMeyassed,RobertMcGraw, JamesAylor, RobertKlenke,
andRonaldWilliams, “A framework for thedevelopmentof hybrid
models,” Proceedings of the 2nd Annual RASSP Conference, pp.
147–154,July 1995.

[5] RobertH. Klenke, MosheMeyassed,JamesH. Aylor, Barry W.
Johnson,RameshRao,andAnup Ghosh, “An integrateddesign
environmentfor performanceanddependabilityanalysis,” in Pro-
ceedings of the Design Automation Conference, Anaheim, CA,
1997,ACM.

[6] A.D. Pimentel, P. van der Wolf, E.F. Deprettere, and L.O.
Hertzberger, “The artemis architecture workbench,” in
PROGRESS2000 Workshop on Embedded Systems and Software,
2000.

