
A High-Level Programming Paradigm for SystemC

Mark Thompson and Andy D. Pimentel

Department of Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{mthompsn,andy}@science.uva.nl

Abstract. The SystemC language plays an increasingly important role in the
system-level design domain, facilitating designers to start with modeling and sim-
ulating system components and their interactions in the very early design stages.
This paper presents the SCPEx language which is built on top of SystemC and
which extends SystemC’s programming model with a message-passing paradigm.
SCPEx’s message-passing paradigm raises the abstraction level of SystemC mod-
els even further, thereby reducing the modeling effort required for developing
the (transaction-level) system models applied in the early design stages as well
as making the modeling process less prone to programming errors. Moreover,
SCPEx allows for performing automatic and transparent gathering of various sim-
ulation statistics, such as statistics on communication between components.

1 Introduction

The heterogeneity of modern embedded systems and the varying demands of their tar-
get applications greatly complicate the system design. It is widely agreed upon that
traditional design methods fall short for the design of these systems as such methods
cannot deal with the systems’ complexity and flexibility. This has led to the notion
of system-level designin which designers already start with modeling and simulating
system components and their interactions in the very early design stages (e.g., [5, 8]).
More specifically, system-level models typically represent application behavior, archi-
tecture characteristics, and the relation (e.g., mapping, hardware-software partitioning)
between application(s) and architecture. These models do so at a high level of abstrac-
tion, thereby minimizing the modeling effort and optimizing simulation speed that is
needed for targeting the early design stages. This high-level modeling – of which the
class oftransaction-level models[2] is especially gaining interest – allows for early
verification of a design and can provide estimations on the performance, power con-
sumption or cost of the design.

The SystemC language [1] plays an increasingly important role in the system-level
design domain. This language allows for modeling systems at a relatively high (behav-
ioral) level of abstraction, after which the models can be gradually refined towards a
level of abstraction at which synthesis of the modeled design is possible.

In this paper, we present the SCPEx (SystemC Pearl Extension) language that is
built on top of SystemC v2.0, and which extends SystemC’s programming model with
a message-passing paradigm – based on the Pearl simulation language [7] – raising the
abstraction level of SystemC models even further. This increase of abstraction level re-
duces the modeling effort required for developing the (transaction-level) system models

applied in the early design stages, and makes the modeling process less prone to pro-
gramming errors. Moreover, SCPEx also allows for automatic and transparent gathering
of various statistics on, for example, communications between components.

The paper is organized as follows. In Section 2, we motivate the development of
SCPEx. Section 3 provides an overview of SCPEx’s simulation primitives with their
semantics. To illustrate SCPEx’s programming paradigm and demonstrate its modeling
power, Section 4 presents SCPEx code samples taken from a realistic case study. This
section also illustrates SCPEx’s support for YML (Y-chart Modeling Language) [3]
which provides an explicit description of the structure of SCPEx models (i.e., how
components are connected and parameterized). Finally, Section 5 concludes the paper.

2 Raising the abstraction level of SystemC

To cope with the growing complexity of (embedded) systems, system-level design has
been increasing the level of abstraction at which systems are modeled and simulated.
A clear example of this trend is the emergence of the high-level modeling and simu-
lation language SystemC [1]. Hardware description languages (HDLs) such as VHDL
and Verilog are slowly being replaced by languages such as SystemC (and related vari-
ants like SpecC [6]) in especially the early stages of design. The rationale behind this
transition to higher-level languages is that they allow for more efficient exploration
of system-level design tradeoffs and enable earlier verification of the entire system,
thereby reducing risks. In addition, software is playing an increasingly important role
in systems design, where traditional HDLs typically are hardware oriented. By build-
ing the new modeling and simulation languages on existing high-level languages such
as C/C++, existing code can easily be (re-)used during system design. Applying these
high-level design languages usually means that a system initially is modeled at a high
(behavioral) level of abstraction, after which the model is gradually refined towards a
level of abstraction at which synthesis of the modeled design is possible.

In the past decade, we have gained a lot of experience with our own high-level
architecture modeling and simulation language called Pearl [7, 4]. This object-based
discrete-event simulation language has proven to be highly efficient for abstract perfor-
mance modeling and simulation of computer architectures, both in terms of modeling
effort as well as simulation speed. Pearl’s modeling efficiency is mainly due to the
message-passing programming paradigm it adheres to. A Pearl program consists of a
collection of objects running concurrently, where each object executes ordinary sequen-
tial code and has its own data space which cannot directly be modified by other objects.
When an object wants to modify some remote data, it sends a message to the object
with a request to change the data. Subsequently, the remote object will only change the
data after explicitly accepting the request.

Comparing Pearl’s programming paradigm and associated primitives to those of
SystemC v2.0, one can observe a number of areas where Pearl adopts a higher level of
abstraction. Pearl, for example, abstracts from the concept of ports and explicit chan-
nels between ports as applied in SystemC. Pearl objects only contain a single “link” with
each neighboring object and can communicate with these objects usingremote method
calling implemented via the aforementioned message-passing mechanism. Implement-

ing remote method calling by means of message passing implies that objects remain
autonomous in their execution: an object decides itself when to process an incoming re-
mote method call. This also means that in Pearl buffering of messages at objects is taken
care of by the run-time system, rather than having to implement explicit buffering as one
would have to do in SystemC. As we will show later on, this message-passing program-
ming paradigm nicely fits the modeling of transactions in transaction-level models. In
addition, Pearl’s message passing primitives (performing a remote method call) trans-
parently incorporate inter-object synchronization, while this is done by separate and
explicit event notifications in SystemC. The latter may be more prone to programming
errors. Another valuable benefit of Pearl’s message-passing paradigm is that the run-
time system can automatically gather statistics on communications between objects,
utilization of objects, critical paths between objects, and so on. Such automatic feed-
back may be a significant help to recognize early bottlenecks in the modeled system.

This paper presents SCPEx (SystemC Pearl Extension), which is a software-library
on top of SystemC v2.0 (see Figure 1) that provides SystemC modelers with Pearl’s
message-passing programming paradigm. Hence, it allows for raising the abstraction
level of SystemC models, which can be especially beneficial for the efficient develop-
ment of initial system-level models. As illustrated in Figure 1, modelers have the choice
of i) using a so-called Model of Computation (MoC) – like process networks, dataflow
networks, CSP, and so on – that has been implemented on top of SystemC/SCPEx,ii)
using SCPEx to start the modeling after which models can be refined towards SystemC
v2.0 in a later stadium, oriii) immediately start modeling in SystemC v2.0.

MoCs

Modeler

SCPEx

SystemC 2.0 core language

Fig. 1. SCPEx: Adding a layer
on top of SystemC v2.0.

As will be explained later on, SCPEx also features
support for the Y-chart Modeling Language (YML)
[3] that is used in our Sesame system-level modeling
and simulation framework [4] to describe the struc-
ture of models, i.e., how model components are con-
nected and parameterized. YML support for SCPEx
gives us the choice of using either Pearl or SCPEx
architecture models in Sesame, where the translation
of Pearl models to SCPEx models (and vice versa) is
relatively straightforward. The latter will facilitate ex-
porting Pearl models to SystemC-based environments
as well as importing SystemC (IP) models in Sesame.

3 SCPEx

The SCPEx library extends SystemC’ssc module class with anscpex module
class to provide the modeler with all the required functionality to use the Pearl pro-
gramming paradigm in SystemC. Whereas SystemC modules can contain many (differ-
ent types of) processes, SCPEx only allows one process in a module in order to maintain
a strict message-passing paradigm for exchanging data between processes/modules.
The process in an SCPEx module is managed by the simulation scheduler as a non-
preemptive user-level thread. As there is a one-to-one mapping of execution threads to
modules, we speak of the “execution of a module”. The simulation scheduler sched-

ules a module when it is ready to run. If – at some point in simulated time – there is
more than one module ready to run, the scheduler will select them in turn. The modeler
should assume that the scheduling is non-deterministic as to prevent that the correct
working of the simulation depends on the order in which modules are scheduled.

An SCPEx module consists of C++ code with any number of functions, methods
and SCPEx primitives. Functions and methods differ only in that execution of methods
may be requested by other modules, whereas functions are only used internally by a
module. There are two types of SCPEx primitives: block and call primitives. A call
primitive performs a remote method call, merely being arequestto another module to
execute one of its methods. A block primitive specifies that a module is going to wait for
the simulation clock, for one or more method(s) to be called by a remote module, or a
combination of these two. As mentioned before, the remote method calling is performed
via a message passing mechanism of which the implementation details are hidden from
the modeler by means of the call/block primitives. In the remainder of this section, we
present the semantics of these primitives and explain the message passing mechanism.

There are two types of call primitives: synchronous and asynchronous. They have
the following abstract syntax:

abstract syntax
{a}synch call(remote module,

method,
argument 1, ..., argument n)

examples int res = synch call(alu, add, 2, 4);

asynch call(alu, add, 2, 4);

A call statement sends a request toremote module to executemethod with
the associated arguments. Here,remote module is a pointer to the remote module
andmethod is the name of the method that should be executed in the other module
where theargument x variables have to match the argument types of that method.
Thesynch call statement does not return until it receives an acknowledgment from
the remote module. To illustrate this, let us assume that the calling module is named
module1 . A synch call will halt the thread ofmodule1 and yield control to the
scheduler. The scheduler will then select one of the other modules to resume execution.
At some point, the remote module (remote module) may accept and execute the
requestedmethod . Doing so,method will send an acknowledgment back tomod-
ule1 . After receiving this acknowledgment, the scheduler knows thatmodule1 is
runnable again and may be scheduled for execution. Thesynch call statement in
module1 then evaluates to the value of the acknowledgment with which the method
of remote module has replied. Replies are sent using a special reply primitive:

abstract syntaxreply(reply data)

example of a void add(int a, int b) {

reply in a /* model, e.g., computation time */

synchronous reply(a+b);

method }

The asynchronous call statement has a similar syntax tosynch call . This asyn-
chronous version of the call primitive also sends a request to execute a method with
the given arguments toremote module . However, this statement does not wait for

remote module to handle the request, but returns immediately. It is not necessary for
the remote method to issue an acknowledgment using the reply primitive. This explains
why asynch call has no reply value. We note that methods that issue a reply may be
called synchronously as well as asynchronously (the reply-value is then ignored), while
synchronously calling a method without a reply causes the caller to block indefinitely.

On the implementation side, a remote method call made bysynch call and
asynch call results in a message being sent from the calling module to the remote
module. This message contains all the information a remote module requires to handle
the request. This includes a method identifier and the actual parameters of the method
as well as the reply data and pointer to the calling module required to notify the calling
module upon completion of the method.

A module may receive more method-call requests (i.e., messages) than it can pro-
cess at any given time. Therefore, there is a need to store unprocessed messages. Any
two communicating modules are connected using amessage queuethat accepts writ-
ing of messages by the calling module and reading by the receiving module. This is
totally transparent to the modeler as the call and block primitives handle the queuing
and dequeuing of messages.

abstract syntaxblock (method1, method2, ..., methodN)

blockt(time)

blockt(time-out, method1, method2, ..., methodN)

examples block (add, sub, mult, div);

blockt(20);

blockt(10, read, write);

Semantically, the block primitive – being similar but not identical to SystemC’swait
primitive – indicates what behavior of a module will be simulated in the following sim-
ulation time-steps. One instance of this primitive – theblockt statement – is identical
to SystemC’swait(time-units) as it simulates that a module is busy for a fixed
number of time-steps after which the module resumes execution.

To model that a module is ready to process a request (i.e., an incoming remote
method call), theblock statement is used. It allows for specifying a selection of meth-
ods in the argument list in order to accept only requests for these particular methods.
Applying the special keywordany as an argument, theblock statement will accept
any incoming request. The implementation of theblock statement first checks whether
or not an acceptable request is already stored in the module’s inbound message queue. If
present, then the first message formethodX (being one of the arguments of theblock
statement) is dequeued andmethodX is called in the local module with the parameters
stored in the message. If there is no request stored in the message queue, then the mod-
ule halts execution and yields control to the scheduler. The module will be rescheduled
whenever a matching request arrives. Ablock statement does not return control to the
next statement until one of the specified methods has been executed. The last form of
the block primitive is a combination of the previous two: it waits for one or more meth-
ods to be called with a specified time-out. So, if no incoming method call was received
during this time-out period, then control is returned aftertime-out time-steps (thus
operating like ablockt statement).

Figure 2 illustrates the semantics of the aforementioned primitives using a simple
simulation model of a processor, cache and memory. We note that, for the purpose of
brevity, we slightly simplified the code (e.g., we omitted instantiations and initializa-
tions). The next section will present real SCPEx code samples. In the code of Figure
2, the processor reads a word, prefetches another, and reads the two words again. The
prefetch is simulated by calling thefetch method asynchronously: the processor does
not wait for the result. The cache implements thefetch method. If the requested data
is in the cache, it takes only 2 time-steps to complete the request, otherwise it takes 4
time-steps plus the time needed to fetch the data from memory. The memory imple-
ments a fetch that always takes 15 time-steps. The graph in Figure 2 shows the activity
of the different modules during the time of the simulation: solid lines indicate that the
module is busy, dashed lines indicate that the module is waiting for the results of a
synchronous method call, while blanks imply that the module is idle and waiting for
a method call. The scheduler terminates the simulation when all modules are blocking
and no new requests are made. In this case, the simulation is stopped att = 50.

It is not difficult to see that SCPEx nicely aligns with the modeling support needed
for implementing transaction-level models. The transactions in transaction-level models
– being atomic transfers of high-level data and/or control – perfectly map onto SCPEx’s
communication primitives.

class processor: scpex module {
void main() {

synch call(cache, fetch, 0x0000);
blockt(4); /* model some computation */
asynch call(cache, fetch, 0x0020);
blockt(9);
synch call(cache, fetch, 0x0000);
blockt(4);
synch call(cache, fetch, 0x0020);

}
}

class memory: scpex module {
void main() {

while (1)
block(fetch)

}
void fetch(int addr) {

blockt(15);
reply(lookup(addr));

}
/* module functions: */
int lookup(int addr) {... }

}

class cache: scpex module {
void main() {

while (1) /* main loop of module */
block(fetch)

}
void fetch(int addr) {

blockt(2);
if (present(addr))

reply(lookup(addr));
else {

int data =
synch call(memory, fetch, addr);

blockt(2);
store(data);
reply(data);

}
}
/* module functions: */
int present(int addr) {... }
int lookup(int addr) {... }
int store(int data) {... }

}

proc cache memory
t=0

t=10

t=20

t=30

t=40

t=50

Fig. 2. Illustrating SCPEx’s primitives

4 Illustrating SCPEx: a case study

To show SCPEx in action, we present several code snippets from a case study that
was performed earlier with our Sesame system-level modeling and simulation frame-
work [4] (using Pearl), and that we have repeated using SCPEx. In this case study, we
mapped a Motion-JPEG encoder application – modeled as a Process Network – onto
an architecture model that models a bus-based shared-memory multiprocessor architec-
ture. This mapping is performed via trace-driven co-simulation in which the M-JPEG
application model generatesapplication eventsrepresenting the workload imposed on
the architecture, while the (transaction-level) architecture model simulates the perfor-
mance consequences of these application events. Architecture models in Sesame usu-
ally account for performance constraints (i.e., timing behavior) only and do not model
functional behavior since the latter is already captured in the application model. For a
comprehensive description of Sesame, the reader is referred to [3, 4].

In Sesame, YML (Y-chart Modeling Language) [3] is used to describe the struc-
ture of simulation models and their parameterization. YML is based on XML so as to
be simple and flexible and was developed to allow for rapid creation and modification
of simulation models. Sesame applies YML to describe both application and architec-
ture models as well as the mapping between these models. Besides statically describing
model components and their connections, YML also features support for dynamic de-
scriptions usingscripting. This scripting allows, for example, for rapidly defining mod-
els that consist of many similar components (such as a large lattice of switches in a net-
work). Moreover, as library support is inherent to XML, it is possible to make libraries
of (parameterized) model component descriptions. Since YML supports hierarchy, this
means that it is easy to reuse model components together with their descriptions as part
of different models. To simplify the use of YML even further, a YML editor has been
developed to compose model descriptions using a graphical interface. As the properties
of YML can also be very beneficial for SystemC-based models, we added YML support
to SCPEx. An additional advantage to adding YML support is that Sesame architecture
models can either use the Pearl simulation language or SCPEx.

To illustrate YML, the code in Figure 3 shows a part of the architecture model
description for the M-JPEG case study. Eachnode represents a simulation module,
which in our example are a processor (mp) and abus component. The value of the
class property describes which SCPEx class needs to be instantiated for this object.
Theport objects together with thelink element describe the connection between the
processor and the bus. Theinit property describes the initialization values of variables
of a module. In SCPEx, the initialization values can be integers, port names, or arrays
of one of the two types. Before port names are assigned to the corresponding variable,
they are transformed to module references (which are used by the call primitives). To do
so, the YML interface of SCPEx traces the links of the port (possibly crossing several
levels of hierarchy in YML) until it reaches the node it is connected to.

Figure 4 shows (most of) the real SCPEx code of the processor and bus modules
from the M-JPEG case study. We only omitted the inclusion of header files and the
store method in the processor module since thestore is almost identical to the
load method. Modules have to implement a constructor with a fixed prototype, as
shown in the declaration of the proc and bus classes (two top boxes in Figure 4). This

<network xmlns=".../YML" name="MJPEG-arch" class="net">
...
<node name="mp" class="scpex_object">

<property name="class" value="proc"/>
<property name="init" value="net,10,[359,0,0,0,154,1,45,0,4,154]"/>
<port name="net" dir="out"/>
<port name="vp" dir="in"/>

</node>
...
<node name="bus" class="scpex_object">

<property name="class" value="bus"/>
<property name="init" value="mem,1,8"/>
<port name="input" dir="in"/>
<port name="mem" dir="out"/>

</node>
...
<link innode="mp" inport="net" outnode="bus" outport="input"/>

Fig. 3.Example YML code for processor and bus modules.

constructor is used by the YML interface to instantiate a module. The INIT macro is
used to initialize module variables with values given in the YML specification file.

A processor module may be requested – by means of an application event from the
application model – to model the timing consequences of a computation (compute
method) or a communication (load andstore methods). Theopers array in the
compute method contains the latencies of the different computational operations that
can be performed by the processor, while theoperindx argument specifies which
operation is performed by the application at some moment in time. In Figure 3, it can
be seen how theopers latency-array is passed to the processor module as part of
a YML init property. Theload andstore methods – modeling the processor’s
communication – simply are synchronous calls to the communication network which
in this case is a bus. This implies that the bus, and subsequently the memory that is
attached to the bus, will account for the timing consequences of the communication.
The bus module accounts for asetup latency which models the overhead to gain
access to the bus without contention (pure arbitration overhead, etc.). Communication
latency due to bus contention (one request waiting for another) is implicitly modeled –
so without an explicit arbiter – which is straightforward because of SCPEx’s message-
passing paradigm. While the bus module services a communication from one processor
module, a request for communication from another processor module will simply be
stored in the SCPEx message queue of the bus module until the bus is available again.
Bus arbitration is thus performed using SCPEx’s FCFS message-queue policy, which
may be especially useful in early design stages for rapidly obtaining an initial system
model. Naturally, an explicit arbiter can be added to realize different arbitration policies.

Explicit references to target modules with which is communicated – such as the pro-
cessor module in Figure 4 that directly communicates with the bus module – may limit
the reusability of SCPEx modules. To avoid such problems, SCPEx models can apply
the concept of subtyping. For example, in Figure 4 we can write ”interconnect
*net ” instead of ”bus *net ”, where interconnect is an abstract class (merely
being an interface). In addition, the first argument of thesynch call s, containing the
class of the remote module, should also be adapted accordingly. Subsequently, using the
YML description, we can map a bus module, which is a subtype of theintercon-

struct proc: public scpex module {
bus *net;
int nopers;
int *opers;

void main();
void compute(int operindx);
void load(int nbytes, int addr);
void store(int nbytes, int addr);

proc(sc module name name,
(init values **) is):
scpex module(name) {

INIT(net);
INIT(nopers);
INIT(opers);

}
};

struct bus: public scpex module {
memory *mem;
int setup;
int width;

void main();
void load(int nbytes, int addr);
void store(int nbytes, int addr);

bus(sc module name name,
(init values **) is):
scpex module(name) {

INIT(mem);
INIT(setup);
INIT(width);

}
};

void proc::main() {
while (1)

block(any);
}

void proc::compute(int operindx) {
blockt(opers[operindx]);
reply();

}

void proc::load(int nbytes,
int addr) {

synch call(bus, net, load,
nbytes, addr);

reply();
}

// store method has been omitted

void bus::main() {
while (1)

block(any);
}

void bus::load(int nbytes, int addr) {
blockt(setup);
synch call(memory, mem, load,

nbytes, addr, width);
reply();

}

void bus::store(int nbytes, int addr) {
blockt(setup);
synch call(memory, mem, store,

nbytes, addr, width);
reply();

}

Fig. 4. The SCPEx code of processor and bus modules of the M-JPEG case study. The top code
boxes show the declaration of the modules, while the bottom boxes show their implementation.

nect class and which provides the implementation ofinterconnect ’s methods,
onto thenet variable. Doing so, we can, for example, substitute the bus in our archi-
tecture model by alternative interconnects (such as a crossbar, point-to-point links, etc.)
in a plug-and-play fashion.

It should be clear from the code samples presented so far that SCPEx reduces the
channel connections needed between modules in comparison to plain SystemC. For
any two connected modules, SCPEx uses only a single predefined channel for com-
munication of all data, and this data can be of any type. In SystemC, either a port and
associated channel per data type, or channels that communicate composite data (structs
or classes) would be needed. The first solution may result in a considerable number of
ports/channels and associated read/write statements, while the latter solution requires to
explicitly pack and unpack data elements before respectively writing and reading them.
Moreover, SCPEx’s communication primitives, which can provide synchronization in
a transparent manner, make the manual creation and use of SystemC-events redun-
dant. As a result, the errors that are typically caused by complicated event notification
schemes are avoided.

Another benefit of SCPEx is that simulation statistics can be gathered automatically
at runtime. This is possible since the two mechanisms that are responsible for SCPEx’s
semantics (message passing and synchronization) are accessible exclusively through the
call/block primitives. For example, the utilization of a module – indicating the amount
of time a module is busy or idle – can be computed because the simulation scheduler
exits or enters the single thread of a module only on acall or block statement. Uti-
lization can be computed if the primitives record whether the module was busy or idle
in the period between being halted and rescheduled. We are currently working on the
implementation of more advanced statistics such as contention and bandwidth analy-
sis as well as profiling and call-graph analysis. Of course, a modeler can add his own
statistics, either directly in the simulation code or by modifying the SCPEx primitives.

5 Conclusions

In this paper, we have presented the SCPEx language which is built on top of SystemC
v2.0 and which raises SystemC’s abstraction level by extending its programming model
with a message-passing paradigm. Connections and synchronizations between modules
in SCPEx do not have to be explicitly programmed, reducing the modeling effort re-
quired for implementing transaction-level models as well as reducing the probability
of programming errors. To demonstrate SCPEx’s modeling power, a case study was
presented that uses SCPEx combined with our Sesame system-level modeling and sim-
ulation environment. Future research will focus on methods for refining SCPEx models
to plain SystemC and mixed SystemC/SCPEx models.

Acknowledgment

We thank Pieter van der Wolf for his valuable comments on a draft version of this paper.

References

1. SystemC initiative. http://www.systemc.org/.
2. L. Cai and D. Gajski. Transaction level modeling: An overview. InProc. of CODES-ISSS,

pages 19–24, Oct. 2003.
3. J. E. Coffland and A. D. Pimentel. A software framework for efficient system-level perfor-

mance evaluation of embedded systems. InProc. of the ACM Symposium on Applied Com-
puting (SAC ’03), pages 666–671, March 2003.

4. A. D. Pimentel et al. Towards efficient design space exploration of heterogeneous embedded
media systems. InEmbedded Processor Design Challenges: Systems, Architectures, Model-
ing, and Simulation, pages 57–73. Springer, LNCS 2268, 2002.

5. F. Balarin et al. Metropolis: An integrated electronic system design environment.IEEE
Computer, 36(4), April 2003.

6. D. D. Gajski, J. Zhu, R. D̈omer, A. Gerstlauer, and S. Zhao.SpecC: Specification Language
and Methodology. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

7. H.L. Muller. Simulating computer architectures. PhD thesis, Dept. of Computer Science,
Univ. of Amsterdam, Feb. 1993.

8. A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger, and E.F. Deprettere. Exploring
embedded-systems architectures with Artemis.IEEE Computer, 34(11):57–63, Nov. 2001.

