
An Iterative Multi-Application Mapping Algorithm
for Heterogeneous MPSoCs

Wei Quan†,‡

†Informatics Institute
University of Amsterdam

The Netherlands
{w.quan,a.d.pimentel}@uva.nl

Andy D. Pimentel†

‡School of Computer Science
National University of Defense Technology

Hunan, China
quanwei02@gmail.com

Abstract—Task mapping plays a crucial role in achieving high
performance and energy savings in heterogeneous multiprocessor
platforms. The problem of optimally mapping tasks onto a set of
given heterogeneous processors for maximal throughput/minimal
overall energy consumption has been known, in general, to
be NP-complete. This problem is exacerbated when mapping
multiple applications onto the target platform. To address this
problem, this paper proposes an iterative multi-application map-
ping algorithm that operates at run time. Based on statically
derived optimal (or near optimal) mappings for each separate
application, this algorithm will quickly find a near optimal
mapping under the objectives of high performance and low
energy consumption for the simultaneously running applications
on heterogeneous platforms. We have evaluated our algorithm
using a heterogeneous MPSoC system with three real applications.
Experimental results reveal the effectiveness of our proposed
algorithm by comparing derived solutions to the ones obtained
from other well-known algorithms.

I. INTRODUCTION

Modern embedded systems, which are more and more
based on heterogeneous Multi-Processor System-on-Chip
(MPSoC) architectures, often require supporting an increas-
ing number of applications and standards. In these systems,
multiple applications can run concurrently and are thus simul-
taneously contending for system resources. As heterogeneous
architectures are capable of providing better performance and
energy trade-offs than their homogeneous counterparts [14],
the process of application task mapping plays a crucial role
in exploiting the system properties such that applications can
meet their, often diverse, demands on performance and energy
efficiency [25].

The problem of optimally mapping tasks onto a given
set of heterogeneous processors for maximal throughput (per-
formance) or minimal overall energy consumption has been
known, in general, to be NP-complete [13]. When considering
mapping multiple applications onto a target architecture, this
problem is exacerbated as the resource contention between
applications should be carefully considered in this case. State-
of-the-art methods for solving this problem can be divided into
two categories: static and dynamic task mapping algorithms
which, respectively, work at design time and run time. Tradi-
tionally, the task mapping problem is solved statically at design
time for which there are many known task mapping algorithms
targeting different application domains and different hardware

architectures (e.g. [19], [7], [11]). These algorithms typically
use computationally intensive search methods to find the
optimal mapping or near optimal mapping for the applications
that may run on the system. Dynamic task mapping techniques,
on the other hand, cannot be computationally intensive as they
have to efficiently make task mapping decisions at run time.
Therefore, these techniques typically use heuristics to find
good task mappings. Evidently, static task mapping techniques
usually obtain mappings of higher quality compared to those
derived from dynamic algorithms as the former allow for
exploring a larger design space for the underlying architecture.
This, of course, at the cost of consuming more time. Another
drawback of static mapping techniques is that they cannot cope
with dynamic application behavior in which different combina-
tions of applications can be executing concurrently over time
that are contending for system resources. In this paper, we
propose an Energy-aware Iterative multi-application Mapping
(EIM) algorithm for heterogeneous multimedia MPSoCs that
tries to exploit the advantages from both static and dynamic
algorithms.

The proposed approach can be divided into two stages.
Firstly, the design-time stage will perform design space ex-
ploration (DSE) to find and store three optimal mappings
for each application with the objectives of maximizing the
throughput, minimizing the energy consumption and maxi-
mizing the throughput under a predefined energy budget re-
spectively. Secondly, the run-time stage dynamically optimizes
the mapping of multiple simultaneously running applications
with the objective of maximizing the throughput under the
predefined energy budget or minimizing the system energy
consumption based on the optimal mappings of corresponding
applications explored in the first stage. Combining these two
steps, the proposed approach can dynamically find a near
optimal mapping for multiple executing applications, while
it is also capable of running single applications under the
optimal mapping (derived from design-time DSE) with respect
to different optimization objectives.

To support the dynamism of applications, we use the
concept of scenarios [18], [6]. Here, one can distinguish two
forms of scenarios to capture dynamic application behavior:
inter-application scenarios describe the simultaneously running
applications in the system, while intra-application scenarios
define the different execution modes within each application.
The combination of these inter- and intra-application scenarios

are called workload scenarios, and specify the application
workload in terms of the different applications that are con-
currently executing and the mode of each application. At
design time, a system designer could aim at finding the
optimal mapping of application tasks to MPSoC processing
resources for each inter- and intra-application scenario with
different objectives (performance/energy). However, when the
number of applications and application modes increase, the
total number of workload scenarios will explode exponentially.
Considering, e.g., 10 applications with 5 execution modes for
each application, there will be 60 million workload scenarios.
If it takes one second to find the optimal mapping for each
scenario at design time, then one would need nearly two years
to obtain all the optimal mappings. Moreover, storing all these
optimal mappings such that they can be used at run time by the
system to remap tasks when a new scenario is detected would
also be unrealistic as this would take up too much memory
storage.

In this paper, we solve this problem by splitting the
handling of intra-application scenarios and inter-application
scenarios according to the two stages mentioned above. The
design-time phase takes charge of exploring three optimal
mappings for each intra-application scenario of each applica-
tion with respect to three different objectives: maximizing
the throughput, minimizing the energy and maximizing the
throughput under the predefined energy budget. The run-time
phase subsequently finds a mapping for the workload scenario
that has emerged in the system by considering the active inter-
application scenario at run time. By using this approach, the
number of mappings that need to be determined at design time
will be greatly reduced. Considering the above example, only
150 mappings need to be found (and stored) at design time.
This overcomes the drawbacks of static mapping algorithms
(time and memory usage for exploring and storing mappings
for every workload scenario) but also takes advantage of the
capability of run-time algorithms to support dynamic applica-
tion behavior.

The remainder of this paper is organized as follows.
Section II gives some prerequisites and the problem definition
for this paper. Section III provides a detailed description of
our iterative multi-application mapping algorithm. Section IV
introduces the experimental environment and presents the
results of our experiments. Section V discusses related work,
after which Section VI concludes the paper.

II. PREREQUISITES AND PROBLEM DEFINITION

In this section, we explain the necessary prerequisites for
this work and provide a detailed problem definition.

A. Application Model

In this paper, we target the multimedia application domain.
For this reason, we use the Kahn Process Network (KPN)
model of computation [12] to specify application behaviour
since this model of computation fits well to the streaming
behaviour of multimedia applications. In a KPN, an application
is described as a network of concurrent processes that are inter-
connected via FIFO channels. This means that an application
can be represented as a directed graph KPN = (P,F) where
P is set of processes (tasks) pi in the application and fi j ∈ F

Video_In DMUX

RGB2YUV

DCT

QUANT. VLE

Q-Cont.

Video_Out

Figure 1: KPN for MJPEG.

represents the FIFO channel between two processes pi and p j.
Figure 1 shows the KPN of a Motion-JPEG (MJPEG) decoder
application.

B. Architecture Model

In this work, we restrict ourselves to heterogeneous MPSoC
architectures with shared memory. An architecture can be
modeled as a graph MPSoC = (PE,C), where PE is the set
of processing elements used in the architecture and C is a
multiset of pairs ci j = (pei, pe j) ∈ PE × PE representing a
(FIFO) communication channel between processors pei and
pe j. Combining the definition of application and architecture
models, the computation cost of task (process) pi on processing
element pe j is expressed as T j

i and the communication cost
between tasks pi and p j via channel cxy that connects pex
and pey is Ccxy

i j . With respect to power consumption, SPi and
DPi refer to the static and dynamic power consumption for
pei. Besides processing elements, another main component of
energy consumption in our target system is the shared memory.
For this component, we denote the static and average dynamic
power consumption (for read/write transactions) as SM and
DM respectively.

C. Task Mapping

The task mapping defines the corresponding relationship
between the tasks in a KPN application and the underlying
architecture resources. For a single application, given the KPN
of this application and a target MPSoC, a correct mapping is
a pair of unique assignments (µ : P→ PE, η : F → C) such
that it satisfies ∀ f ∈ F,src(η(f)) = µ(src(f))∧ dst(η(f)) =
µ(dst(f)). When tasks are mapped onto the underlying ar-
chitecture, the usage Uk of each pek can be calculated by
equation 1, where pi 7→ pek and p j 7→ pey mean that tasks
pi, p j are mapped onto processors pek and pey respectively.

Uk = ∑
pi 7→pek,p j 7→pey

(T k
i +C

cky
i j) (1)

In the case of a multi-application workload, the state of
simultaneously running applications that are distinguished as
inter- and intra-application scenarios should be considered
in the task mapping. Let A = {app0, app1, ..., appm} be
the set of all applications that can run on the system, and
Mi = {mdi

0, mdi
1, ..., mdi

n} be the set of possible execution
modes for appi ∈ A. Then, SE = {se0, se1, ..., seninter}, with
sei = {app0 = 0/1, ..., appm = 0/1} and appi ∈ A, is the set
of all inter-application scenarios. And sai

j = {app0 = md0
j0 , ...,

appm = mdm
jm}, with appi ∈ A∧ appi = 1 ∈ sei and mdi

jx ∈

Mi, represents the j-th intra-application scenario in inter-
application scenario sei ∈ SE. The set of all workload scenarios
can then be defined as the disjoint union S = ti∈SESAi, with
SAi = {sai

1, sai
2, ..., sai

ni
intra
}.

As already explained in the previous section, we propose
to perform the task mapping of applications in two stages. In
the first stage, which is performed at design time, we perform
DSE for each intra-application scenario of each application
(denoted by scenario si in the whole workload scenario space
S) to find three mappings that show the maximal throughput,
minimal energy consumption and maximal throughput under a
certain energy budget bi respectively. Here, bi is a user defined
energy budget for workload scenario si. The mappings derived
from design-time DSE are stored so they can be used by the
second stage to get a final mapping – by directly using the
stored mappings or by deriving a new one from the stored
mappings – for the current system objective when a new
workload scenario is detected. Here, we can distinguish two
system objectives: maximal throughput and minimal energy
consumption for each workload scenario, denoted as Ot and
Oe respectively. These two objectives will be used for run-
time mapping optimization. For the convenience of exploring
the pareto front of objectives at design time, we change the
objective of maximal throughput into a minimal objective
Op = 1/Ot , namely the scenario execution time. With regard to
the run-time behavior, we assume that our hardware platform
can run under two modes: energy-aware high performance
mode (using a certain energy budget) and energy saving
mode. Consequently, the run-time system objectives for each
workload scenario are Opb, which means minimal scenario
execution time (or maximal throughput) under the energy
budget, and Oe. Users can choose the running mode of the
system, or the system itself can adaptively adjust the mode
based on e.g. the battery usage.

Under these definitions and given the KPN = (P,F) for
each application and an MPSoC = (PE,C), our goal is to
find the optimal or near optimal mapping at run time for
each detected workload scenario si ∈ S with the objective to
minimize Opb or Oe based on the system execution mode.

III. ITERATIVE MULTI-APPLICATION MAPPING
OPTIMIZING

Our EIM algorithm, which is outlined in Algorithm 1,
can be divided into a static part and a dynamic part. The
static part is used to capture the intra-application dynamism
in those inter-application scenarios with only a single active
application. For these inter-application scenarios sei ∈ SE, we
have determined – using design-time DSE – optimal or near
optimal mappings (optimized for Opb and Oe) for each intra-
application scenario sai

j ∈ SAi of sei. To this end, we have
deployed a so-called scenario-based DSE approach [26], which
is based on the well-known NSGA-II genetic algorithm. As this
design-time DSE stage is not the main focus of this paper, we
refer the interested reader to [26] for further details.

The mappings derived from this design-time DSE are used
by the static part of our EIM algorithm as shown in lines 1-
3 of Algorithm 1. When the system detects a new workload
scenario, the algorithm will first choose the corresponding
optimal mapping – as derived from the design-time DSE

stage and stored in a so-called scenario database – for each
application active in the detected workload scenario as the
initial mapping. This process is implemented in the function
of line 1 of Algorithm 1 which will be explained in detail
in the next paragraph. As the database only stores mappings
for the intra-application scenarios of each single application,
its size typically is relatively small. However, if its size
becomes too large, then the size can be controlled by clustering
intra-application scenarios [6], [20] and choosing a proper
granularity of scenario clusters.

If there is only a single application active in the workload
scenario, then the initial mapping will be chosen from one
of the following two statically derived mappings, based on
the system execution mode: the mapping with the maximal
throughput under a given energy budget (the mapping opti-
mized for Opb) or the mapping with the minimal energy con-
sumption (the mapping optimized for Oe). Hereafter, as shown
in lines 2-3 of Algorithm 1, the algorithm will directly return
the initial mapping as a final mapping decision. Otherwise,
if there are multiple applications active simultaneously, then
the mapping with maximal throughput (the mapping optimized
for Op) or minimal energy consumption (based on the system
mode) for each active application will be chosen as initial
mappings. These initial per-application mappings will then
simply be merged together to form the initial mapping for
the complete workload scenario. Here, there are two reasons
for not choosing the mapping with maximal throughput under
a certain energy budget as the initial mapping in the energy-
aware high performance mode. First, the communication local-
ity behavior of the mapping with maximal throughput under an
energy budget typically is not as good as the one with maximal
throughput without an energy budget. Our run-time algorithm
exploits this locality incorporated in the initial per-application
mappings for further improvement of the workload scenario
mapping. Second, we will consider the energy constraints
during the mapping optimization process at run time, so we
do not yet have to consider an energy budget for the initial
mapping in the case of an active multi-application workload
scenario.

The dynamic part of our EIM algorithm is only used for
those workload scenarios that contain multiple simultaneously
active applications and is outlined in lines 4-16 of Algorithm 1.
It aims at further optimizing the initial mapping found during
the static part of the EIM algorithm, as described above. To
this end, it distinguishes the system execution mode to take
different strategies for mapping optimization. As described
in the previous section, our target heterogeneous MPSoC
system can run under energy-aware high performance and
energy saving modes. We will use different strategies in these
two modes targeting different optimization objectives. These
two strategies in the dynamic part of the EIM algorithm are
described below. For the propose of a better understanding
of our algorithm, the metrics used in algorithms 2 and 3 are
shown in Table I.

A. Performance Optimization

When the MPSoC system is running under the energy-
aware high performance mode, our algorithm will optimize
the mapping for the active multi-application scenario with the
objective to minimize the system metric Opb. Consequently,

Algorithm 1 EIM algorithm
Input: KPNappactive , MPSoC, scenario id(si), sys mode
Output: (µ,η)
1: (µ,η) = getInitMapping(si, sys mode);
2: if singleAppActive(si) == true:
3: return (µ,η);
4: else:
5: switch(sys mode):
6: case EA-HIGHPERF:
7: U = peUsage(KPNappactive , MPSoC, µ, η);
8: Mp = maxPUsage(U);
9: Vp = varPUsage(U);
10: bi = eBudget(si);
11: return iterativePOpt(µ, η, Mp, Vp, bi);
12: case ENERGYSAVING:
13: econs = energyCons(KPNappactive , MPSoC, µ, η);
14: return iterativeEOpt(µ, η, econs);
15: default:
16: return (µ,η);

the optimal mapping for each scenario is the one that has the
minimal Opb among all the possible mappings under energy
budget of bi for workload scenario si. It is, however, extremely
hard to find the optimal mapping for each workload scenario
at run time because of the following reasons. Firstly, as one
cannot obtain the true value of Op before actually executing
the application on the target platform, an estimated O

′
p needs

to be used to guide the algorithm to find the optimal mapping.
Here, there exists of course a clear accuracy/overhead trade-
off between different estimation techniques. Efficient but less
accurate run-time mapping-performance estimation techniques
may lead to sub-optimal mappings, while the high overhead
of more accurate techniques may neutralize the performance
benefits of the mapping optimization itself. Secondly, the
mapping problem is NP-complete, as was mentioned before. It
is unrealistic for a run-time mapping algorithm to explore the
entire searching space to determine the optimal mapping for a
scenario. An alternative method is using heuristics to search a
part of the mapping space which may contain the optimal or
a near optimal mapping.

To solve the above problems, we change the objective of
performance into two other metrics: Mp and Vp that represent
the maximal usage and usage variation in Uk ∈ U , where
pek ∈ PE and U is an array of processor usage with a total
number of |PE| elements. These two metrics will be used to
optimize the bottleneck of application pipeline and balance the
system workload. In this case, we do not need to use the metric
Op as the optimization objective, thereby addressing the first
of the two above problems. Regarding the second problem, by
using an optimization heuristic based on the metrics Mp and
Vp, we aim at finding an optimal or near optimal mapping in
a computationally efficient fashion. The rationale behind this
heuristic is that a better mapping for the objective of high
performance usually has smaller Mp and Vp values. For the
purpose of restricting the energy consumption of the resulting
mapping, we use the estimated energy consumption of a
mapping (µ j,η j) for workload scenario si given by equation 2
and the energy budget bi calculated by equation 3. Here, the
index e in Eie represents the energy-optimized mapping stored
in memory for appk, to control the searching space of possible

mappings. The details of equation 2 will be explained in the
next subsection. In equation 3, the first part α is a user defined
constant scaling factor set for the energy budget and the second
part represents the estimated minimal energy consumption for
a workload scenario.

Ei j = E
′
p +E

′
m (2a)

E
′
p = ∑

active pek

(DPk ∗Uk +SPk ∗argmax(Uk)) (2b)

E
′
m = DM ∗ ∑

cxy=mem
frt 7→cxy∈η j

(Ccxy
rt)+SM ∗argmax(Uk) (2c)

bi = α∗ ∑
active appk∈si

Eie (3)

The mapping algorithm for the energy-aware high per-
formance mode is outlined in Algorithm 2, which will be
executed in an iterative fashion. The starting mapping used
in this algorithm is the one derived from Algorithm 1. In
each iteration, it first proposes a new mapping for each active
application as shown in line 2 of Algorithm 2. In this process,
the algorithm searches the mapping space using the following
greedy pattern: it checks the processors in Uk in descending
order to determine whether the KPN application in question
has a task or a bundle of adjacent, communicating tasks1

resident on this processor. If so, then the algorithm finds a
possible substitute processor for the task/adjacent tasks that
satisfies the following conditions:

1) The M
′
p of the new mapping is smaller than the Mp

of the old mapping
2) If the previous condition cannot be satisfied, then the

algorithm tries to find a substitute processor for which
the resulting M

′
p is equal to Mp and V

′
p is smaller

than Vp. If the first condition was satisfied, then this
condition will never be used in this particular iteration

3) The estimated energy consumption of the new map-
ping should be smaller than the energy budget bi.

The above process proposes new mappings for those applica-
tions that satisfy the conditions (for the other applications, the
mapping remains unaltered). These newly proposed mappings
are either a mapping that has a minimal M

′
p (if condition 1 has

been satisfied) or a mapping with minimal V
′
p. However, in the

above process, it can also be the case that there are multiple
new mappings proposed for an application, e.g. when there
are multiple tasks (or task bundles) that can be remapped and
for which the above conditions hold. In these cases, we use
another metric, L, to decide on the final proposed mapping,
where the value of L needs to be minimized. The metric L
tries to capture the performance loss of a task remapping for

1Mapping such a task bundle to a single processor is the outcome
of the design-time mapping optimization to reduce communication
overhead.

Table I: Metrics used in Algorithms 2 and 3

Metrics Description
(µ j ,η j) the mapping proposed by app j

M j
p the maximal usage in Uk under the mapping of (µ j ,η j)

V j
p the maximal usage variation in Uk under the mapping of (µ j ,η j)

L j the performance loss of a remapping from (µ,η) to (µ j ,η j)

Mk
p the minimal Mp among M j

p

(µk ,ηk) the mapping with Mk
p

V k
p the Vp of the mapping (µk ,ηk)

W t
p the minimal Vp +L among V j

p +L j

(µt ,ηt) the mapping with W t
p

V t
p the Vp of the mapping (µt ,ηt)

Ew the minimal mapping energy consumption among Ei j

(µw,ηw) the mapping with Ew

Algorithm 2 IPO algorithm
//performance optimization for workload scenario si
iterativePOpt(µ, η, Mp, Vp, bi):
1: for each active app j:
2: (µ j,η j) = getPSubstitute(µ, η);
3: if (µ j,η j) != (µ,η):
4: U = peUsage(KPNappactive , MPSoC, µ j, η j);
5: M j

p = maxPUsage(U);
6: V j

p = varPUsage(U);
7: L j = perfLoss(app j, µ, η, µ j, η j);
8: Mk

p = argmin(M j
p);

9: if Mk
p < Mp:

10: (µ∗,η∗) = (µk,ηk);
11: iterativePOpt(µ∗, η∗, Mk

p, V k
p , bi);

12:else:
13: W t

p = argmin(V j
p +L j);

14: (µ∗,η∗) = (µt ,ηt);
15: if (µ∗,η∗) == (µ,η):
16: return (µ,η);
17: else:
18: iterativePOpt(µ∗, η∗, Mt

p, V t
p, bi);

the application in question2 and is calculated using equation 4.

L = ∑
pk∈B j

i

(T j
k −T i

k)+(C
c jl
kt −Ccil

kt) (4)

Here, we mark the task/task bundle that needs to be remapped
from pei to pe j as B j

i .

After the algorithm has proposed a new mapping for each
application, the next step is to select the most effective among
these remapping proposals to be used for the next optimization
iteration of the algorithm based on the metrics of each new
mapping calculated in lines 4-7 of Algorithm 2 or return a
mapping as the final one. This whole process is shown in lines
8-18 of Algorithm 2. If no new mapping has been proposed
for any of the applications in the workload scenario in the
previous step, then the input mapping will be returned as
the final optimized result. Otherwise, we use the following

2We note that L can be negative, implying that the task/task bundle
has a higher affinity with the processor it is proposed to be mapped
on.

conditions to select the most effective remapping for the next
iteration of the algorithm:

1) If there is one and only one proposed mapping that
has the minimal M

′
p and this M

′
p is smaller than the

Mp of the original mapping, then this mapping will
be passed to the next mapping optimization iteration
(lines 9-11 in Algorithm 2).

2) If the first condition has not been satisfied, then the
proposed mapping with argmin(V

′
p+L) will be taken

as the input mapping for the next iteration (lines 12-
18 in Algorithm 2). The rationale behind this is that
the algorithm tries to gradually optimize the mapping
for the entire workload scenario while keeping the
performance loss for a single application due to task
remappings as small as possible (i.e., taking into
account the processor affinity of the tasks proposed
to be remapped).

The time complexity of our EIM algorithm is highly
dependent on the diversity (or locality) of each pre-optimized
(i.e., statically derived) mapping stored in system memory,
especially considering the iteration count of our EIM algo-
rithm. The diversity |Di| of an application (appi) mapping is
defined as the number of pipeline segments in this mapping.
Under this definition, |Di| = 1 and |Di| = |Pi| mean that all
the tasks in appi are mapped onto a same processor and
different processors respectively. In the function on line 2 in
Algorithm 2, the maximal number of possible new mappings is
|PE|∗|Di|∗|PE|. For each possible new mapping, the time con-
sumed for computing the values of Mp and Vp is O(|PE||P|+
|F ||C|+ 2|PE|). Consequently, the time complexity of each
active application in each iteration is O(|PE|2|Di|(|PE||P|+
|F ||C|+ 2|PE|)). The approximate time complexity of each
iteration then is O(|PE|2|D|(|PE||P|+ |F ||C|+2|PE|)). As the
algorithm searches the mapping space to minimize Mp and Vp
simultaneously, the maximal iteration count of Algorithm 2 is
argmax(|D|, |D||PE|), where the first and the second argument
represent the maximal iteration count needed for searching
each of the above metrics. Then, the overall time complexity of
Algorithm 2 is O(|PE|3|D|2(|PE||P|+ |F ||C|+2|PE|)), where
|PE|, |D|, |P|, |F | and |C| respectively represent the total
number of processor elements, the sum of |Di| of each active
application appi, the total number of active tasks, the total
number of active FIFO channels and the total number of
communication channels.

B. Energy Optimization

The algorithm used in the energy saving system mode is
shown in Algorithm 3, which is similar to the algorithm for
the high performance mode. It will iteratively optimize the
mapping with the objective Oe for a unit of input workload
(e.g., frame in the domain of multi-media applications). For
the purpose of energy savings, we need not only to consider
the dynamic energy consumption but also the static energy
consumption. The energy consumption Ei j of a mapping
(µ j,η j) for workload scenario si is calculated by equation 2,
where E

′
p is the dynamic and static energy consumed by all

active processors and E
′
m represents the dynamic and static

energy consumption of the shared memory. This relatively
simple energy model is built on several assumptions of the

Algorithm 3 IEO algorithm
//energy optimization for workload scenario si
iterativeEOpt(µ, η, E):
1: for each active app j:
2: (µ j,η j) = getESubstitute(µ, η);
3: Ei j = energyCons(KPNappactive , MPSoC, µ j, η j);
4: Ew = argmin(Ei j);
5: if Ew ≥ E:
6: return (µ,η);
7: else:
8: (µ∗,η∗) = (µw,ηw);
9: iterativeEOpt(µ∗, η∗, Ew);

target architecture: 1) the power model used for the shared
memory in the system already includes the power consumption
of the bus connected to it; 2) for simplicity, we ignore
the energy consumption caused by resource contention and
communication delays. Consequently, the system active time
for a specific workload scenario is simply assumed to be
argmax(Uk), which is subsequently used to calculate the static
energy consumption. Note that the application of techniques
such as dynamic power management (DPM) and dynamic
voltage scaling (DVS) are beyond the scope of this paper.

The mechanism for searching the mapping space to find
the energy optimized mapping is implemented in the function
listed on line 2 of Algorithm 3. In each iteration, it greedily
finds the mapping with minimal energy consumption for each
active application in the workload scenario by just remapping
a single B j

i . Similar to Algorithm 2, Algorithm 3 first proposes
a new mapping for each of the active applications, after which
the mapping with minimal energy consumption among the
proposed mappings will be used in the next optimization
iteration. However, if the condition on line 5 of Algorithm
3 is satisfied, then the input mapping will be returned as the
final optimization result.

Similar to the complexity of Algorithm 2, for each pos-
sible new mapping in Algorithm 3, the time consumed for
computing the value of Ei j is O(|PE||P|+ |F ||C|). The ap-
proximate time complexity of each iteration in Algorithm 3 is
O(|PE|2|D|(|PE||P|+ |F ||C|)) and the maximal iteration count
is |D|. So, the overall time complexity of this algorithm is
O(|PE|2|D|2(|PE||P|+ |F ||C|)).

IV. EXPERIMENTS

A. Experimental Framework

To evaluate the efficiency of our EIM algorithm and the
mappings found at run time by this algorithm, we deploy the
open-source Sesame system-level MPSoC simulator [19]. To
this end, we have extended this simulator with our run-time
resource scheduling framework, as illustrated in Figure 2. Our
extension includes the Scenario DataBase (SDB), a Run-time
System Monitor (RSM) and a Run-time Resource Scheduler
(RRS). The SDB is used to store the mappings for intra-
application scenarios of each application as derived from
design-time DSE. The RSM is in charge of detecting and
identifying the active workload scenario. The RRS uses the
EIM algorithm and the identified workload scenario by the

Inter-application scenario

Intra-app scenario

APP0

Intra-app scenario

APPn

Task0

Task1

Task2

Task3

Task0

Task1

Ă

Ă ĂEvent Traces

Mapping layer: abstract RT O S
(scheduling of events)

Scheduled events Scheduled events

P0 P1 P2

P3 P4 MEM

System
Monitor

Run-time
resource
scheduler

S
ce

na
rio

D

at
aB

as
e

A
pplication m

odel
Architecture m

odel

Figure 2: Extended Sesame framework.

RSM to generate a mapping for this scenario, as explained in
the previous section.

B. Experimental Results

In this subsection, we present a number of experimental
results in which we investigate various aspects of our EIM
algorithm. More specifically, in each system execution mode,
we compare the algorithm to three different run-time mapping
algorithms using the optimization objective of the system
mode. For the high performance mode, we compare our EIM
algorithm to the following algorithms: Task Processor Affinity
(TPA) which uses the affinity between tasks and processors
to greedily determine a mapping without considering resource
contention, and Output-Rate Balancing (ORB) [4] which aims
at balancing the computation and communication load of
each processor. For the energy saving mode, we compare our
algorithm to TPA and Iterative Energy-Aware Task Mapping
(IEATM) [22], [10]. Moreover, we also compare the run-
time mapping results to the results of optimal mappings for
each workload scenario. These optimal mappings have been
statically determined by means of design-time DSE using a
NSGA-II genetic algorithm.

For our experiments, we use three typical multi-media
applications: a Motion-JPEG (MJPEG) encoder, an MP3 de-
coder, and a Sobel filter for edge detection in images which
are denoted as A1, A2 and A3 respectively in Table II and
Figures 3 and 5. The KPN of the MJPEG application contains
8 processes and 18 FIFO channels, Sobel contains 6 processes
and 6 FIFO channels, and MP3 contains 27 processes and
52 FIFO channels. Moreover, MJPEG has 11 intra-application
scenarios, MP3 has 3 intra-application scenarios, whereas
Sobel only has 1 intra-application scenario. This results in
a total of 95 different workload scenarios. At design time,
we have determined the optimal mapping for each intra-
application scenario in each application targeting the different
optimization objectives as explained in Section III. That means
that we need to store 45 optimal mappings in system memory
(i.e., the scenario database).

With respect to the target architecture, we target a het-
erogeneous MPSoC containing 5 different processors with
different computational and energy characteristics, connected

Table II: Studied application workload scenarios.

Inter-app scenario Workload scenario
A1 mjpeg 7
A2 sobel 0
A3 mp3 2

A1A2 mjpeg 7, sobel 0
A1A3 mjpeg 7, mp3 2
A2A3 sobel 0, mp3 2

A1A2A3 mjpeg 7, sobel 0, mp3 2

to a shared bus and memory. The model also includes the
required components for our run-time scheduling framework.

1) Performance Optimization Experiments: The experi-
ments in this subsection concern the evaluation of our run-time
mapping algorithm in high performance mode, considering
different inter- and intra-application workload scenarios.

In the first experiment, we study the run-time mapping
behaviour in the occurrence of different inter-application sce-
narios. To this end, we focus on the subset of workload
scenarios that have the heaviest computational demands in
each inter-application scenario. These workload scenarios are
listed in Table II, where the first column specifies the encoded
name (in terms of A1, A2 and A3) for each inter-application
scenario and the second column specifies the intra-application
scenarios (labeled by the integer following the application
name) used to form the workload scenario. For the scaling
factor α of the energy budget in our EIM algorithm (see
equation 3) we use the values 1.5 and 1.3 in our experiments.
For design-time DSE using the NSGA-II genetic algorithm,
we have set the parameters for the population size, offspring
size and generation count all to 256, which is large enough for
obtaining a high-quality mapping for each workload scenario.
In the initial population, we have added the mappings found
by the run-time algorithms used in our experiment as the initial
individuals in order to help the NSGA-II algorithm to find even
better mappings.

The experimental results are shown in Figure 3. In Fig-
ure 3(a), we compare the performance of the mappings result-
ing from the EIM, TPA, and ORB algorithms as well as from
NSGA-II-based design-time DSE. The energy consumption of
these mappings is shown in Figure 3(b). In these two figures,
the bars of NSGA-BP and NSGA-BE respectively represent
the mappings with best performance and minimal energy
consumption found by the NSGA-II-based design-time DSE.
These are used as a baseline for comparison. From Figure 3(a),
we can see that our EIM algorithm in most cases produces a
better mapping for the tested workload scenarios than the TPA
and ORB algorithms. For the workload scenarios in which only
a single application is active (i.e., bars for A1, A2 and A3) our
EIM algorithm directly uses the mapping from design-time
DSE, which results in a mapping performance that is very
close or even equivalent to the optimal mapping. However,
although the mappings have similar performance, they could
still have a different energy consumption behavior. In the case
of our EIM algorithm, we use the energy budget in the search
for an efficient mapping to limit the energy consumption of the
resulting mapping. Consequently, and as shown in Figure 3(b),
the EIM algorithm can yield mappings for single-application
workload scenarios that are more energy efficient than the ones

0"

0.5"

1"

1.5"

2"

2.5"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
ie
d)
m
ap

pi
ng
)p
er
fo
rm

an
ce
)

(e
xe
cu
3o

n)
cy
cl
es
))

NSGA,BP" EIM,1.5E" EIM,1.3E" TPA" ORB"

0"

0.5"

1"

1.5"

2"

2.5"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
iz
ed

)m
ap

pi
ng
)e
ne

rg
y)

co
ns
um

p3
on

)(n
j))

NSGA,BE" NSGA,BP" EIM,1.5E" EIM,1.3E" TPA" ORB"

0"

0.5"

1"

1.5"

2"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
iz
ed

)m
ap

pi
ng
)e
ne

rg
y)

co
ns
um

p3
on

)(n
j))

NSGA,BE" EIM" TPA" IEATM"

(a) Performance of mappings from different algorithms

0"

0.5"

1"

1.5"

2"

2.5"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
ie
d)
m
ap

pi
ng
)p
er
fo
rm

an
ce
)

(e
xe
cu
3o

n)
cy
cl
es
))

NSGA,BP" EIM,1.5E" EIM,1.3E" TPA" ORB"

0"

0.5"

1"

1.5"

2"

2.5"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
iz
ed

)m
ap

pi
ng
)e
ne

rg
y)

co
ns
um

p3
on

)(n
j))

NSGA,BE" NSGA,BP" EIM,1.5E" EIM,1.3E" TPA" ORB"

0"

0.5"

1"

1.5"

2"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
iz
ed

)m
ap

pi
ng
)e
ne

rg
y)

co
ns
um

p3
on

)(n
j))

NSGA,BE" EIM" TPA" IEATM"

(b) Energy consumption of mappings from different algorithms

Figure 3: Algorithm comparison under high performance mode
(inter-application scenarios).

obtained by NSGA-BP.

In the workload scenarios with multiple simultaneously
active applications, we can see that the EIM algorithm yields
clear performance improvements compared to the other three
run-time task mapping algorithms, especially in the case of
workload scenario A1A2A3. By setting the parameter α of
our EIM algorithm to different values, we can notice that in
some workload scenarios, like A1, A3 and A2A3, the mapping
performance with a higher energy budget is better than the
one with a lower energy budget. However, in other workload
scenarios, there is no such behavior. This can be explained
by the fact that for the latter workload scenarios the energy
budget is big enough for the algorithm with a lower energy
budget to find a mapping that is as good as the one found by
EIM with a higher energy budget. In Figure 3(b), we can see
that even if we have an energy budget in our EIM algorithm,
the actual energy consumption of the final mapping may still
exceed the energy budget: like for EIM-1.5E in the A2A3
workload scenario and for EIM-1.3E in a few other workload
scenarios. This is caused by estimation inaccuracies of the
energy model used in our algorithm. Even if the estimated
energy consumption of a new mapping is under the predefined
energy budget, the actual resulting system energy consumption
after the remapping has taken place may still not fully satisfy
our desired energy budget.

In the second experiment, all the intra-application scenarios
for one particular inter-application scenario, namely A1A2A3,
are considered as the experimental workload. This means that
there are 33 workload scenarios in total. We compare the

0.0E+00%

1.0E+06%

2.0E+06%

3.0E+06%

4.0E+06%

5.0E+06%

6.0E+06%

7.0E+06%

SMM% TPA% ORB% EIM61.5%

M
ap
pi
ng
%p
er
fo
rm

an
ce
%(e

xe
cu
Eo

n%
cy
cl
es
)%

0.0E+00%

1.0E+06%

2.0E+06%

3.0E+06%

4.0E+06%

5.0E+06%

6.0E+06%

7.0E+06%

TPA% ORB% EIM61.5%

M
ap
pi
ng
%p
er
fo
rm

an
ce
%(e

xe
cu
Eo

n%
cy
cl
es
)%

(a) Performance of mappings from different algorithms

0.0E+00%

1.0E+08%

2.0E+08%

3.0E+08%

4.0E+08%

5.0E+08%

6.0E+08%

7.0E+08%

8.0E+08%

9.0E+08%

SMM% TPA% ORB% EIM81.5%

M
ap
pi
ng
%e
ne

rg
y%
co
ns
um

pF
on

%(n
j)%

0.0E+00%

1.0E+08%

2.0E+08%

3.0E+08%

4.0E+08%

5.0E+08%

6.0E+08%

7.0E+08%

8.0E+08%

9.0E+08%

TPA% ORB% EIM81.5%

M
ap
pi
ng
%e
ne

rg
y%
co
ns
um

pF
on

%(n
j)%

(b) Energy consumption of mappings from different algorithms

Figure 4: Algorithm comparison under high performance mode
(intra-application scenarios).

average performance and energy consumption of the optimized
mappings as obtained by the different algorithms. The results
are shown in Figure 4(a) and Figure 4(b) respectively. The
error bars in the graphs show the variability of the results.
From Figure 4(a), we can see that the mappings from our EIM
algorithm with a scaling factor α= 1.5 achieve the best average
performance among the investigated four algorithms. Even
the worst mapping performance among all the 33 workload
scenarios of our EIM algorithm is still better than the best one
in any of the other algorithms. Comparing the performance
of each final mapping obtained by our EIM algorithm with
the ones from TPA and ORB in all our tested 33 workload
scenarios, we measure ranges of 56.3%-66.6% and 11.5%-
42.3% of performance improvement respectively. Figure 4(b)
shows the average energy consumption of the final mappings
used in Figure 4(a). The results in this figure illustrate that the
mappings from our EIM algorithm have the lowest average
energy consumption. Considering the energy consumption of
each final mapping, our EIM algorithm achieves, respectively,
a 20.7%-29.6% and 6.1%-19.0% improvement for energy
savings compared with TPA and ORB.

2) Energy Optimization Experiments: Considering the en-
ergy saving system mode, we also investigate our run-time
mapping algorithm considering different inter- and intra-
application workload scenarios. The results of the different
mapping algorithms when the primary objective is energy
optimization and when using the subset of inter-application
scenarios from Table II are shown in Figure 5. From this
experiment, we can see that our EIM algorithm can efficiently

0"

0.5"

1"

1.5"

2"

2.5"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
ie
d)
m
ap

pi
ng
)p
er
fo
rm

an
ce
)

(e
xe
cu
3o

n)
cy
cl
es
))

NSGA,BP" EIM,1.5E" EIM,1.3E" TPA" ORB"

0"

0.5"

1"

1.5"

2"

2.5"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
iz
ed

)m
ap

pi
ng
)e
ne

rg
y)

co
ns
um

p3
on

)(n
j))

NSGA,BE" NSGA,BP" EIM,1.5E" EIM,1.3E" TPA" ORB"

0"

0.5"

1"

1.5"

2"

A1" A2" A3" A1A2" A1A3" A2A3" A1A2A3"

N
om

al
iz
ed

)m
ap

pi
ng
)e
ne

rg
y)

co
ns
um

p3
on

)(n
j))

NSGA,BE" EIM" TPA" IEATM"

Figure 5: Algorithm comparison under energy saving mode
(inter-application scenarios).

0.0E+00%

1.0E+08%

2.0E+08%

3.0E+08%

4.0E+08%

5.0E+08%

6.0E+08%

7.0E+08%

8.0E+08%

SMM% TPA% IEATM% EIM%

M
ap
pi
ng
%e
ne

rg
y%
co
ns
um

pA
on

%(n
j)%

0.0E+00%

1.0E+08%

2.0E+08%

3.0E+08%

4.0E+08%

5.0E+08%

6.0E+08%

7.0E+08%

8.0E+08%

TPA% IEATM% EIM%
M
ap
pi
ng
%e
ne

rg
y%
co
ns
um

pA
on

%(n
j)%

Figure 6: Algorithm comparison under energy saving mode
(intra-application scenarios).

produce near optimal (in terms of energy consumption) map-
pings. Comparing the four run-time mapping algorithms, our
EIM algorithm overall shows the best results, with the IEATM
algorithm ranked second. In the single-application workload
scenarios, the EIM simply use the mapping optimized at design
time. For the multi-application scenarios, we can notice that
our EIM algorithm clearly improves on the other algorithms,
finding mappings that are almost as good as the ones obtained
by NSGA-BE.

Figure 6 shows the results of average energy consumption
of mappings optimized for energy consumption by the dif-
ferent mapping algorithms when considering all 33 workload
scenarios of inter-application scenario A1A2A3. The results
in this figure illustrate that the EIM algorithm performs much
better than the other algorithms. For each single workload
scenario, the EIM algorithm achieves energy improvements of
in between 50.5%-54.2% and 5.5%-20.2% as compared with
TPA and IEATM respectively.

3) Run-time Cost: Here, we would like to give an intuition
of the run-time cost of our approach in terms of the number of
tasks that need to be migrated and the computation cost of the
algorithm. In this experiment, the intra-application scenarios
in inter-application scenario A1A2A3 with only application
MP3 changing its execution mode will be considered as the
targeting scenarios. This means that the execution mode of
each application is: MJPEG (7), Sobel (0) and MP3 (0/1/2).
These three scenarios will be executed in sequence to find out

Table III: Run-time cost of different algorithms for perfor-
mance optimization.

Algorithms Total task migration number Normalized total
algorithm computation time

TPA 12 1.0
ORB 36 22.5

EIM1.5 25 651.2

Table IV: Run-time cost of different algorithms for energy
optimization.

Algorithms Total task migration number Normalized total
algorithm computation time

TPA 8 1.0
IEATM 9 64.0

EIM 16 62.2

the total task migration number and total algorithm compu-
tation time by applying different approach. The total number
of tasks in each scenario is 41. Table III shows the cost of
different approaches for mapping performance optimization,
where the total algorithm computation time of each approach
is normalized to the one of TPA. From the results, we can
see that the baseline approach TPA has the minimal run-
time cost in both migration cost and algorithm computation
time. Our proposed approach EIM has the highest algorithmic
computation time. This is mainly caused by the large diversity
(|D|) of the pre-optimized mappings used in this experiment
as described in the algorithm complexity analysis in Section
3.1. However, we believe that the computation cost of our EIM
algorithm is still acceptable as it just need a few milliseconds
(on an CPU with 2.7GHZ) to optimize the mapping for each
workload scenario in our test case. Here, we would like to
note that we have not yet performed any effort to optimize
our EIM algorithm to reduce its computational cost. The run-
time cost of the approaches for mapping energy optimization is
listed in Table IV, where our approach shows the highest total
task migration cost while the algorithmic computation time is
relatively low as the diversity of the pre-optimized mappings
is small.

Compared to the algorithmic computation cost, the run
time task migration overhead typically is more substantial for
MPSoC systems. From both experimental results, we can see
that the task migration cost of our EIM is relatively heavy.
For this reason we make the assumption that each workload
scenario will execute for a long enough time so that the
system is able to benefit from our EIM algorithm. Further
research is needed to exactly determine at which switching
granularity of workload scenarios our algorithm could benefit
from remapping.

V. RELATED RESEARCH

In recent years, much research has been performed in
the area of run-time task mapping for embedded systems.
Recently, Singh et al. [24] gave a nice survey of current and
emerging trends for the task mapping problem on multi/many-
core systems. In the context of performance optimization,
the authors of [5] propose a run-time mapping strategy that
incorporates user behavior information in the resource alloca-

tion process. An agent based distributed application mapping
approach for large MPSoCs is presented in [1]. The work of
[8] proposes a run-time spatial mapping technique to map
streaming applications onto MPSoCs. In [3], dynamic task
allocation strategies based on bin-packing algorithms for soft
real-time applications are presented. A runtime task allocator is
presented in [9] that uses an adaptive task allocation algorithm
and adaptive clustering approach for efficient reduction of
the communication load. Considering the hybrid task map-
ping approaches, Mariani et al. [15] proposed a run-time
management framework in which Pareto-fronts with system
configuration points for different applications are determined
during design-time DSE, after which heuristics are used to
dynamically select a proper system configuration at run time.
In [28], a fast and light-weight priority based heuristic is
used to select near-optimal configurations explored at design
time for the active applications according to the available
platform resources. [23] proposes DSE strategies that perform
exploration in view of optimizing throughput and energy
consumption by considering a generic platform. The design
points derived from the DSE will be selected efficiently at
run time. Compared with these algorithms, our performance
optimization algorithm in EIM takes an application scenario-
based approach, and takes computational and communication
behavior embodied in design-time optimized mappings into
account when making run-time mapping decisions. Recently,
Schor et al. [21] and Quan et al. [20] also proposed scenario-
based run-time mapping approaches in which mappings de-
rived from design-time DSE are stored for run-time mapping
decisions. However, [21] does not address the reduction of
mapping storage (all workload scenarios are stored) and does
not dynamically optimize the mappings at run time. In [20], an
approach is proposed in which mappings for inter-application
scenarios are stored and used as a basis for run-time mapping
decisions, after which an run-time algorithm aims at gradually
further optimizing these mappings. A major drawback of this
method is that it needs to search for optimal mappings for
inter-application scenarios at design time, which implies that
it should already been known at design time which applications
can execute on the target platform. For example, extending the
system with a new application would require to redo the entire
design-time DSE for all inter-application scenarios. In our
approach, this problem is avoided by taking intra-applications
as the basis for doing design-time DSE (i.e., performing DSE
on applications in isolation).

With regard to energy optimization, dynamic mapping
methodologies have also been studied. These studies basically
split into two directions. Some tackle the problem by defining
efficient heuristics to assign new arriving tasks onto processing
units at run time, e.g., [16]. Others analyze applications offline
and compute schedules and allocations that are then stored on
the system, e.g., [2], [17], [27], [22]. In [22], Schranzhofer et
al. proposed static and dynamic task mapping approaches for
probabilistic applications based on static and dynamic power
components. Statically pre-computed template mappings for
each execution probability are stored on the system and
applied at run time, allowing the system to adapt to changing
environment conditions. Based on this work, [10] presents an
extension that considers only the static mapping and takes into
account the communication and reconfiguration energy com-
ponent. However, comparing these two efforts to our approach,

we capture dynamism of applications running on the system
using the concept of realistic workload scenarios instead of
execution probabilities. Moreover, we use pre-computed, per-
application mappings as a basis for optimizing the mapping for
a new workload scenario rather than using template mappings.

VI. CONCLUSION

We have proposed a run-time mapping algorithm, called
EIM, for MPSoC-based embedded systems to improve their
performance and energy consumption by capturing the dy-
namism of the application workloads executing on the system.
This algorithm is based on the idea of application scenarios
and consists of a design-time and run-time phase. The design-
time phase produces mappings for intra-application scenarios
targeting different optimization objectives after which the
run-time phase aims to continuously monitor the changes
in workload scenarios on the underlying system and trying
to perform iterative mapping optimization to improve the
system performance and/or energy consumption. In various
experiments, we have evaluated our algorithm and compared
it with other run-time mapping algorithms. The results clearly
confirm the effectiveness of our algorithm.

REFERENCES

[1] M. A. Al Faruque, R. Krist, and J. Henkel. Adam: run-time agent-based
distributed application mapping for on-chip communication. In Proc.
of DAC’08, pages 760–765, 2008.

[2] L. Benini, D. Bertozzi, and M. Milano. Resource management pol-
icy handling multiple use-cases in mpsoc platforms using constraint
programming. In Proceedings of the 24th International Conference
on Logic Programming, ICLP ’08, pages 470–484, Berlin, Heidelberg,
2008. Springer-Verlag.

[3] E. W. Brião, D. Barcelos, and F. R. Wagner. Dynamic task allocation
strategies in mpsoc for soft real-time applications. In Proc. of DATE’08,
pages 1386–1389, 2008.

[4] J. Castrillon, R. Leupers, and G. Ascheid. Maps: Mapping concurrent
dataflow applications to heterogeneous mpsocs. IEEE Trans.on Indus-
trial Informatics, PP(99):1, 2011.

[5] C.-L. Chou and R. Marculescu. User-aware dynamic task allocation in
networks-on-chip. In Proc. of DATE’08, pages 1232–1237, 2008.

[6] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Ma-
magkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Van-
deputte, and K. D. Bosschere. System-scenario-based design of dynamic
embedded systems. ACM Trans. Design Autom. Electr. Syst., 14(1),
2009.

[7] M. Gries. Methods for evaluating and covering the design space during
early design development. Integr. VLSI J., 38(2):131–183, Dec. 2004.

[8] P. K. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. Smit. Run-time
spatial mapping of streaming applications to a heterogeneous multi-
processor system-on-chip (mpsoc). In Proc. of DATE’08, pages 212–
217, March 2008.

[9] J. Huang, A. Raabe, C. Buckl, and A. Knoll. A workflow for runtime
adaptive task allocation on heterogeneous mpsocs. In Proc. of DATE’11,
pages 1119–1134, 2011.

[10] A. Hussien, A. Eltawil, R. Amin, and J. Martin. Energy aware task
mapping algorithm for heterogeneous mpsoc based architectures. In
Computer Design (ICCD), 2011 IEEE 29th International Conference
on, pages 449–450, 2011.

[11] Z. J. Jia, A. Pimentel, M. Thompson, T. Bautista, and A. Nunez. Nasa: A
generic infrastructure for system-level mp-soc design space exploration.
In Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010 8th
IEEE Workshop on, pages 41–50, 2010.

[12] G. Kahn. The semantics of a simple language for parallel programming.
In Information processing, pages 471–475. North Holland, Amsterdam,
Aug 1974.

[13] J.-K. Kim, S. Shivle, H. Siegel, A. Maciejewski, T. Braun, M. Schneider,
S. Tideman, R. Chitta, R. Dilmaghani, R. Joshi, A. Kaul, A. Sharma,
S. Sripada, P. Vangari, and S. Yellampalli. Dynamic mapping in a
heterogeneous environment with tasks having priorities and multiple
deadlines. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, pages 15 pp.–, 2003.

[14] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-isa heterogeneous multi-core architectures for multi-
threaded workload performance. In Proceedings of the 31st annual
international symposium on Computer architecture, ISCA ’04, pages
64–75, Washington, DC, USA, 2004. IEEE Computer Society.

[15] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur,
G. Palermo, C. Silvano, and V. Zaccaria. An industrial design space
exploration framework for supporting run-time resource management
on multi-core systems. In Proc. of DATE’10, pages 196 –201, march
2010.

[16] O. Moreira, J. J.-D. Mol, and M. Bekooij. Online resource management
in a multiprocessor with a network-on-chip. In Proceedings of the 2007
ACM symposium on Applied computing, SAC ’07, pages 1557–1564,
New York, NY, USA, 2007. ACM.

[17] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli.
Mapping and configuration methods for multi-use-case networks on
chips. In Design Automation, 2006. Asia and South Pacific Conference
on, pages 146–151, 2006.

[18] J. M. Paul, D. E. Thomas, and A. Bobrek. Scenario-oriented design
for single-chip heterogeneous multiprocessors. IEEE Trans. VLSI Syst.,
14(8):868–880, 2006.

[19] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to
exploring embedded system architectures at multiple abstraction levels.
IEEE Trans. Computers, 55(2):99–112, 2006.

[20] W. Quan and A. D. Pimentel. A scenario-based run-time task mapping
algorithm for mpsocs. In Proceedings of the 50th Annual Design
Automation Conference, DAC ’13, pages 131:1–131:6, New York, NY,
USA, 2013. ACM.

[21] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele.
Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems. In Proc. of CASES’12, pages 71–80, 2012.

[22] A. Schranzhofer, J.-J. Chen, and L. Thiele. Dynamic power-aware map-
ping of applications onto heterogeneous mpsoc platforms. Industrial
Informatics, IEEE Transactions on, 6(4):692–707, 2010.

[23] A. K. Singh, A. Kumar, and T. Srikanthan. Accelerating throughput-
aware runtime mapping for heterogeneous mpsocs. ACM Trans. Des.
Autom. Electron. Syst., 18(1):9:1–9:29, Jan. 2013.

[24] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on
multi/many-core systems: survey of current and emerging trends. In
Proceedings of the 50th Annual Design Automation Conference, DAC
’13, pages 1:1–1:10, New York, NY, USA, 2013. ACM.

[25] W. Sun and T. Sugawara. Heuristics and evaluations of energy-
aware task mapping on heterogeneous multiprocessors. In Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, pages 599–607, 2011.

[26] P. van Stralen and A. D. Pimentel. Scenario-based design space
exploration of mpsocs. In Proc. of IEEE ICCD’10, pages 305–312,
October 2010.

[27] C. Yang and A. Orailoglu. Towards no-cost adaptive mpsoc static
schedules through exploitation of logical-to-physical core mapping
latitude. In Design, Automation Test in Europe Conference Exhibition,
2009. DATE ’09., pages 63–68, 2009.

[28] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano,
and V. Zaccaria. Linking run-time resource management of embedded
multi-core platforms with automated design-time exploration. Comput-
ers Digital Techniques, IET, 5(2):123–135, 2011.

