SAC 2001

Performance Evaluation of the LH*Ih Scalable, Distributed
Data Structure for a Cluster of Workstations

Vinay Gupta Mohit Modi Andy D. Pimentel
Indian Institute of Technology Dept. of Computer Science
New Delhi, India University of Amsterdam

The Netherlands

andy@science.uva.nl

{mau96419,mau964@@ccsun50.iitd.ac.in

Keywords 5]. In these distributed storage methods, the processing nodes are

Scalable distributed data structures, performance evaluation, clus-divided intoclients andservers. A client manipulates the SDDS

ter of workstations by inserting, removing or searching for data elements. A server
stores a part of the data, calledacket, and receives data-access

ABSTRACT requests from clients. To realize a high degree of scalability, an

SDDS cannot be indexed using a central directory since this would
form a bottleneck. As a consequence, the clients have an image of

cesi o ll(argehvolum?fs (.)f dz?ta. They a”?W thehdata structurr]e 10 groWy, oy data is distributed which is as accurate as possible. This image
or shrink without suffering from a penalty with respect to the space g, 14 he improved each time a client makes an “addressing error”,

utilization or the average access time. In this paper, we Present & o contacts a server which does not contain the required data. If a
performance study of one particular SDDS, called LLH*which

. i . client makes an addressing error, then the SDDS is responsible for
has been implemented for a cluster of workstations. Our experi-

. o forwarding the client’s request to the correct server and for updat-
mental results demonstrate that our Li##*implementation is truly :

- . . ing the client's image.
scalable and yields access-times that are of an order of magnitude 9 9
smaller than a typical disk access. Furthermore, we also show thatFOr an efficient SDDS
parallel access to the LH*# data structure can speed up client ap- ’

plications quite significantly.

Scalable, Distributed Data Structures (SDDSs) can provide fast ac-

it is essential that the network communica-
tion needed for data operations (retrieval, insertion, etc.) is mini-
mized while the amount of data residing at the servers (i.€ otk
factor) is well balanced. An example of an SDDS addressing these
1. INTRODUCTION issues isLH* [5]. This SDDS is a distributed variant of Linear
Modern data intensive applications require fast access to large vol-Hashing (LH) [4], which will be elaborated upon in the next sec-
umes of data. Sometimes the amount of data is so large that it can-tion. For LH*, insertions usually require one message (from client
not be efficiently stored or processed by a uni-processor system.to server) and three messages in the worst case. Data retrieval re-
Therefore, alistributed data structure can be used that distributes ~ quires one extra message as the requested data has to be returned.
the data over a number of processors within a parallel or distributed
system. This is an attractive possibility because the achievementsin this paper, we present a performance evaluation of a variant
in the field of communication networks for parallel and distributed 0f the LH* SDDS, called LHtH [3], for a cluster of worksta-
systems have made remote memory accesses faster than accessedli@ns (COW). Previous studies already showed good performance
the local disk. So, even when disregarding the additional process-0f LH* LH when targeting multicomputers. In [2], an actual im-
ing power of parallel platforms, it has become more efficient to use plementation for a Transputer-based machine has been evaluated,
the main memory of other processors than to use the local disk. ~ while in [7] simulation was applied to investigate LH's per-
formance for a PowerPC-based multicomputer. In this study, we
It is highly desirable for a distributed data structure to be scalable. try to gain insight into how today's COWs with their commodity
The data structure should not have a theoretical upper limit after networks affect LHtH’s performance. Our final goal is to embed
which performance degrades (i.e. the access time is independent of-H* LH into a real-world distributed Web-cache application.
the number of stored data elements) and it should grow and shrink
incrementally rather than reorganizing itself totally on a regular ba- The next section briefly explains the concept of Linear Hashing.
sis. For distributed memory parallel computers, a number of Scal- In Section 3, we discuss the LiH SDDS and describe its im-
able Distributed Data StructureSDSs) have been proposed [1,8, plementation for a cluster of workstations. Section 4 describes our
experimental setup and presents the performance results. Finally,
Section 5 concludes the paper.
Permission to make digital or hard copies of part or al of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantageand that copies . 2. LINEAR HASHING
?gjgn;??gcggdgzegugf';” t%” :gsifs'trr?tbﬁtag% TI? stcgp?/egﬂi]?;\”p?ﬁot?)iereLinear Hashing (LH) [4] is a method to dynamically manage a table
specific permission and/or afee. o pf Qata. .More specnjcally, it allows the tgble to grow or shrink
SAC 2001, Las Vegas, NV ! |n_t_|me_ without suffenng_from a penalty W|t_h respect to the space
© 2001 AéM 1—5811?;287-5/01/02 $5.00 utilization or the access time. The LH taple is formed¥y 2° +n
B buckets, whereV is the number of starting bucket&’(> 1 and

n < 2%). Themeaningof i andn is explainediateron. Thebuckets
in thetableareaddressetly meanf apairof hashingunctionsh;
andh;41, with 7 = 0, 1, 2... Eachbucket cancontaina predefined
numberof dataelementsThefunction h; hasheslatakeysto one
of thefirst NV x 2¢ bucketsin thetable. Thefunctionh;+1 is usedto
hashdatakeys to the remainingbuckets. In this paper we assume
hashfunctionsof theform

hi(key) — key mod (N x 2%) 1)

The LH datastructuregrows by splitting a bucket into two buck-
etswheneer a certainloadthresholdis exceeded The bucket that
needso besplitis determinedy aspecialpointet referredto asn.
Theactualsplitting involvesthreesteps:creatinga new bucket, di-
viding the dataelementver the old andthe nenly createdbucket
and updatingthe pointern. Dividing the dataelementsover the
two bucketsis doneby applying the function h;4+1 to eachele-
mentin the splitting bucket. Then pointeris updatecdby applying
n = (n+1) mod N x 2'. Indexing the LH datastructureis
performedusingbothh; andh;1:

inde(bucket = hl(kQ/) (2)
if (iNd&Xyy,cper < 1) thenindeyycrer = hit1(key)

As the buckets belov the n pointer have beensplit, thesebuck-
etsshouldbe indexed using h;+1 ratherthanwith h;. Whenthe
n pointerwrapsaround(becauseof the modulo), shouldbe in-
cremented.The processof shrinkingis similar to the growing of
the LH datastructure.In this study we limit our discussiorto the
splitting within SDDSs.

3. THE LH* LH SDDS

The LH* SDDSis a generalizatiorof Linear Hashing(LH) to a
distributed memory parallel system[5]. In this paper we focus
on a particularvariantof LH*, calledLH*LH [2, 3]. TheLH*LH
datais storedover a numberof sener processesand can be ac-
cessedhroughdedicatectlient processesTheseclientsform the
interfacebetweenan applicationand LH*LH. For this study we
assumehateachsener storesone LH*LH bucket of data. Glob-
ally, thesenersapplythe LH* schemdo manageheir data,while
thesenersusetraditionalsequentialH for theirlocal bucket man-
agementThus,asener’'s LH* LH bucketis implementedasa col-
lectionof LH buckets.

As was previously explained,addressinga bucket in LH is done
using a key andthe two variablesi andn (seeEquation2). In
LH*LH, the clients addresghe senersin the samemanner To
do so, eachclient hasits own image of the valuesi andn: i’ and
n' respectiely. Becausetheimagesi’ andn’ may not be up to
date,clientscanaddresghe wrong sener. Therefore the seners
needto verify whetheror notincomingclientrequestsrecorrectly
addressed.If a requestis incorrectly addressedthen the sener
forwardstherequesto thesener thatis believedto becorrect.For
this purposethe sener usesa forwardingalgorithm[5] for which
it hasbeenproventhatarequesis forwardedat mosttwice before
the correctsener is found. Eachtime a requests forwarded,the
forwarding sener sendsan Image AdjustmentMessageglAM) to
therequestingclient. This IAM containsthe sener’s local notion
of ¢ andn andis usedto adjustthe client's i andn’ in orderto
getthemcloserto the globali andn values.Consequenthfuture
requestsvill have ahigherprobabilityof beingaddressedorrectly

The splitting of an LH* LH bucket (a global split) is similar to the
splitting of LH buckets. The pointern is implementedy a special

945

SAC 2001

tokenwhich is passedrom sener to sener in the samemanneras
n is updatedn LH: it is forwardedin aring formedby theseners
0to N x 2¢, where N is the numberof startingseners. When
a sener holdsthe n token andits load factorexceedsa particular
threshold,the sener splitsits LH* LH bucket andforwardsthe n

token. We apply the thresholdproposedn [5], which hasshavn

to be effective. Splitting an LH*LH bucket is doneby initializing

a new sener (by sendingit a specialmessageand shippinghalf
of the LH buckets to the new sener (rememberthatan LH*LH

bucket is implementedas a collectionof LH buckets). During a
global split, it is not requiredto separatelyisit or rehashall data
elementsin LH*LH, theLH bucketswith anoddindex areshipped
to thenew senerwhile theevenbucketsarecompactedndremain
atthesplitting sener. The bucket shipmentanbe donein a bulk

fashion(transferringa whole LH bucket in a single messagepr

usingmessagesontainingoneto a few dataelementonly. In the
next section,we will elaborateon the actualdesigndecisionswe
madefor our prototypel H* LH implementation.

3.1 An implementation of LH*L1 for a COW
We have developeda prototypeimplementationof LH*LH for a
clusterof workstation§ COW) whichusesT CP/IPsocletsfor com-
munication[6]. Currently it supportsonly insertandlookup oper
ations. Insertionsare alwaysexplicitly acknavledgedby a sener,
which allows for determiningwheninsertionshave actually been
committedat the sener sideandarenot floatingaroundin the net-
work anymore. At startup,a specifiednumberof clientandsener
processeareplacedat the workstationswithin thecluster For our
prototypeimplementation,at most one client and sener process
canbe placedon a singlemachine.Clientsand senerscannotbe
dynamicallycreatedat run time. This meansthatin orderto al-
low globalsplitting, sener processesanassumeeitheroneof the
following two states:active and dormant. The active senersare
immediatelypartof the LH* LH SDDS,while thedormantseners
wait to be activatedto join the SDDSwhena new seneris needed
in thecaseof aglobalsplit. If therearenodormantsenersleft, then
theglobalsplitting is deactvatedandthetotalnumberof senersre-
mainsconstanafterthatpoint.

Thesener processearecomposeaf two threadsvhich eachhave

their own soclet connectiorto all the othersener processesThe
first thread, which we refer to asthe server thread, handlesthe
requestgrom clientsaswell asthe forwardedrequestdrom other
seners. |t maintainghelocal LH tableandtakescareof forwarding
arequestn thecaseof anaddressingrror Themainresponsibility
of theotherthread calledthe splitter thread, is theglobalsplitting.

Besidesthis, it alsotakes careof several othertaskssuchasfor-

wardingthe split token and activating a (dormant)sener whenit

needdo join the SDDS.Oncea splitterthreadrecevesthe split to-

ken, it waits for a signalfrom the sener threadbeforeinitiating a
globalsplit. The senerthreadonly signalsthe splitterthreadwhen
the sener becomesverloadedandthereis still a dormantsener
available.

Becausédoththreadsn asenerprocessave aprivatesocletcom-
municationlink, concurrent splitting [2] is allowed. This implies
thatwhenthesplitterthreadshipshalf of thedatato anewly created
sener, the sener threadcontinuegto handleincomingrequests|f
thesenerthreadnoticesthatarequestegieceof datahasbeenoris
beingshippedthenit forwardsthe requesto the new sener. The
adwantageof concurrentsplitting is thatit allows for overlapping
(partsof) thecommunicatioroverheadiueto thesplitting by mean-
ingful computation. However, since both the sener and splitter

SAC 2001

threadsshareaccesgo the samelocal LH* LH bucket, mutual ex-
clusienneedso beenforcedo protecttheconsisteng of theshared
data.lt is imperatve thatthe semaphoréocking schemeestablish-
ing themutualexclusionis efficientanddoesnotgreatlyhampethe
parallelismbetweerthetwo threads.Our locking schemeoperates
at the granularityof LH buckets, which providesenoughfreedom
for parallelaccesgo the LH datastructure.A detaileddescription
of thelocking methodds beyondthe scopeof this paperbut canbe
foundin [6].

At aglobalsplit, our prototypeimplementatiorcurrentlyperforms
theshipmenbf LH bucketsatagranularityof singledataelements.
This meanghatfor every shippeddataelementa separatenessage
is used. We decideduponthis approachasaninitial implementa-
tion whichis easyto realizebut whichis probablyalsonotthe most
efficientone. Hence we do not addresshe performancempactof
differentshipmentstrategiesbut regardthis asfuture work.

4. EXPERIMENT AL RESULTS

To conductthe performancenalysisof our LH* LH prototypeim-
plementationwe usedan applicationwhich builds the SDDS by
insertinga large numberof dataelements.The applicationusesa
Dutch dictionaryof roughly 180,000wordsfor the datakeys. At-
tachedo eachkey is adataelementwhichhasasizeof 1 Kb (unless
statedotherwise). If multiple clientsare usedto build the SDDS,
thenthey eachinserta differentpart of the dictionaryin parallel.
Due to spacerestrictions this sectiononly presentsa selectionof
our experimentakesults.More results,including for exampledata
retrieval performancecanbefoundin [6].

The platform usedfor our experimentss a clusterof workstations
consistingof eight nodeswith eachtwo 300Mhz Pentiumll pro-
cessorsaand 512 Mb main memory This makes a total of 4 Gb
of memorywhich we regardasthe upperlimit for LH*LH’s size
in our experiments. The workstationsare connectedo both 100
Mb/s FastEthernetand 1.28 Gb/sMyrinet. Our prototypeimple-
mentationis capableof selectingbetweeneitherone of thesetwo
networksbut it usesFastEthernetby default. For our experiments,
the clientsaremappedonto nodesl up to 8 while the senersare
mappedontonodes8 down to 1. So,if the applicationis executed
with 8 clientsandthe LH* LH SDDShasgrown to 8 seners,then
eachnodeeffectively is handlingbothaclientanda sener process.

Figure1(a)shavs thetime it takesto build the LH*LH SDDSfor
1,2,...,8 clients. In this experiment,the SDDS startswith one
sener. Thedatapointsin Figure1(a) correspondo the pointsin
time whereglobal LH* LH splitstake place.Clearly, the splitsstop
afterabout80K insertionsdecaus¢he SDDShasgrowvn to themax-
imum numberof eightsenersof our experimentaketup.Notethat
this limit is no way arestrictionimposedby the datastructure.

LH*LH'sperformancdehaior onaCOW, asshavnin Figurel(a),
closelycorrespondso its behaior on multicomputerarchitectures
[2, 7]. Figurel(a)demonstratethatLH* LH is truly scalablesince
thebuild time scaledinearly with thenumberof insertions Hence,
the insertionlateny doesnot deterioratefor large datastructure
sizesandis dominatedentirely by the messageoundtriptime. In
addition,Figurel(a)shavsthatthebuild-time decreasewhenmore
clientsareused. This is dueto the increasedparallelismaseach
clientconcurrentlyoperate®nthe LH*LH SDDS.Figurel1(b)de-
picts haw the obtainedinsertionthroughputrelatesto theideal be-
havior whenincreasinghenumberof clients. Theresultsshav that
the performancecalegjuite well up to abouts clients,afterwhich

546

Build Time
140 - -

120 |

100 ¢

[ec]
o

[}
o

Time (secs)

N
o

N
o

0 20 40 60 80 100 120 140 160 180
Number of insertions (x 1000)

(@)

Ideal and actual throughput
12000 .

Actual —
10000 - Ideal —— |

8000
6000 -

4000

Throughput (inserts/sec)

N
o
o
o

o

1 2 3 4 5 6 7 8
Number of clients

(b)

Figure1: SDDSbuild time whenusing 1 starting setver (a) and
speedupfor multiple clients (b).

o

network andsener contentiorhaltsthe performanceémprovement.

In Figure 2, the averageinsertiontime as experiencedby the ap-
plication is plotted. Again, the datapoints refer to the moments
in time wheresplits occur The differentcurvescorrespondo the
performancewhen varying the numberof clients. From the top
downwards,thefirst curve depictsthe averageinsertiontime for a
single client, the next one shavs the performancefor two clients
andsoon. As expected(seeFigurel), the averageinsertiontime
improveswhenincreasingthe numberof clients. The averagein-
sertiontime for oneclient (sequentiabccesgo the datastructure)
staysbelon 0.85mswhile 8 clientsyield anaverageinsertiontime
of about0.2ms. Thesenumbersare an order of magnitudefaster
thanthetypical time to access disk. This clearlyjustifiesthe use
of adatastructurdike LH*LH.

At the occurrenceof global splits, Figure2 shavs smallincreases
of theaverageinsertiontime. Thisis dueto thecontentionbetween
the sener andsplitterthreaddfor thelocal LH datastructure.An-
other phenomenorwe obsered is that belav 30K insertionsthe
configuratiorwith 8 clientsperformsslightly worsethanwhenus-
ing 6 or 7 clients. This canbe explainedby the factthata larger
numberof clientsrequireshecreationof enoughsenersbeforethe
clientsareableto effectively exploit parallelismj.e. allowing them
to concurrentlyaccesgshe SDDSwith low sener contention.Evi-
dently afterabout30K insertionsthe SDDShasgrowvn to enough
senersto support8 clients.

Average insertion time

o
o

Time (ms)

0 L L L L L L L L
0 20 40 60 80 100 120 140 160 180
Number of insertions (x 1000)

Figure 2: Averageinsertion time measured from the applica-
tion’ s point of perspective (1 starting server).

In Figure 3, a histogramis plottedof the insertiontimesmeasured
atasingleclient. Theresultsarefor 8 clientsand3 startingseners.
Mostaccessegnorethan70%)lie in anarrav bandbetweerD.6ms
and0.8mswhich onceagainhighlightsthe scalabilityanduniform
performancef the SDDS.Thesmallclusternear0.25msis caused
by the way we mappedthe sener and client processe®nto the
availablenodes.Whena sener andclient getmappedo the same
node,accesseby the client to the local sener aremuchfasteras
opposedo remoteaccessesincethey donotrequirenetwork com-
munication. The small numberof relatively slow insertions(up
to about2.5ms)are againcausedby sener contention(both due
to multiple clients accessinghe samesener and the two sener
threadscontendingor theshared_H structure).

Sofar, all experimentaseddataelementsf 1 Kb, therebybuilding
adatastructureof about175Mb. In Figure4, theresultsareshavn
for anexperimentin whichweincreasedhedataelemensizeto re-
spectvely 2,4 and8 Kb. Usingdataelement®f 8 Kb, adatastruc-
ture of morethanl.4 Gbis created.In this experiment,we used3
startingseners. Note thatthe x-axisin Figure4 hasa logarithmic
scale. The curvesindicatethatthe averageinsertiontime is linear
to thedatasize. Of course this is not surprising knowing thatthe
insertionperformances dominatedy the messageoundtriptime.
Thedeterioratiorof theinsertionperformancealueto largerdatael-
ementdecomeslightly worsefor anincreasinghumberof clients.

Insertion performance histogram

MM m
0.5

1 1.5
Time (ms)

25

Figure 3: Histogram of insertion latenciesfor a singleclient. In
this experiment, we used8 clients and 3 starting servers.

547

SAC 2001

Performance with varying datasize
1.8 . .

16+
14+
1.2+

client ——
lients —x—
lients -
lients —o

e (ms)

1

2c
4c
8¢

08}
06}
0.4
0.2%"

Average insertion tim:

2 4
Data element size (Kbytes)

Figure 4: Insertion performance when varying the data size
(with 3 starting servers).

Evidently moreclientsgeneratehighernetwork contentionwhich
reducegheavailableparallelism.

Thepreviousexperimentsallowed L H* LH to grow upto 8 seners.
Figure5 depictsthe SDDShuild timeswhenvaryingthemaximum
numberof senersto 1, 2, 4 or 8. The resultsare shavn for two
experimentsusing4 clients (Figure5a) and 8 clients (Figure5b).

Build time: varying number of total servers (4 clients)

50 : : : . .
45 t 1 server
2 servers -
40 + 4 servers -------
8 servers -
35+
830
3
— 25t -
o) + o
E£20¢ -
15 + ir s
10 + ”
51 7
0 n n n n n n n n
0 20 40 60 80 100 120 140 160 180
Number of insertions (x 1000)
@)
Build time: varying number of total servers (8 clients)
40 : :
35| 1 server
2 servers -
30| 4servers -
8 servers -
w25
(8]
Q
220t P
g -
i 15+ -
+ -
10 + Pt
5l 4
0 L L L L L L L L
0 20 40 60 80 100 120 140 160 180

Number of insertions (x 1000)

(b)

Figure 5: Insertion performance when varying the maximum
number of sewvers (with onestarting server), using 4 clients (a)
or 8 clients (b).

SAC 2001

Fast Ethernet v.s. Myrinet

140 -
F'I:EE'Sl I(;Iie?t —

 3clients -
120+ FE! B dlients

Myrinet, 1 client -
100 | Myrinet, 3 clients -
Myrinet, 6 clients -~

©
o

(o]
o

Time (secs)

iy
o

N
o

Q ‘== s L L L L L L L
0 20 40 60 80 100 120 140 160 180
Number of insertions (x 1000)

Figure 6: Comparing the build times for Fast Ethernet (FE)
and Myrinet for several client configurations (with 3 starting
selvers).

Both experimentsuse one startingsener, and the datapoints on
the curves againreferto global splits. The obtainedperformance
for 4 clients can be orderedin decreasingrderas?2, 4, 1 and8
seners(wherethe resultsof 2 and4 senersarenearlyidentical).
Interestingn thisrespects thatallowing the SDDSto grow upto 8
senersgivestheworstperformanceThis is becausehe overhead
of the global splits overwhelmsthe improvementin insertiontime
dueto enhancegbarallelism.Notethatimproving ourdatashipping
scheméor global splits (usingbulk shipmentdnsteadof shipping
singledataelementsill affectthe performancerade-of between
splitting penaltiesandenhancegbarallelism.

Whenincreasingthe numberof clients (seeFigure 5b), the per
formanceorderafter 180K insertionsfor the sameexperimentbe-
comes4, 2, 8 andl (againin decreasingrder). We obsere that
the performanceaankingof the configurationswith a highernum-
berof maximumseners(4 and8) hasimproved. Fromthis we can
concludethatthe larger numberof clientsshiftsthe balanceof the
trade-of betweenglobal split penaltiesandthe increaseof paral-
lelism asthey tendto favor a higherdegreeof parallelism. More
researchis neededo understandhow to optimizethis performance
trade-of for differentnumbersof clients.

In Figure6, the LH*LH build timesareshaown for both FastEth-
ernetand Myrinet with the default 1 Kb dataelements. The re-
sultsarefor threestartingsenersanda maximumof eightseners.
We wereunableto performthe experimentwith 8 clientsdueto a
faulty Myrinet network interface,which explainsthe choserclient
configurationg1, 3 and6 clients). ComparingFastEthernetand
Myrinet, we obsened slightly better performanceor Fast Ether
net. At first sight, this may be surprisingbecauseof Myrinet's
higherbandwidth,but Myrinet alsosuffers from a highercommu-
nicationlateny than FastEthernet. The resultsthereforesuggest
thatthe messageoundtriptime of insertionrequestss dominated
by the network lateng ratherthanthe network bandwidth.Experi-
mentswith largerdatasizes(notshavn here)indicatethatonly for
very largedataelementgin the orderof megabytesMyrinet starts
to outperformFast Ethernet. Of course,our shippingschemein
which every single dataelementseparatelyncurscommunication
lateng, doesnot contritute to a good performancen the caseof
Myrinet.

548

5. CONCLUSIONS

In this paper we presenteda performanceevaluationof a proto-
typeimplementatiorof the LH* LH distributeddatastructurefor a

clusterof workstations Our prototypehasdemonstratetb betruly

scalableasthe time to insertdataelementss independenbf the
size of the datastructure. In the caseof sequentialccesdo the
datastructure the averageinsertiontime hasbeenfoundto be an

orderof magnituddasterthanatypical diskaccesslInsertiontimes
caneven be reducedby usingmultiple clientswhich concurrently
insertdatainto thedistributeddatastructure.Our resultsshawv that
for a maximumof 8 senersthe speeduf insertionsscalesrea-
sonablywell up to about5 clients.

We alsofoundthattheinsertionperformancef our prototypeim-
plementatioris dominatedby the messageoundtriptime andin
particularby the network lateng. This explains,for example,why
our experimentson a Myrinet network only outperformthe exper
imentson a Fast Ethernetnetwork for very large datasizes(as
Myrinet provideshigh bandwidthbut alsosuffersfrom highernet-
work latencies).

Futurework will extend our experimentsto include more aspects
of LH*LH’s functionality An exampleis the optimizationof the
global-splitthresholdfunctionby studyingtheincorporatiorof pa-
rameterdik e the available memoryof the hosts(as clustersoften
areheterogeneousindthe numberof clientsaccessinghe SDDS.
The latter hasshavn to affect the performancedrade-of between
global split penaltiesand the increaseof parallelismby adding
seners.

6. REFERENCES

[1] R.Devine.Designandimplementatiorof DDH: A distributed
dynamichashingalgorithm.In Proc. of the 4th Int. Conference
on Foundations of Data Organization and Algorithms, 1993.

[2] J.S.KarlssonA scalabladatastructurefor a paralleldata
sener. Masters thesis,Dept.of Comp.andInf. Science,
Linkoping University Feh 1997.

[3] J.S.KarlssonW. Litwin, andT. Risch.LH*lh: A scalable
high performancealatastructurefor switchedmulticomputers.
In Advancesin Database Technology, pages73-591March
1996.

[4] W. Litwin. Linearhashing:A new tool for file andtable
addressingln Proc. of VLDB, 1980.

[5] W.Litwin, M.-A. Neimat,andD. SchneiderLH*: A scalable,
distributeddatastructure ACM Transactions on Database
Systems, 21(4):480-526Dec.1996.

[6] M. Modi, V. Gupta,andA. D. Pimentel.LH*lh:
Implementatioron a clusterof workstationsTechnicalreport,
Dept.of ComputerScienceUniversity of Amsterdam,July
2000.

[7] A. D. PimentelandL. O. Hertzbeger Evaluationof LH*lh
for amulticomputerarchitectureln Proc. of the EuroPar
Conference, page217-229 Sept.1999.

[8] R.Vingralek,Y. Breitbart,andG. Weikum. Distributedfile
organisatiorwith scalablecost/performancdn Proc. of
ACM-SIGMOD, May 1994.

