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Abstract. The Sesame environment provides methods and tools for ef-
ficient design space exploration of heterogeneous embedded systems. It
uses separate application and architecture models. The application model
is explicitly mapped onto the architecture model and they are simulated
together, using trace driven co-simulation. Since the abstraction level of
the application model may not match the abstraction level of the archi-
tecture model, techniques are needed to refine the traces if necessary. In
[13], we introduced integer-controlled dataflow (IDF) models to perform
trace transformations for communication refinement. This paper uses
these trace transformation methods to refine computational events. A
simple case study, consisting of a 2D-IDCT application model mapped
onto different architecture models, is used to show the capabilities of
these IDF modeling techniques.
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1 Introduction

Modern embedded systems, like those for media and signal processing, usually
have a heterogeneous system architecture consisting of components in the range
from fully programmable processor cores to dedicated hardware components.
These systems often provide a high degree of programmability as they need to
target a range of applications with varying demands. Such characteristics greatly
complicate the system design, making it even more important to have good tools
available for exploring different design choices at an early stage.

In the context of the Artemis project [14], we are developing the Sesame
[6] modeling and simulation framework which provides modeling and simulation
methods and tools for the efficient design space exploration of heterogeneous
embedded multimedia systems. This framework should allow for rapid perfor-
mance evaluation of different architecture designs, application to architecture
mappings, and hardware/software partitionings. In addition, it should do so at
multiple levels of abstraction and for a wide range of multimedia applications.
Key to this flexibility is that separate application and architecture models are
used together with an explicit mapping step to map an application model onto
an architecture model. This mapping is realized by means of trace-driven co-
simulation of the application and architecture models, where the execution of



an application model generates application events that represent the application
workload imposed on the architecture.

As a designer gradually refines architecture models in Sesame, the abstraction
level of application models does not match the abstraction level of the refined
architecture models anymore. At the same time, implementing a new refined
application model for every abstraction level at the architecture layer puts too
much burden on the application programmer. Due to this overhead, we do not
want to hamper the re-usability of our application models and want to be able
to use them with different architecture models. Therefore, new techniques are
needed within the Sesame environment which will support the gradual refinement
of architecture models, without causing any limitation or hindrance on the re-
usability of our application models. For this purpose, in [13] we have proposed
a new method to refine application traces within the simulation environment.
This method combines the utilization of process and dataflow networks within
a single simulation environment to perform communication refinement.

In this paper, we show how computational and communicational grain-size
refinements can be performed using dataflow networks. These dataflow networks
also enable us to model intra-task level parallelism at the architecture layer.
To demonstrate this, we make use of a two dimensional inverse discrete cosine
transform (2D-IDCT) case study. With this case study, we demonstrate how we
accomplish refinement at the architecture layer without changing the applica-
tion model. The rest of the paper is organized as follows: the next section gives
a short introduction of the Sesame environment. Section 3 presents trace trans-
formations and the dataflow actors within Sesame. In Section 4, we demonstrate
how we accomplish computational refinement with a simple case study. Section 5
discusses the related work. Finally, Section 6 concludes the paper.

2 The Sesame Environment

The Sesame environment recognizes separate application and architecture mod-
els within a system simulation. An application model describes the functional
behavior (i.e. computation and communication behavior) of an application. The
architecture model defines architecture resources and captures their performance
constraints. After explicitly mapping an application model onto an architec-
ture model, they are co-simulated via trace-driven simulation. This allows for
evaluation of the system performance of a particular application, mapping and
underlying architecture. The layered structure of Sesame is shown in Figure 1.

For application modeling, Sesame uses the Kahn Process Network (KPN)
model of computation [8] in which parallel processes – implemented in a high
level language – communicate with each other via FIFO channels. The workload
of an application is captured by instrumenting the code of each Kahn process
with annotations. By executing the Kahn model, each process records its ac-
tions in order to generate its own trace of application events, which is necessary
for driving an architecture model. There are three types of application events:
read and write for communication events, execute for computation events. These
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Fig. 1. The three layers within Sesame: the application model layer, the architecture
model layer, and the mapping layer which interfaces between the former two.

events are typically coarse-grained like read(pixel-block,channel-id), write(frame-
header,channel-id), and execute(DCT).

An architecture model simulates the performance consequences of the com-
putation and communication events generated by an application model. It solely
accounts for performance constraints and does not model functional behavior,
since the latter is already captured in the application model. An architecture
model is constructed from generic building blocks provided by a library, which
contains template performance models for processing cores, communication me-
dia (like busses) and various types of memory. Architecture models in Sesame
are implemented in Pearl [6] which is a discrete-event simulation language.

To map Kahn processes from an application model onto architecture model
components, Sesame provides an intermediate mapping layer. This layer consists
of virtual processors communicating via FIFO buffers. There is a one-to-one re-
lationship between the Kahn processes in the application model and the virtual
processors in the mapping layer. A virtual processor reads in an application trace
from a Kahn process via a trace event queue and dispatches the events to a pro-
cessing component in the architecture model. When multiple Kahn processes
are mapped onto a single architecture component, the event traces need to be
scheduled. For computation events, a given policy (FCFS by default) is used. In
the case of communication events, the appropriate buffer at the mapping layer
is first checked whether or not a communication event is safe to occur so that no
deadlock is introduced. Only when it is found to be safe (i.e., available data for
read events and enough space for write events in the target buffer), communica-



tion events are dispatched to processor components in the architecture model. If
a communication event cannot be dispatched, the virtual processor blocks. This
means that the mapping layer accounts for synchronization latencies, while the
architecture layer accounts for pure communication latencies. This is possible
since both the mapping and the architecture layers are implemented in Pearl.

With the introduction of gradual refinement of architecture model compo-
nents, the virtual processors are also refined with dataflow networks. The latter
allows us to do simulation at multiple levels of abstraction, without modifying
the application model. In Figure 1, we express this fact by refining the virtual
processor for the process B with a fictive dataflow network. In the next section,
we provide more insight on this refinement approach by explaining relations
between the trace transformations for refinement and dataflow actors at the
mapping layer.

3 Trace Transformations in Sesame

Refining architecture model components requires that the application events
driving them should also be refined to match the architectural detail. Since we
want smooth transition between different abstraction levels, we do not want to
re-implement (parts of) the application models for each abstraction level. The
salient way to accomplish this in Sesame is to refine the virtual processors with
dataflow actors. This way, the coarse-grained application events (in the appli-
cation trace) can be refined up to the desired abstraction level at the mapping
layer, and subsequently be used to drive the architecture model components.

In Sesame, SDF [9] actors are utilized for trace transformations. Such a trace
transformation refines application-level operations (or events) into finer-grained
architecture-level operations. IDF [5] actors are subsequently used to model rep-
etitions and branching conditions which may be present in the application code.
However, as in [13], they may also be utilized within static transformations to
achieve less complicated (in terms of the number of actors and channels) dataflow
graphs. To give an example, the following trace transformations refine read (R)
and write (W ) operations such that the synchronizations are separated from real
data transfers as follows [11]:

R
Θref

=⇒ cd → ld → sr, (1)

W
Θref
=⇒ cr → st → sd . (2)

Here refined architecture-level operations check-data, load-data, signal-room,
check-room, store-data, signal-data are abbreviated as cd, ld, sr, cr, st, sd, re-
spectively. The arrows between these indicate the ordering relations. The purpose
of such refinements is that it, for instance, allows for moving synchronizations
when a pattern of operations is transformed [13]. For example, in the following
transformation we early check room to store data, which may be useful for a
processor that cannot store data locally,

R → E → W
Θref
=⇒ cd → cr → ld → E → st → sr → sd . (3)



In Figure 2, we give two dataflow graphs implementing this transformation.
If the SDF actor T in Figure 2(a) is invoked initially, and if the rest of the SDF
actors are also invoked in the order in which they appear on the right hand side
of the equation (3), this simply constructs a valid schedule for the SDF graph
in Figure 2(a). In all cases where the outcome of the trace transformation is
a total ordering, a valid schedule is guaranteed to exist and it is constructed
as explained. In general, a trace with a total ordering is called a linear trace.
At this point we should recall that the schedules which are both admissible
and periodic are valid [3]. It is easy to verify that the constructed schedule
for this graph is both admissible and periodic. We see that all the actors are
immediately fireable when they are invoked in the order they appear in the
schedule. This makes the schedule admissible. It is also observed that when
all the actors are fired, the graph returns its original state, i.e. the number of
tokens on the channels remains the same, which means that the schedule is also
periodic. To see this, one may alternatively write the balance equations. The
same is true for the graph in Figure 2(b), in which a similar valid schedule can
be easily constructed by replacing the single appearance of SDF actor T with
three consecutive occurrences of the IDF switch actor.
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Fig. 2. (a) An SDF graph for a trace transformation in Sesame (b) An IDF graph
implementing the same transformation.

In Sesame, all dataflow graphs to implement linear trace transformations are
constructed in this manner, so we always end up with valid schedules. We also
make use of multiphase and/or multistage IDF actors, like REPEAT-BEGIN,
REPEAT-END, which were first proposed in [5], to further simplify our dataflow
graphs. Although IDF graphs have analyzibility problems, in Sesame we try to
overcome this problem by constructing a static schedule. In most of the cases,
this is possible because we may run the application model beforehand and obtain
trace files representing the workload of the Kahn processes. However, one can
also co-simulate the application and architecture models and schedule the IDF



actors dynamically. But in this case, one cannot guarantee whether the execution
is completed in finite-time or whether it is performed within bounded memory [4].

In this paper, we are interested in refining grain sizes of both computation
and communication events and subsequently model parallel execution (intra-
task parallelism) of these events at the architecture level. More specifically, as
our Kahn application models often operate on blocks of data, we look at the
following transformations,

R
Θ

=⇒ R(l) → . . . → R(l), (4)

E
Θ

=⇒ E(l) → . . . → E(l), (5)

W
Θ

=⇒ W (l) → . . . → W (l), (6)

E(l)
Θ

=⇒ e1 → . . . → en . (7)

In the first three transformations, read, execute and write operations at the block
level are refined to multiple (e.g., 1 block = 8 lines) corresponding operations
at the line level. We represent line level operations with an ‘l’ in parenthesis.
The last transformation further refines execute operations at line level to model
multiple pipeline execute stages inside a single processor. In (7), refinement for
a processor with n-stage pipeline execution is given.

4 Case Study

In Figure 3, the application model for a 2D-IDCT case study is given. All
the Kahn processes in the application model operate at block level, i.e. they
read/write and execute operations on blocks of data. The Input process writes
blocks of data for the IDCT-row process which in turn reads blocks of data, ex-
ecutes IDCT, and writes blocks of data. The Transpose process simply performs
a matrix transpose to prepare data for the IDCT-col process.

while (1) {
write(block);
execute(block);

}

while (1) {
read(block);
execute(block);

}

while (1) {
read(block);
execute(block);

}
write(block);

while (1) {
read(block);
execute(block);

}
write(block);

while (1) {
read(block);
execute(block);

}
write(block);

Input Trans. OutputIDCT
row

IDCT
col

Fig. 3. Kahn process network for the 2D-IDCT case study.

We investigate two alternative architecture models, given in Figure 4, for
this application model. Both architecture models have the same four processing
elements, PE1 to PE4. The mapping of Kahn processes onto the processing
elements is identical in both cases, they differ in how these communicate. In the
first architecture model, they are connected via dedicated buffers while in the



second architecture a shared memory is used. Each processing element is able
to perform read, execute and write operations in parallel, so it can perform its
task in a pipelined fashion. Input and Output processes are mapped onto PE1
and PE4, IDCT-row and IDCT-col are mapped onto PE2 and PE3, respectively.
The Transpose process is not mapped onto anything, since its functionality is
simply implemented as follows: the processing element on which the IDCT-row
process is mapped simply writes rows of data to the memory while the processing
element on which the second IDCT process is mapped reads columns of data from
the memory. We should note that this type of implementation of the matrix
transpose forces those processing elements, operating at line level (as we will
explain later on in this section), to be synchronized at block level. This is because
the second processing element cannot start processing lines until the first one is
finished with the last line of data.

Memory

(a) (b)

busbuffer

PE1 PE3 PE4PE2

PE1 PE2 PE4PE3

Fig. 4. Two different target architectures.

In both architectures, we modeled PE1 and PE4 to operate at block level. We
first modeled PE2 and PE3, in the target architectures operating at line level,
at a more abstract block level and then later refined them to operate at line
level. For this reason, in the latter case, the application events from the IDCT
processes need to be refined. The pattern to be refined for the IDCT processes
is R → E → W . For simplicity if we assume 1 block = 2 lines then,

R → E → W
Θ

=⇒ R(l) -

QQs

E(l) -

QQs

W (l)
QQs

R(l) -E(l) - W (l) .
(8)

If we define that PE2 and PE3 are processing elements with 2-stage pipeline exe-
cution units, which creates an execution pipeline inside the previously mentioned
task pipeline, then from (7) with n = 2 we obtain,

R → E → W
Θ

=⇒ R(l) -

QQs

e1
-

QQs

e2
-

QQs

W (l)
QQs

R(l) - e1
- e2

- W (l) .
(9)



Table 1. Parameters for simulation.

non-refined, shared refined, shared non-refined, fifo refined, fifo

pipeline size – 3/8 – 3/8
PE2, PE3 exec. lat. 300 13/5 300 13/5
PE2, PE3 data size 64 8 64 8
PE1, PE4 data size 64 64 64 64
fifo lat. – – 1 . . . 60 1 . . . 60
memory lat. 1 . . . 60 1 . . . 60 – –
memory width 8 8 – –
bus setup lat. 1 1 – –
bus width 8 8 – –

In Table 1, we give the simulation parameters. We have performed four sim-
ulations represented by the four columns in the table. The terms non-refined
and refined indicate whether the processing elements PE2 and PE3 operate at
block level or at line level. The terms fifo and shared refer to the architectures in
Figures 4(a) and 4(b), respectively. Execution latency is measured in cycles, and
data size in bytes. Memory and FIFO latencies are given in cycles/line, where 1
line is 8 bytes and 8 lines make up a block. We note that in these experiments
the ratios between the parameters are more important than the actual values
being used. We assume that executing a 1D-IDCT takes 300 cycles per block on
a non-refined execution unit, so in a 3-stage pipelined execution unit operating
on lines, the amount of work is divided by the number of stages, and by the
number of lines in a block. So the execution latency of one stage in the 3-stage
pipeline is 13 cycles and that of the 8-stage is 5 cycles.

In Figure 5, we give the performance graph obtained when we map the 2D-
IDCT application onto the architectures in Figure 4. In all experiments, we
have processed 500 blocks of input data. In the first experiment, the processing
elements PE2 and PE3 operate at block level and no refinement is performed.
This gives us performance results for single and double buffer implementations,
i.e. where the double buffer is a 2-entry buffer so that the producer can write
to it and the consumer can read from it, simultaneously. We change a single
buffer to a double buffer model, simply by adding an extra initial token at the
mapping layer. In the second experiment, we refined the processing elements
PE2 and PE3 in the architecture model, and explored four alternative cases. For
these two processing elements, we have used a 3-stage and an 8-stage execution
pipeline.

For the buffers, we have again experimented with single and double buffer
implementations. When we compare the single and double buffer performance of
the non-refined models, we observe that it is the same until point A. After that
point, as the communication latency increases, the single buffer model becomes
communication bounded. The performance of the double buffer model is affected
by the increased communication latency at point B, when the time to transfer a
block of data becomes equal to the time it takes to perform an IDCT on a block
of data. When we compare the refined models with the non-refined models, we
observe that once the communication becomes a bottleneck (point A for single
buffer and point B for double buffer), the advantage of having a pipelined exe-
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Fig. 5. Performance results for the FIFO architecture.

cution unit disappears. When the models become communication bounded, the
non-refined and refined models predict the same performance numbers. We note
that a similar situation occurs at points C and D, when increased communication
latencies negate the effect of having a longer pipeline. Finally, when we compare
these results with the results of the shared memory architecture, we observe that
in the latter, the performance is very quickly bounded by the communication,
because increasing the communication latency causes contention on the shared
bus. This makes the effect of pipelined execution very limited. For this reason,
we only present the graph for the refined case with the 3-stage pipeline.

5 Related Work

Within the context of embedded systems and hardware/software codesign, as
the search for models of computation continues [10], many system-level design
and simulation environments [1], [14] together with system modeling languages
[2], [7] have been developed. In parallel to the exploration environments that
facilitate the idea of separate functionality and architecture, in Sesame we try to
push this separation to even greater extents. This is achieved by an architecture-
independent application model, an application-independent architecture model
and a mapping step which relates these models for co-simulation. Besides, within
the same simulation environment, we use multiple models of computation. It is
chosen specifically in accordance with the task to be achieved. As already shown
in this paper, we use process networks for application specification, dataflow
networks for certain tasks at the mapping layer (e.g., trace transformations) and
a discrete-event simulator to model processing components for fast simulations.

Both the Spade [12] and Archer [15] environments show a lot of similarities
with the Sesame environment in the sense that they share the same philosophy
by recognizing separate application and architecture models. However, each of
these environments uses its own architecture simulator and follows a different
mapping strategy for co-simulation.



6 Conclusion

In this paper, we showed how computational and communicational grain-size
refinement can be performed using the IDF models which was first proposed
in [13] for communication refinement. Performing a simple case study, we illus-
trated how easily we could model task-level parallelism and intra-task parallelism
at the architecture layer. Additionally, using similar dataflow graphs, we could
also model pipeline execution stages inside a single processor. While doing this,
we kept the application model unaffected. Currently, we are testing our new
methodology on more realistic real-life media applications. We are especially in-
terested in investigating its efficiency in terms of modeling and simulation time
when more complex applications and transformations are considered.
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