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Abstract

System-level computer architecture simulations create large volumes of simulation data to explore alternative
architectural solutions. Interpreting and drawing conclusions from this amount of simulation results can be
extremely cumbersome. In other domains that also struggle with interpreting large volumes of data, such as
scientific computing, data visualization is an invaluable tool. Such visualization is often domain specific and
has not become widely studied and utilized for evaluating the results of computer architecture simulations.

In this paper, we introduce our novel interactive visualization tool, called VMODEX, which is developed
to support system-level design space exploration of MPSoC architectures. In our tool, the design space is
modeled as a tree in which both the design parameters and criteria are shown in a single view. VMODEX
is able to handle large design spaces and allows designers to look at the data from di↵erent perspectives and
at multiple levels of abstraction.

Due to the exponential design space in real problems and multiple criteria to be considered, heuristic
searching algorithms are often used to trim down a large design space into a finite set of points and provide
the designer a set of tradable solutions with respect to the design criteria. In VMODEX, besides the
techniques provided for visualizing the DSE results, additional capabilities are developed to understand the
dynamic search behavior of heuristic searching algorithms.

Keywords: multi-objective design space exploration, visualization, multi-objective evolutionary
algorithms, MPSoC architectures

1. Introduction

Designers of modern embedded systems face several emerging challenges. Since embedded systems often
target mass production and battery-based devices, they should be cheap and power e�cient. In addition,
they must, increasingly, support multiple applications and standards, for which they need to provide real-
time performance. For example, mobile devices must support di↵erent standards for communication and
coding of digital contents. Furthermore, modern embedded systems should also be flexible to enable easily
extending them to support future applications and standards. Such flexible support for multiple applications
calls for a high degree of programmability.

However, performance requirements as well as cost and power-consumption constraints require imple-
menting substantial parts of these systems in dedicated hardware blocks. As a result, modern embedded
systems often have a heterogeneous system architecture. They consist of components that range from fully
programmable processor cores to fully dedicated hardware components for time-critical application tasks.
Increasingly, such heterogeneous systems reside together on a single chip, yielding heterogeneous Multi-
Processor System-on-Chip (MPSoC) architectures that exploit task-level parallelism in applications.

The heterogeneity of these highly programmable embedded systems and the varying demands of their
target applications greatly complicate system design. The complexity of these systems forces designers
to simulate systems and their components early during the design process to explore the wide range of
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design choices. Such Design Space Exploration (DSE), during which multiple criteria should be considered
simultaneously, is called multi-objective DSE. Since objectives are often in conflict, there cannot be a single
optimum solution, which simultaneously optimizes all objectives. Therefore, optimal decisions need to be
taken in the presence of trade-o↵s between design criteria. A set of optimal solutions is denoted as the
Pareto optimal set. This is the set of those solutions for which one objective cannot be improved further
without causing a simultaneous degradation in at least one other objective.

In order to find the Pareto optimal design points with respect to multiple design criteria, the designer
should ideally evaluate and compare every single point in this space. However, such exhaustive search of
all possible design points is usually prohibitive due to the sheer size of the design space. When the design
space is too large to be explored in an exhaustive manner, heuristic search techniques such as evolutionary
algorithms can be used to search the design space for optimum solutions using only finite number of design
point evolutions.

The DSE problem generally deals with two distinct issues:

1. The evaluation of a single design point regarding all objectives.
2. A search strategy for covering the design space during the exploration process.

Methods for evaluating design points range from solely analytical approaches to detailed cycle-accurate
simulations. The results of simulation-based methods are more accurate but the evaluation process usually
takes longer. A review of di↵erent approaches for evaluating a single design point is provided in [1]. In this
paper, the evaluation of design points is performed by the Sesame system-level simulator [2, 3]. In Section
2.1 we provide an outline of the Sesame environment.

The searching strategies iteratively walk through the design space and try to properly cover the design
space during their explorations. In general, these methods can be divided into two types, based on their
progress from iteration to iteration: guided search and unguided search. The guided search methods, such
as hill climbing, evolutionary algorithm, ant colony optimization and simulated annealing, use information
learned so far to guide the search process. The unguided search methods such as random walk aim to provide
an unbiased view of the design space. Each design point is chosen randomly and entirely by chance. In [1] a
survey of di↵erent searching strategies used for design space exploration of system-on-chip architectures is
given. In this paper, we use Multi-Objective Evolutionary Algorithms (MOEA) as the searching strategy.
In Section 2.3 we explain the basic concepts of MOEAs.

System-level simulation frameworks that aim for early design space exploration create large volumes
of simulation data in exploring alternative architectural solutions and investigating di↵erent mappings of
application tasks onto architectural components. Interpreting and drawing conclusions from these copious
simulation results can be extremely cumbersome. To illustrate the need for good analysis tools, Fig. 1
shows a sample of raw data generated by an MOEA. Here, each row represents an evaluated design point in
which the values of objectives (processing time, energy consumption and cost) and the individual encoding
are comma separated. The way that application tasks and their communications are mapped onto the
architecture components is encoded in a string of digits, which is called the individual. It is evident that
interpreting and analyzing the evaluated data in this format is not possible.

Figure 1: Example of raw data generated by a MOEA. Each row represents an evaluated design point in which the values of
objectives (processing time, energy consumption and cost) and the individual encoding are comma separated.

In other domains that also struggle with interpreting large volumes of data, such as scientific computing,
data visualization has become an invaluable tool to facilitate the data analysis. Such visualization is often
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domain specific and has not become widely studied and utilized for evaluating the results of computer
architecture simulations. Here, results are usually still presented in a table or displayed in a 2D or 3D
graphs and very little research has been undertaken in the use of visualization to support and guide DSE.

Therefore, in this paper, we have developed a novel interactive visualization tool, VMODEX 1 , which
is designed for understanding the multi-objective DSE process of embedded systems that are based on
heterogeneous Multi-Processor System-on-Chip architectures. It is especially developed to help designers
to get insight into the search process of heuristic methods that are typically used for rapid and e�cient
exploration of the large design spaces. This paper extends our previous works in [4, 5, 6] as follows:

• A more detailed and comprehensive description of the structure of the DSE tree is given.

• It provides extra visualization techniques for showing additional aspects of the characteristics of each
design point. These aspects are referred as secondary objectives in the paper.

• More interactive exploratory techniques are added.

• A more extensive case study is presented to show the benefits of using our tool in the DSE process.

• This paper presents an overview of the entire visualization tool for the first time, while previous papers
only focus on some specific aspects.

We have two main motivations for visualizing the design space exploration process. The first one is
to gain insight into the landscape of the design space. That is, understanding the characteristics of the
optimum design points, the correlations among multiple design criteria such as performance, cost, energy
consumption and so on, and the relationships between the design parameters and their e↵ects on the criteria.
These relations are often not linear and a small change may lead to a completely di↵erent result. However,
our visualization tool allows designers to easily understand these relations. Our second motivation is to
understand how the design space is searched by heuristic searching algorithms. Our tool enables designers
to understand the dynamic search behaviors of such algorithms. For instance, it clearly shows which parts
of the design space are not searched at all (no design point is evaluated there), which parts of the design
space are searched more often by the MOEA (more design points are evaluated there), which parts of the
design space are explored in the later generations, and it illustrates the progress of the searching algorithm
in the design space during successive iterations.

The rest of the paper is organized as follows. In section 2, we briefly explain the Sesame environment and
some preliminary definitions of multi-objective optimization and multi-objective evolutionary algorithms. A
short introduction on visualization and the principles of e↵ective visualizations are also described. Section
3 describes related work. Section 4 introduces techniques we have provided for visualizing multi-objective
design space exploration. In Section 5 we describe the interactive capabilities that are provided in our
visualization tool and allow designers to directly manipulate the representations and to investigate the results
from di↵erent perspectives . Section 6 presents a case study with a Motion-JPEG encoder application to
illustrate the benefits of using visualization in the design space exploration process. The data from this
case study are used in Section 7, which introduces several metrics and their visualization approaches for
comparing di↵erent subspaces of the explored design space. Finally, section 8 concludes the paper.

2. Preliminaries

2.1. Sesame Environment

In this paper, the evaluation of design points (the first issue of DSE) is performed by the Sesame system-
level simulator [2, 3].Models in Sesame are defined at a high level of abstraction and capture only the
most important characteristics of the components in the system. As these high-level models minimize the

1Visualization of Multi-Objective Design spacE eXploration
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modeling e↵ort and are optimized for execution speed, they can be applied for DSE at the very early design
stages. Sesame uses independent application and architecture models. The application model describes the
functional behavior of the system in an architecture independent manner. That means the application model
is free from architectural issues, such as timing characteristics, resource utilization or bandwidth constraints.
Applications in Sesame are modeled using the Kahn process network (KPN) [7] model of computation in
which parallel processes implemented in a high-level language communicate with each other via unbounded
FIFO channels. Reading on a FIFO channel is blocking and writing is non-blocking. The architecture
model represents the hardware components in the system. An architecture model is constructed from
generic building blocks provided by a library, which contains template performance models for processors,
co-processors, memories, bu↵ers, busses, and so on.

Because of the separation of these two concerns (i.e. the application model and architecture model), an
explicit mapping step is needed to relate these models for co-simulation. In this step, di↵erent mappings
of processes and communication channels to various architectural components are evaluated by simulation
to find the optimum mapping solutions under the design criteria. Each mapping decision taken in this step
corresponds to a single point in the design space. Each mapping decision consists of two main parts: alloca-
tion and binding. The allocation determines which architectural components are actually used. The binding
indicates each application task is executed by which allocated processor and each communication channel is
mapped on which allocated processor/memory. Note that if two communicating processes are mapped onto
the same processor, then their communications are done internally and therefore communication channel(s)
between them are mapped onto the processor in question.

2.2. Multi-Objective Optimization

Real world design problems often are multi-objective optimization problems in which several incom-
mensurable and often conflicting objectives should be optimized simultaneously. An improvement in one
objective often causes deteriorations in other objectives. For example, consider the design of an embedded
system such as a mobile phone, digital television, etc. Often the cost of such systems should be minimized,
while maximum performance is desirable. Here, high performance and low cost are generally conflicting.
High-performance architectures can be quite expensive, while cheap architectures usually provide lower per-
formance. Therefore, optimal decisions need to be taken in the presence of trade-o↵s between objectives.
On the other hand, in multiple conflicting objectives problems, there cannot be a single optimum solution,
which simultaneously optimizes all objectives; instead, a set of optimal solutions, denoted as the Pareto
optimal set, with a varying degree of objective values has to be found.

Definition 1: (Multi-Objective Optimization Problem) A general multi-objective optimization
problem with n decision variables (parameters) and m objective functions is defined as:

Minimize y = f(x) = (f1(x), · · · , fm(x))
Where x = (x1, · · · , xn

) 2 X
y = (y1, · · · , ym) 2 Y

(1)

Without loss of generality, we assume a minimization problem. The duality principle [8], in the context of
optimization, can be used to convert a maximization problem into a minimization problem by multiplying the
objective functions by -1. By using duality principle, handling mixed maximization/minimization problems
is also easy. When an objective is required to be maximized, the duality principle can be used to transform
the original objective for maximization into an objective for minimization. The objective function f(x) maps
a decision vector (solution) x in decision space (X) to an objective vector y in objective space (Y).

Definition 2: (Dominance Relation) A solution x1 2 X is said to dominate the other solution
x2 2 X (also written as (x1 < x2) if and only if both of the following conditions are true:

1. The solution x1 is not worse than x2 in all objectives; formally: 8i 2 {1, · · · ,m} : f
i

(x1)  f
i

(x2)
2. The solution x1 is strictly better than x2 in at least one objective;

formally: 9j 2 {1, · · · ,m} : f
j

(x1) < f
j

(x2)
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It is intuitive that if x1 dominates the solution x2, the solution x1 is superior to x2 in the context of multi-
objective optimization. It is also common to say, ”x2 is dominated by x1” instead of saying ”x1 dominates
x2”. A more rigorous definition of strict dominance requires x1 to be strictly better in all objectives compared
to x2 and is written as x1 ⌧ x2, while the less strong definition of weak dominance only needs the trueness
of the first condition and is denoted by x1  x2. Two solutions x1 and x2 are said to be non-dominated
with respect to each other (x1 ⇠ x2) if in some objectives x1 is better than x2 and in some other objectives
x2 is better than x1, on the other hand none of them is dominated by another one; formally:

9 i 6= j 2 {1, · · · ,m} : such thatf
i

(x1) < f
i

(x2) ^ f
j

(x2) < f
j

(x1)

) x1 6< x2 ^ x2 6< x1 ) x1 ⇠ x2

Definition 3: (Pareto Optimality) Let x1 2 X be an arbitrary solution (a decision vector)

• The solution x1 is said to be non-dominated regarding a set X 0 ⇢ X if and only if there is no solution
in X 0 which dominates x1; formally: @ x2 2 X 0 : x2 < x1

• The solution x1 is called Pareto optimal if and only if x1 is non-dominated regarding the whole decision
space X.

Definition 4: (Pareto Optimal Set and Front) The entirety of all Pareto optimal solutions is called
the Pareto optimal set. Solutions in this set cannot be improved further in terms of a certain objective
without causing a simultaneous degradation in at least one other objective. They represent in that sense
globally optimum solutions. Any solution, which does not belong to the Pareto optimal set, is dominated by
at least one Pareto optimal solution. The set of objective vectors corresponding to a set of Pareto optimal
solutions is called the ”Pareto optimal front” or ”Pareto front”.

To illustrate the dominance relation and Pareto optimality, an example is given in Fig. 2. The two-
dimensional objective space is defined by execution time and cost of evaluated design points, both to be
minimized. The solution C dominates solution E (C < E) since it is better in both objectives: it has a lower
execution time and a lower cost. However, when comparing B and C, neither can be said to be superior,
since B ⌅ C and D ⌅ C. Although solution C is cheaper, it has a higher execution time than solution B.
In Fig. 2, the black points construct the Pareto optimal front that contains four solutions: A, B, C and D.

Execution Time  

Cost 

minimize 

m
in

im
iz

e 

A 

B 

C 

D 

E 

Pareto optimal front 

Figure 2: Illustration of the Pareto optimality and dominance relations between solutions in a two-dimension objective space.
Both objectives need to be minimized.

Definition 5: (Euclidian Distance) The Euclidian distance between two solutions a and b (of
dimension n) is defined as:

ka� bk =

vuut
nX

i=1

(a
i

� b
i

)2

If the objective functions have di↵erent scales of measurement, they should be normalized before cal-
culating the distance measure. This prevents objectives with initially large ranges to overcome objectives
with initially small ranges. In this paper, we use min-max normalization to obtain a ”common scale” for all
objectives.
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Definition 6: (Min-Max Normalization) The min-max normalization performs a linear transfor-
mation on the original data values so that it does not change the initial distribution type. It transforms the
data values into a desired range, which is usually [0,1]. Suppose that fmin

i

and fmax

i

are the minimum and
maximum value of the ith objective (among the evaluated design points). We would like to map interval⇥
fmin

i

, fmax

i

⇤
into a target interval [0,1]. Consequently, for each solution x 2 X the value of ith objective

(f
i

(x)) from the original interval will be mapped into its normalized value (written as f̄
i

(x) ) using the
following formula:

f̄
i

(x) =
f
i

(x)� fmin

i

fmax

i

� fmin

i

After applying min-max normalization, each objective value will fit in the range [0,1]. However, the
underlying distribution of the corresponding objective within the new range will remain the same. Min-max
normalization preserves exactly all the relationships among the original objective values and it does not
introduce any bias.

2.3. Multi-Objective Evolutionary Algorithms

In this paper, we use Multi-Objective Evolutionary Algorithms (MOEAs) as a strategy for searching
the design space (the second issue of DSE). In the last few years, MOEAs have been recognized to be
well suited to solve multi-objective optimization problems and have become very popular. They are widely
used in many di↵erent fields such as computer science, engineering, economics, finance, industry, chemistry,
ecology and etc. Over the years, many MOEAs have been proposed such as SPEA2 [9], NSGA-II [10], PAES
[11], etc. The main motivation for using MOEAs to solve multi-objective optimization problems is because
MOEAs operate on a set of design points (solutions) rather than only one solution at each time. Thus, in
a single run of the algorithm, several solutions are evaluated and in this way the search is performed in a
parallel manner. Furthermore, MOEAs are less sensitive to the shape or continuity of the Pareto front. For
example, they can easily deal with discontinuous, multi-modality and concave Pareto fronts. Additionally,
MOEAs are able to search large and complex decision spaces. Moreover, it is not necessary to choose an
accurate starting point. The results of MOEAs do not rely on the initial population and they aim at finding
the global Pareto optimal solutions, rather than to get stuck in local optimums. These features play a
critical role in the e�ciency of MOEAs in solving multi-objective optimization problems. These issues are,
on the other hand, major concerns when using traditional mathematical programming techniques for finding
optima, such as linear programming, nonlinear programming, stochastic programming, robust optimization,
etc.

Evolutionary algorithms are heuristic search methods that take their inspiration from natural biological
evolution. By analogy to natural evolutions, solution candidates are called individuals and a set of solutions
is called a population. Each individual represents a possible design point in the decision space. However, an
individual is not a vector in the decision space. Instead, it is an encoded representation of a decision vector.

MOEAs evaluate a population of individuals over several iterations, called generations. With the help
of genetic operators, a MOEA progresses iteratively towards the best possible solutions. Its progression
(optimization process) is comparable to natural selection in the evolution of living organisms in that the
most proper elements in the population have a higher chance to survive, reproduce and thus transfer their
genetic material to the consecutive generations. The algorithm usually starts with a randomly generated
population and calculates the fitness value for each individual within the population. The fitness function
is problem specific and determines how good the individual is. Note that in Equation 1, f(x) is equivalent
to the fitness function and y is equivalent to the fitness value. Individuals with high fitness in the current
population are selected for reproduction and referred to as parent individuals. Such individuals are modified
(recombined and randomly mutated) to create new individuals (o↵spring). This is motivated by the hope
that the new individuals will be better than the old ones. The new individuals are then considered as
the current population in the next iteration of the algorithm. Generally, the algorithm terminates when
a predefined number of generations has been reached. But, also other conditions may be used as the
termination criterion. For instance, when there is no improvement in the fitness values of the individuals,
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or some individuals with su�cient quality have been found. At the end, the best individuals found during
the search process are considered as the outcome of the MOEA.

By utilizing an MOEA for multi-objective design space exploration of embedded systems, on one hand,
we should define the specification of the DSE problem (i.e. application model, architecture model and design
criteria) and on the other hand we should set the MOEA parameters such as selection method, mutation
rate, crossover rate, etc. Setting the MOEA parameters properly, according to the DSE specification, can
minimize the exploration time while achieving better results. Then, it is needed to define a way of encoding
the DSE problem (e.g. mapping process networks onto heterogeneous multiprocessor architecture) as a
multi-objective optimization problem, known as individual encoding. Therefore, each individual in MOEA
(which can be a string of numbers) represents a design point in the design space (e.g. possible mapping).

2.4. Visualization

Collecting information is no longer a problem, but interpreting and extracting insight from the collected
information has become progressively more di�cult. Visualization is the process of transforming data, infor-
mation, and knowledge into visual form making use of humans’ natural visual capabilities [12]. Visualization
is useful to rapidly extract insights from large amounts of information. It allows users to quickly understand
the general structure and patterns in the data and the relationships between di↵erent variables.

Information Visualization (InfoVis) deals with abstract data sets, that is, data without a ”natural”
physical or geometric representation, such as hierarchical or textual information. Therefore, the user has no
predetermined mental model to which the data can be automatically mapped. Thus, the main challenge in
information visualization is developing new visual metaphors for representing the abstract data, such that
they enable users to clearly and e↵ectively understand the underlying information.

In [13], Tufte discussed the properties of an e↵ective graphical display. He concluded with the following
Principles of Graphical Excellence:

• Graphical excellence consists of complex ideas communicated with clarity, precision and e�ciency.

• Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time
with the least ink in the smallest space.

• Graphical excellence is nearly always multivariate.

• Graphical excellence requires telling the truth.

3. Related Work on Visualizing Exploration Results

Most of the work that has been performed on visualization of computer architecture simulations either
focuses on educational purposes (e.g., [14, 15, 16]), tightly couples visualization to one particular architecture
simulation environment (e.g., [17, 18, 19, 20]), visualizes only one specific aspect of embedded applications
such as memory access patterns [21], cache behavior [22, 23, 24] and data dependencies [25], or only provides
some basic support for the visualization of simulation results in the form of 2D (and sometimes 3D) graphs
(e.g., [26]). However, in the area of system-level design space exploration, little research has been undertaken
on visualization of simulation results and the exploration process.

The work presented in [27, 28] provides advanced and generic visualization support, and tries to do so
for a wide range of computer system related information. However, these visualizations are not necessarily
applicable to computer architecture simulations and in particular to DSE, with its own domain-specific
requirements. Vista [29] aims at visualization support for computer architecture simulations, but it does
not target system-level simulations, which may have a serious impact on the scalability requirements of the
visualization, nor does it address the needs for visualization from the perspective of DSE.

In [30], an interactive visual tool is presented to visualize the results from system-level design space
exploration experiments. The simulation results are visualized using a coordinated, multiple-view approach,
which enables designers to understand the information through di↵erent perspectives. But this tool does not
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provide any insight in the searching process as performed by a heuristic method (e.g. MOEA). For example,
there is no way to find out which parts of the design space are not searched at all. This tool is only useful
in the case of small design spaces, which can be exhaustively searched.

There are only a few research e↵orts addressing the visualization of EAs. The most common method
for analyzing how EA evolves is monitoring individual fitness values, and creating fitness-versus-generations
graphs. Although such straightforward graphs show the quality of the solutions considered during search
process, they can only provide a limited amount of information. Due to the large number of individuals in a
population, it is not possible to display all of their fitness values. Therefore, displays are usually restricted to
the best individual fitness and average population fitness for each generation. Genetic information regarding
the position of the discovered solutions in the search space cannot be obtained from these graphs.

More complex techniques have focused on how to display the progress of the MOEA in parameter space
or objective space [31, 32]. Usually, they use 2D or 3D plots in which either variables or objectives are shown.
Therefore, two separate views are needed to show the distribution of the solutions in both parameters and
objectives spaces. Furthermore, due to the large number of dimensions in practical problems, techniques
such as Sammon Mapping [33] should be used to transform higher dimensional spaces into smaller ones.

Hart and Ross [34] proposed the GAVEL visualization tool that provides a means to examine how the
genetic operations (crossover and mutation) assemble the optimal solutions, and a way to trace the ancestry
of individuals. GAVEL only shows the information that is relevant to the formation of the best solutions.
All individuals that do not play any part in propagating individual genes to the final optimal solutions are
disregarded. So, it does not provide any information on how the problem space is explored and how an
entire population behaves or changes across generations.

In [35], a visualization method is proposed, which shows the individual structure, the fitness function
and the objective function in a matrix view. For each generation, an n ⇥m matrix is used where n is the
number of individuals in the generation and m is the number of bits in an individual. Each cell of the
matrix is related to a bit of the individual. If the value of a bit is one the corresponding cell is represented
in red. The blue cell indicates that the value is zero. The brightness of each row (individual) represents the
fitness value. The hue of individuals is changed by their objective values. This visualization approach has
some drawbacks. It can be used for showing only binary-coded evolutionary algorithms. Furthermore, the
structure of solutions in the parameter space is represented in their encoding format. So, understanding the
correlation between the problem space and individual space is di�cult. It is not easy to find out how EA
explores the parameter space during its generations.

There are also some commercial visualization tools such as modeFRONTIER [36], OPTIY [37], and
GRAPHEUR [38] that can be used for data analysis. However, these tools are generic visualization tools
and they could not meet all our domain specific requirements. Therefore, we have developed our specific
tool. For instance, the visualization approach that we propose for mapping decision (Section 4.2.2 ) clearly
and e↵ectively shows how application tasks and communication channels are mapped to the architectural
components. However, using commercial visualization tools, it is not possible to visualize this kind of
domain specific information. They mainly integrate various standard graphical representations and there is
no freedom to create your own methods that may be more suitable for your specific domain.

Furthermore, in the commercial tools, for showing multi-dimensional data, di↵erent standard techniques
are provided to project a multi-dimensional space to 2D or 3D space, such as scatter plot matrix, parallel
coordinates, etc. The main weakness of this kind of projection is that the plots are sequences of pairwise
comparisons between dimensions. As such, it becomes di�cult to comprehensively understand the relations
between all dimensions at once in the same area of the plot. However, in this paper, we propose a new
visualization method (based on tree visualization) in which multiple dimensions are shown just in a single
view without requirement of projection to the smaller dimensions.

Moreover, additional functionalities are provided in our tool that help users to gain insight into the
searching process as performed by a heuristic method. In our tool we have developed several techniques
that enable users to understand how a searching algorithm walks through and covers the design space during
its successive iterations. However, this kind of analysis is not provided in commercial tools.
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Table 1: Table of symbols for the tree model of the design space

Symbol Definition Symbol Definition

T
DS

Tree model of the design space DP The set of all evaluated design points

Seg
par

Parameters segment GP The set of global Pareto optimal points

Seg
arch�dep�obj

architecture-dependent objectives segment LP The set of local Pareto optimal points

Seg
dp

Design points segment NP The set of non-Pareto optimal points

|Seg| Number of levels in a segment Sub Abbreviation for subspace

LV L Abbreviation for level k Total number of subspaces in the T
DS

par Abbreviation for parameter map (p) The mapping of the application onto the

n Total number of parameters architecture components for the design point p

4. Multi-Objective DSE Visualization

In all visualizations, graphical elements are used as a visual syntax to represent semantic meaning. This
mapping of information to visual elements is called visual encoding. A simple example is the mapping of
temperature to a color scale from blue to red. Cool and warm colors may be used to represent low and high
temperatures, respectively. The visual variables are considered as the fundamental building blocks of any
visualization. In our proposed visualizations, several visual variables are used, such as size, line width, line
style, color, shape, Saturation, blinking, etc.

Information visualization systems have two main components [39]: representation and interaction. The
representation component involves the way that data is mapped to the visual form. Subsequently, the inter-
action component allows a user to directly manipulate the representation for more e↵ective data exploration
and help users to deal with large volumes of information. In this section, we focus on the first aspect of visu-
alization systems and explain how we visualize the design space exploration process. In the next section, we
describe several interactions provided in VMODEX, such as filtering, zooming, hiding, details on demand,
etc., that enable designers to explore the data from various perspectives and discover additional insights.

4.1. Modeling the Design Space as a Tree

As it is conceptually shown in Fig. 3(a), we model the design space as a tree. In this section, we explain
how a design space can be modeled as a tree.Table 1 presents the set of mathematical symbols that are
used for constructing the tree model of the design space. The tree has three segments: the parameters,
architecture-dependent objectives and design points. Equation 2 formally describes tree segments.

T
DS

= Seg
par

+ Seg
arch�dep�obj

+ Seg
dp

(2)

The parameters and design points segments are explained in this section while the architecture-dependent
objectives segment will be described in the next section.

4.1.1. Parameters Segment
In this segment, each level shows one parameter of the design space, such as the number of processors in

the MPSoC platform. So, the number of levels in this segment is equal to the total number of parameters
in the design space; formally:

Seg
par

= LV L
par1 + LV L

par2 + ...+ LV L
parn

|Seg
par

| = n
(3)

For better understanding the process of modeling the design space as a tree, an example is shown in Fig.
3(a). In the tree illustrated in this figure, the design space has four parameters thus there are four levels in
the parameters segment, which are:
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(a) An example DSE tree. The example shows 11 architecture instances and 10 unique evaluated design
points, 4 of which are globally Pareto optimal. Note that all the global Pareto optimal points are local
Pareto points as well. So, they will be shown in both the global and local Pareto levels.

Processing Time Max  Min  Energy Consumption Max  Min  

(b) Color legends

Figure 3: Modeling the design space as a tree. The tree has three segments: the parameters, architecture-dependent objectives
and design points.

1. Number of processors level: this level shows the number of processors (independent of their type), which
are allocated for executing the application tasks. In this particular example, the desired maximum
number of processors is two and therefore there are two nodes at this level indicating one or two used
processors.

2. Processors type level: nodes at this level represent di↵erent combinations of processor types. Each
node becomes a child of the node at the previous level that shows the number of processors used
in its combination. In this example, the platform architecture consists of one Application Specific
Instruction Processor (ASIP) and two microprocessors (mPs). Note that only those combinations are
shown, which lead to the platform instances that are capable of executing the application (feasible
combinations). For instance, in this example, using only one ASIP is not su�cient for executing the
application and thus there is no node in the tree that indicates one ASIP.

3. Number of memories level: this level shows the number of memories used in a platform instance.
4. Memory types level: at this level, the type of memories is shown. In this example, there are two types

of memory: one Static RAM (SRAM) and one Dynamic RAM (DRAM).

By modeling the design space as a tree, there is no limitation on the number of design variables as each
parameter is located at one level of the tree. Therefore, we can easily visualize multivariate data. It should
be mentioned that, in principle, the designer has total freedom of ordering the parameters in the levels of
the tree. However, putting more important parameters higher up in the tree facilitates the information
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organization in such a way that it produces sub trees, which are more likely to show a better view of the
design space characteristics. Because the more important design points (according to the design parameters)
are clustered in only one sub tree, the designer can easily select that sub tree to investigate and compare
these design points. On the other hand, by putting more important parameters down in the tree, the design
points with the same parameter are distributed in several sub trees.

4.1.2. Design Points Segment
this segment includes the design points searched by the MOEA. Here, a design point is defined as a

specific instance of the architecture platform as well as a task and communication mapping. Each point
is shown as a node, which is a child of its corresponding architecture. This means that, for each solution,
its parents at the previous levels show its design parameters. For instance, the solution labeled by ”Global
Pareto 2” has the following architectural components: two processors, of which one is an ASIP and the other
one is mP, and two memories, of which one type is DRAM and another type is SRAM. Design points are
distributed in three levels: global Pareto, local Pareto and non-Pareto. There is also another level in this
segment, called distance level, which is used for categorizing the non-Pareto points based on their distance
from parents. Thus, the design points segment consists of four levels, as follows:

Seg
dp

= LV L
gp

+ LV L
lp

+ LV L
dis

+ LV L
np

|Seg
dp

| = 4
(4)

Global Pareto level. This level shows the true Pareto points found by the MOEA. The solutions at this level
are better than all other solutions in the entire design space; formally:

LV L
gp

= {p | p 2 GP}
GP = {p 2 DP | @p0 2 DP : p0 < p}

(5)

The solutions in the global Pareto optimal set has the following two properties:

1. They are non-dominated with respect to each other (no one is absolutely better than another one);
formally: 8 p, p0 2 GP : p ⇠ p0

2. Each point that is not part of the global Pareto set, is dominated by at least one global Pareto point;
formally: 8 p 2 (DP �GP ) 9 p0 2 GP : p0 < p

In this paper, we simply refer to the global Pareto optimal solutions as Pareto optimal solutions.

Local Pareto level. By modeling the design space as a tree, it is divided into exclusive subspaces. Each
subspace represents a unique combination of design parameters (in our case, a unique instance of the
architecture platform). On the other hand, solutions inside a subspace have exactly the same architecture
components (have the same parents at the parameter levels) but the way that the application is mapped
onto those components is di↵erent. Fig. 4 illustrates the concept of subspaces. It shows the same tree as
Fig. 3(a). However, in this figure, the four subspaces of the design space that contain some evaluated design
points are indicated by contour lines and are labeled from Sub1 to Sub4. For instance, all design points
in the subspace Sub4 have two microprocessors and one SRAM memory in their underlying architecture.
However, the binding of application tasks and channels to these resources is di↵erent. In total, there are 11
subspaces in the example shown in Fig. 4. Actually, The number of nodes at the last level of the parameters
segment (memory type level in Fig. 4) indicates the number of subspaces. Thus, we can consider the tree
model of the design space as a union of several subspaces:

T
DS

=
k[

i=1

Sub
i

(6)

For each p, p0 2 Sub
i

following conditions are true:

1. 8 j 2 {1, 2, .., n} par
j

(p) = par
j

(p0)
2. map(p) 6= map(p0)
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Figure 4: Illustration of the subspaces of the design space. The four subspaces that contain some evaluated design points are
indicated by contour lines and are labeled from Sub1 to Sub4.

At the local Pareto level, the local Pareto points are shown. In each subspace, the Pareto optimal
solutions are called local Pareto. Thus, a design point is called a local Pareto point if within the design
points with the same architecture components (same allocation) but with di↵erent mappings (di↵erent
binding), there is no point dominating that one. So, it is an optimal solution with respect to a specific
architectural instance. However, in the entire design space, a design point might exist which dominates the
local Pareto point. Equation 7 gives a formal definition of the local Pareto concepts:

LV L
lp

= {p | p 2 LP}

LP =
k[

i=1

LP
i

LP
i

= {p 2 Sub
i

| @ p0 2 Sub
i

: p0 < p}

(7)

It is clear that all the global Pareto points are local Pareto points as well. However, not all the local
Pareto points are global Pareto points and therefore we use a relation node at the global Pareto level to
make a connection between them and the previous level. These nodes are labeled with ”R” in Fig. 3(a).
Equation 8 describes this relation between the global Pareto and local Pareto sets:

p 2 GP ) p 2 LP , p 2 LP ; p 2 GP (8)

Non-Pareto level. All the other design points are placed at the non-Pareto level. Each non-Pareto point is
dominated at least by one point in the local Pareto set of its corresponding subspace (LP

i

); formally:

LV L
lp

= {p | p 2 NP}
NP = {p 2 DP | 9 p0 2 LP

i

: p0 < p}
(9)

Each non-Pareto point becomes a child of a local Pareto point, which dominates it. If a design point is
dominated by more than one local Pareto point, we calculate the Euclidean distance, in the objective space
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(see Section 2.2), between the dominated point and each dominating local Pareto point and the design point
becomes the child of the local Pareto point with the smallest distance. A smaller distance means that the
points are more similar according to the objectives.

Distance level. For easier interpretation and better analysis of the design points, the children of a local
Pareto point are categorized into two groups according to their Euclidian distance from their parent. If
the distance between a non-Pareto point and its corresponding local Pareto point is more than a certain
threshold (determined by the designer), it becomes a child of a ”High” distance node, otherwise it becomes
a child of a ”Low” distance node. Thus, there are two types of nodes at the distance level; formally:

LV L
dis

= {d | d 2 {Low,High}} (10)

4.2. Showing Objectives

Various features can be considered as objectives for design space exploration of embedded systems, such
as processing time to complete a particular task or application, power consumption, energy consumption,
architecture cost, latency, utilization, temperature, physical size, weight and so on. We classify objectives,
which are considered in the DSE process, in two groups: primary objectives and secondary objectives. The
primary objectives are directly used in optimization process and depending on their values the optimization
algorithm walks through the design spaces to find optimum design points with respect to the primary
objectives. The secondary objectives are not considered as optimization goals. However, they provide
supportive information and help designer to do further analysis on the characteristics of design points.

The primary objectives are directly shown in the DSE tree and therefore just by looking at the DSE
tree the designer can see their values. However, the secondary objectives only are shown when the designer
selects to see them. If the designer is interested to know about the secondary objectives for some specific
solutions, it is possible to click on those solutions to see their secondary objective values.

4.2.1. Showing Primary Objectives in the DSE Tree
For representing the primary objectives in the DSE tree, we have divided these objectives into two groups:

1. Objectives that are only dependent on the architectural components, denoted as obj
arch�dep

2. Objectives that are dependent on the mapping, denoted as obj
map�dep

Those primary objectives that are only dependent on architectural components (not mapping) are shown
in the architecture-dependent objectives segment. An example is the architecture cost as shown in Fig.
3(a). These objectives can be computed after the parameters segment, since all components are known.
Furthermore, all design points with the same architecture have the same value in terms of these objectives.
Therefore, we add an extra segment between the parameters and design points segments, which shows the
values of architecture-dependent objectives for di↵erent architectures. The definition of the architecture-
dependent objectives segment is as follows:

Seg
arch�dep�obj

= LV L
objarch�dep1

+ LV L
objarch�dep2

+ ...+ LV L
objarch�depm1

|Seg
arch�dep�obj

| = m1

(11)

Where m1 is the number of architecture-dependent objectives. In Fig. 3(a), the cost is shown with a
di↵erent shape; a circle, since it is an objective and not a design parameter. For a better view, the size
of the circle becomes bigger as the cost increases. In the case that more primary objectives exist, which
are only dependent on architectural components, such as weight, physical size, etc., extra levels can be
added in architecture-dependent objectives segment in which each level shows one objective. For better
distinguishing di↵erent objectives, each one can be shown with a di↵erent color and shape, like rectangle,
trapezoid, pentagon, etc. In each subspace, the values of architecture-dependent objectives for all design
points are the same. For instance, in Fig. 4, the cost of all design points in Sub4 is 160. Formally, For each
p, p0 2 Sub

i

the following condition is true:

8j 2 {1, 2, ..,m1} obj
arch�depj (p) = obj

arch�depj (p
0)
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Figure 5: An example of representing solutions with 6 objectives. The following visual variables are used for showing the
objectives: node color (processing time), third dimension color and size (energy consumption), size of the circle (architecture
cost), texture density (average utilization), size of the glow (temperature) and size of the trapezoid (weight).

Those objectives that are dependent on the mapping (binding application tasks and channels to the
hardware components) are shown in a design point node. In Fig. 3(a), there are two primary objectives that
are dependent on the mapping: the processing time (i.e. the time needed to execute the given application)
and energy consumption of the whole system. The color of the node itself represents the processing time.
Colors are varied from yellow to red with all color grades in between. Nodes with the lowest processing time
are yellow and nodes with the highest processing time are red. The size and color of the third dimension
of a design point node shows the energy consumption. As the energy consumption increases, the size of the
third dimension becomes bigger and its color becomes darker. The color legends for processing time and
energy consumption are shown in Fig. 3(b).

Parameter nodes, however, do not represent single design points and therefore do not have the direct
notion of processing time or energy consumption. For this reason, there are some options to color the param-
eter nodes: based on the average, minimum, or maximum of either processing time or energy consumption
of the design points in their sub trees. The color of parameter nodes that have no data node (i.e., do not
have any DSE data) is white. In Fig. 3(a), the minimum processing time is chosen for coloring parameter
nodes.

It should be mentioned that although we only show three objectives (architecture cost, processing time
and energy consumption) in this paper, VMODEX is able to easily visualize more than three objectives. For
those objectives that are only dependent on the architectural components, extra levels can be added in the
architecture-dependent objectives segment. Showing more objectives that are dependent on the mapping is
also easy. Each node has some attributes like shape, orientation, size, color, transparency, texture, border,
glow, etc. Each attribute can be assigned to one objective. For the purpose of illustration, Fig. 5 shows
an example of representing a solution with six objectives. In this figure, texture density indicates average
utilization (denser texture means higher utilization), the size of the glow shows the temperature (bigger
glow means higher temperature) and the size of the trapezoid indicates the weight (bigger trapezoid means
heavier weight). The other three objectives are the same as Fig.3(a). Note that the examples shown in
Fig. 5 would become the tree nodes in our DSE tree (For the case that we have 6 objectives). Since in the
DSE tree the architecture-dependent objectives (e.g. cost and weight) are shown as separate nodes in the
segment Seg

arch�dep�obj

, the corresponding nodes are drawn above the 3D rectangle. Fig. 5(a) represents
a solution that is superior to the solution shown in Fig. 5(b) with respect to the all six objectives. Thus,
the solution in Fig. 5(a) has a lower processing time and energy consumption, and its average utilization is
higher. It also produces less heating and it is cheaper and lighter.

As we described above, our visualization tool is extendable to show more than three objectives. However,
multi-objective design space exploration problems are usually based on only two or three objectives, typically
performance, cost and power. The maximum number of objectives that we found in related work is six [40].

4.2.2. Showing the Mapping Decision
In the Sesame simulator as well as in many other system-level simulation frame-works, the application

behavior is modeled as a process network. A process network is a computational model of the application
and uses a directed graph notation, where each node represents a process and each edge represents a one-way
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Figure 6: (a) An example of process network with five processes (A-E) and six channels (1-6), (b) Mapping decision visualization.
The shape and the color of each node represent the type of the processor executing the corresponding process. The color and
the style of each line represents the type of the communication, (c) Mapping legend.

(FIFO) communication channel between two processes. Fig. 6(a) represents an example process network
graph, which has five processes (A-E) and six communication channels (1-6).

We visualize the process network graph in a way that shows the mapping decisions as well. That means
that it shows how the application is being mapped to the underlying architecture both in terms of processes
and communication channels. The shape and the color of each node in the graph represent the type of
the processor executing the corresponding process. For example, a green rectangle for one processor type
and a blue pentagon for another type. If there are multiple processors of the same type in the platform
architecture, then they are di↵erentiated using di↵erent variants of the same color such as light green and
dark green.

If two communicating processes are mapped onto the same processor, then their communications are
done internally and therefore communication channel(s) between them are mapped onto the processor in
question. In the process network graph these internal communications are represented by a solid line with
the same color as the corresponding processor. In the case that a channel is mapped onto an external
memory, a dashed line is drawn. The color of the line and style of the dash represents the memory type.
Memories with the same type are shown by the same dash style but with di↵erent variants of the same color.

Fig. 6(b) shows how our visualization model shows the process network graph from Fig. 6(a). As can
be seen in this figure, processes A, B, C and channels 1 and 2 are mapped to the same processor (ASIP-1).
Process D is executed on the same processor type but on a di↵erent processor as process A (ASIP-2). The
type of the processor executing process E is di↵erent from the others since it is shown with a blue pentagon
(mP). Channels 3,4,5 and 6 are mapped to memories (not processors) as they are shown with dashed lines.
Channels 3 and 4 are mapped to the same memory (DRAM-1). Channel 6 is mapped to another memory
but with the same type (DRAM-2) and Channel 5 is mapped onto a di↵erent memory type because it has
a di↵erent dash style and di↵erent color (SRAM).

Note that the colors assigned to each processor type or memory type in the visualization of the mapping
decision are the same as colors used in the visualization of utilization, latency and processes execution time
(these visualizations will be explained later). For instance, in all of them the ASIP processor is shown by a
green color. Thus, these visualizations are consistent with each other and the designer can easily understand
the e↵ect of di↵erent mapping decisions on the utilization of architecture components as well as processes
execution times and read/write latencies.

4.2.3. Showing Secondary Objectives
Since the secondary objectives are not used in the optimization process and do not have any e↵ect on the

exploring procedure, we do not show them directly in the DSE tree. However, if the designer is interested to
know about the secondary objectives for some particular solutions, it is possible to click on those solutions
to see their secondary objective values. The secondary objectives provide additional information and help
the designer to do more in-depth analysis on the characteristics of design points. VMODEX is designed to
show various properties of design points, which are considered as secondary objectives. Thus, the designer
is able to look at the evaluated data from di↵erent perspectives and thereby gets a comprehensive view on
the problem under study. Furthermore, for better understanding and easier analysis, we propose several
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Figure 7: Utilization visualization. For each component, the
size of the colored part represents the percentage of the time
that it was busy.
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Figure 8: Visualization of processes execution time. For each
process node, the size of the colored part represents the per-
centage of time that its assigned processor was executing it.

visualization techniques for showing the secondary objectives. In the following subsections the provided
secondary objectives and their visualization methods are described.

Showing Utilization. For better understanding the utilization of each separate hardware component and also
for easier comparison between di↵erent design points, we have visualized the utilization property. In this
paper, utilization is defined as the percentage of the time that a hardware component was busy. For visual-
izing the utilization, the platform architecture is shown as a directed graph in which each node represents an
architectural component and the edges show connectivity between components. Each node (component) is
filled with its corresponding color (see subsection 4.2.2) in a way that the size of the colored part represents
the percentage of the time that the corresponding component was busy. The components in the platform
architecture that are not allocated are shown by gray borders. The average utilization is written at the
bottom of the visualization.

Fig. 7 shows an artificial example of utilization visualization for a platform architecture consisting of two
Application Specific Instruction Processors (ASIPs), two microprocessors (mPs), one Static RAM (SRAM)
and two Dynamic RAMs (DRAMs). In this example, the mP-1 is not allocated since it is shown by gray
border. The utilization of ASIP-1 and DRAM is 100% while for the Bus it is almost 75% and for the
other components it is less than 50%. By visualizing the utilization, besides understanding the utilization of
each architecture component individually, the designer is able to see how these components are connected
together, operate with each other and which resources are shared.

Showing Processes Execution Time. VMODEX also allows to modify the mapping visualization in such a
way that it shows the processes execution time as well. Thus, it also shows the amount of time that each
process was executed by the processor onto which it has been mapped. In the mapping visualization, the
shape and color of each process in the process network graph represent the type of the processor executing
the corresponding process. To add information about how long a processor was busy with executing a
process, instead of fully coloring the process nodes in the graph, the size of the colored part represents the
percentage of time that its assigned processor was busy executing it. Fig.8 shows the same mapping decision
as shown in Fig.6(b), but the processes execution time information is added. From this figure we can see
that processor ASIC-1 was executing process B in most of its busy time, while executing process A and
C took relatively a small amount of time. The processes execution time visualization enables designers to
easily explore the e↵ect of di↵erent mappings on the execution time of processes.

Showing read/ write latency. Similarly, VMODEX is also capable to show the amount of time that each
process is waiting for read and write communications. Since in process network graph the communication
channels between processes are shown, we visualize it in a way that shows the read and write latencies as
well. The color-coding, from blue to red, is utilized to represent the waiting time. In Fig.9(b) the color
legend for latency is shown. In the process network graph, each process node is divided into two halves. The
color of the top part shows the write latency and the color of the bottom part represents the read latency.
By clicking on each part, the exact value of latency is shown. The mapping information is also added to the
latency visualization as well. Therefore, the designer can easily investigate the e↵ect of di↵erent mappings
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Figure 9: Latency Visualization. The color of the top part shows the write latency and the color of the bottom part shows the
read latency. The shape and color of the third dimension of each process node represent the type of the processor executing it.

on the latency. The shape and color of the third dimension of each process in the graph represent the type of
the processor executing the corresponding process (similar to the mapping visualization). Fig. 9(a) shows an
example of latency visualization. In this figure, processes B and C have high write latencies since the color
of their top parts are red. By including mapping information in the latency visualization we can understand
that the reason of these high latencies is because of mapping channels 3 and 4 on the same memory (both
of them are shown by dashed red lines). Thus, processes B and C are competing with each other to write
to the shared memory. For the other processes both the read and write latencies are relatively low.

Note that our proposed latency visualization can be used to show both relative and absolute latencies.
Actually, from the visualization side, it gets some values and maps them to the color, based on the color-
coding scheme. So, it is dependent on the simulation model that which kind of latency (absolute or relative)
is evaluated. In our case, the absolute latency is used.

Showing Processing Time of Processor Operations. Basically, processors perform three operations: read,
write and execution [2]. There is an option in VMODEX to see the percentage of time that a processor was
doing each operation separately. To show this, for each processor in the architecture platform, a stacked
bar chart is drawn. Each operation is shown as a stack in the bar with a di↵erent color. The stack height
represents the percentage of time that the processor was performing the corresponding operation. Fig. 10
represents an example of visualizing the processing time of di↵erent processor operations for a platform
architecture consisting of two ASIPs and one mP.

Showing Generation Numbers. In some cases, the designer wants to know what interesting design points are
evaluated in which search generations. Therefore, we have developed a method in VMODEX that allows
the designer to easily find out this kind of information. During the process of design space exploration
using an MOEA, some design points that are near to the optimal solutions may be regenerated in di↵erent
generations. There is an option in the VMODEX user interface to show the generation numbers. By selecting
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Figure 10: Visualization of processing time of processor opera-
tions. The stack height represents the percentage of time that the
processor was performing the corresponding operation.

(a) (b)

Figure 11: Visualization of the generation numbers. For
each generation, a hexagon is drawn. The red hexagons
indicate those generations in which the desired design
point was evaluated.
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that option, for each design point node in the DSE tree, a hexagon will be drawn at the upper left corner
of the node. The number of the last/first (chosen by the designer) generation in which the corresponding
design point was generated is written inside the hexagon.

Moreover, the designer is also able to select a specific design point and see all the generation numbers in
which the design point was evaluated. Fig. 11 shows the visualization approach for showing the generation
numbers. For each generation, a hexagon is drawn. The size of the hexagons increases from the first to the
last generations. To save space, these pentagons are nested together. If within a generation the selected
design point is found, then the color of the pentagon representing that generation is red. Otherwise, a
gray pentagon is drawn. Fig. 11(a) shows the situation that the corresponding design point is close to the
optimum. Since it is regenerated in many search generations during the entire search. But in Fig. 11(b) the
corresponding design point is generated in only two generations. This indicates that the design point is far
from the optimal solutions and after a few generations it is not regenerated any more.

Showing Exact/Normalized objective values. Instead of showing objectives with visual variables (color and
size), VMODEX can also show the exact values of processing time and energy consumption. It also represents
the normalized value of the objectives. We normalize objective values to make them scale independent. At
the end of normalization, all design points get values in the range [0, 1] for their objective values.

4.3. Edge Visualization

Edge visualization helps designers to navigate through the DSE tree and easily find more important
parts. One feature of the design points is chosen as an importance factor and then the tree edges are
visualized according to that factor, as follows:

• A minimum and maximum edge width is defined, and this range is linearly mapped against the range
of importance factor values.

• A specific color with various saturations is chosen. Similar to the line width, a linear mapping is done
between the maximum and minimum saturation and the importance factor values range. Darker edges
represent more important parts and lighter edges show less important subtrees.

In VMODEX, two importance factors are defined: minimum Euclidian distance and last generation
number. In the following we explain these factors.

Minimum Euclidian Distance. For each design point, the Euclidian distance (in the objective space) between
a solution and the nearest global Pareto optimal point is calculated. A smaller distance indicates that the
solution is closer to the optimal solutions and therefore is better. Thus, in the DSE tree, the edges in the
path from the root to the global Pareto optimal points are the thickest and darkest since the distance is
zero (see 3(a)). As the distance increases the edges become thinner and lighter. In this manner, just by
looking at the DSE tree, the designer can easily determines which parts of the design space contain optimal
and near optimal solutions and which parts contain solutions that are far away from the optimal solutions.

Last Generation Number. The number of the last generation in which a design point is evaluated can be
considered as an importance factor. As the MOEA gradually converges to a set of Pareto optimal points,
we expect better design points in the later generations. The edge visualization can show the progress of
the searching algorithm in exploring and covering the design space during its generations. The edges with
a higher generation number in their subtrees (i.e. the design points in their subtrees are evaluated in the
later generations) are thicker and darker. As a result, the paths from the root to the last generated data
nodes are the darkest and thickest paths.

As the importance factors are not applicable for edges that have no data nodes in their sub tree, these
edges are shown by gray dashed lines.
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4.4. Visualization of the Design Space Coverage

In VMODEX, we provide a technique to show how a heuristic searching algorithm walks through the
design space and accesses new parts of the design space during its exploration process. To do this, a
color-coding scheme is used to color the parameter nodes based on the generation number in which a design
parameter is explored for the first time. Thus, the color of each parameter node represents the first generation
that a design point, containing that parameter, is evaluated. On the other hands, for each parameter node,
the number of the generation in which the first design point is added to its subtree, is used for coloring the
node. For visualizing the design space coverage, the green color with variations in lightness and saturation
is used, such that the color of parameter nodes, which are searched in the earlier generations, is light green.
The color of nodes becomes darker as they are investigated at the later generations. Therefore, the designer
can easily see how a searching algorithm covers di↵erent parts of the design space during its successive
iterations. In Section 6, an example of this visualization is shown for our case study results (Fig. 15(b)). In
Fig. 15(a), the color legend for visualizing the design space coverage is shown.

5. Interactive Exploratory Techniques

User interaction plays an essential role in the e↵ective visualization of data and information. It allows
users to explore and work with the data actively to investigate the data from di↵erent perspectives. In-
teractive visualizations are very useful in analyzing data and can provide new insights that could not be
obtained using static graphics or statistical methods. Interactivity means that users cannot only observe
the visualization but moreover play with it. The visualization changes in response to the users actions and
enable users to create customized views that are more interpretable and informative to be able to find hidden
patterns in the data and complex relationships among variables. Colin Ware [41] notes,

”The best visualizations are not static images to be printed in books, but fluid, dynamic artifacts
that respond to the need for a di↵erent view or more detailed information” (p. 385).

A user cannot be expected to deal with a single image consisting of thousands of information elements.
Therefore, we have provided a set of interaction techniques in VMODEX to help designers to handle large
design spaces and to analyze the data and explore the search results from di↵erent perspectives and at
multiple levels of abstraction in order to find out interesting and important features that may not be found
just by looking at the DSE tree visualization.

5.1. Zoom

Zooming and scrolling are traditional tools in visualization; they are quite indispensable when large trees
are explored. In our visualization tool, besides normal zooming and scrolling, we provide two extra zooming
features for augmenting the exploration process: bird view and satellite view.

Bird view provides overview (context) and detail (focus) on the same screen by allowing users to view
items at di↵erent scales. The aim of bird view is to enlarge items closer to the users point of interest while
compress the objects that are farther away from the interested region. Bird view is a window moving with
the mouse-pointer and works like a magnifier.

Satellite view, gives an overall, smaller scale view of the entire scene, which allows the user to navigate
quickly across the view. It also enables the user to zoom in on certain parts of the scene to focus on certain
nodes in the tree without losing track of the position in the entire scene.

5.2. Hiding nodes

In VMODEX, two options are provided to reduce the number of visible nodes in the DSE tree in order
to make its size smaller for better and more e↵ective exploration. It should be mentioned that by hiding
some nodes, we recalculate the location of visible nodes in the tree to optimize their fit on the screen. This
means that, the empty spaces from the hidden nodes are occupied by the visible nodes. Note that the order
of the visible nodes in the tree will not be changed. So, the structure of the tree remains the same.
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Hiding Sub Trees without Exploration Data. Since we use heuristic search techniques, some areas of the
design space may not be visited by the searching algorithm (e.g., they are not interesting enough). So, we
do not have any evaluated design points for those parts. In VMODEX, it is possible to hide the sub trees of
the nodes that have no evaluated data. This way, the designer can focus on the explored sub trees, which
are more important. However, if the designer is interested to see the entire design space (both evaluated
and not evaluated parts), there is another option in the tool that shows all parts of the design space. In this
case, the color of parameter nodes that are not visited by the searching algorithm is white. So, the designer
can easily recognize which parts of the design space are not searched during the exploration process.

Hiding Uninteresting Sub Trees. If the designer is not interested in some parts of the tree, then he is able
to hide them in order to make the tree smaller and pay more attention to other nodes. By double clicking
on a node, its sub tree collapses (becomes invisible) and a blue triangle appears at the bottom of the node
specifying that the children of the node are hidden. The size of the triangle represents the size of the sub
tree. The bigger the triangle is, the more nodes in the sub tree exist. By double clicking again, the sub tree
expands (becomes visible) and the blue triangle is removed. If the designer is interested to know the exact
number of nodes in a hidden sub tree, by clicking its corresponding triangle the amount of nodes is shown.

5.3. Filtering

The filtering option allows designers to easily filter out parts of the solutions, which are not required for
further investigation, and view only preferred design points. Therefore, the designer can focus on the more
interesting design points and find the similarities/dissimilarities between them. Various kinds of filtering
are available based on di↵erent designer preferences. The combinations of di↵erent filtering approaches are
also possible. The filtering results can be shown in three ways: view all design points that fall within the
filtering conditions or only see local Pareto optimal points or only global Pareto optimal points.

Filtering Based on the Objective Values. In some cases, the designer wants to consider only design points
with some specific objective values (e.g. design points with the best processing time). The value of each
objective is controlled by a range slider bar, in which the designer can set upper and lower limits on that
objective. Design points with objective values inside the selected ranges are visible and the others become
invisible. Therefore, the designer has the ability to easily view only design points with preferred objective
values and find out the relationships between them.

Filtering Based on the Design Parameters. VMODEX allows designers to hide the parts of the design space
that are not being considered for further analysis to pay more attention to the more interesting parts. For
instance, the designer may not be interested in design points with more than four processors. Then it is
possible to hide those subtrees in the DSE tree that contain more than four processors and focus only on
those parts of the design space that contain design points with the preferred parameters.

Filtering Based on the Distance from the Global Pareto Optimal Set. In the multi-objective context, the
goodness of a design point can be evaluated by its distance from the Pareto optimal set. The smaller the
distance the better the solution. This distance measure is the Euclidean distance (in the objective space)
between the design point and the nearest member of Pareto optimal set. In VMODEX, we provide a filtering
option based on this distance measure. The designer is able to define a distance threshold and then filters
the design points to see solutions that have lower/higher distance values than the threshold. Furthermore,
as in VMODEX both the design parameters and objectives are shown in a single view, the designer can
easily understand which parts of the design space contains solutions that are close to/far away from the
Pareto optimal set.

Filtering Based on the mapping decision. For better analyzing the e↵ect of di↵erent mappings on the ob-
jective values, we provide the following filtering option. The designer can specify some constraints on the
mapping and then filters the design points to see only those solutions that not violate the specified mapping
constraints. After that, it is possible to investigate the values of di↵erent objectives for the design points,
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which satisfy the mapping restrictions and find out the influences of mapping decisions on the objective
values. There are three ways for defining a mapping constraint:

1. Some specific tasks (determined by the designer) are mapped on the same processor, without specifying
the type of the processor. In this case, we can study the e↵ectiveness of the internal communications
between them as well as comparing the results of using di↵erent processor types for executing those
tasks.

2. Some specific tasks are not mapped on the same processor. So, we can investigate the e↵ect of using
(shared) memories for their communications.

3. For one or more tasks a specific processor type is determined to be mapped to. In this case, we can
investigate the e↵ect of other tasks mappings on the objective values.

5.4. Step by Step Animation
Since exploring the design space is an iterative process, it is important to know how a searching algorithm

walks through the design space and trace its progression in finding new design points and covering the
design space during successive iterations. In VMODEX, we provide an interactive user interface that allows
designers to follow the evolutionary exploration process during numerous generations. This interface is
called step-by-step animation. The designer chooses an arbitrary generation number as a start point. At
this step, the DSE tree shows only those design points that are found in the specified generation number or
in earlier generations. Then, the designer can move forward or backward in generations to see the dynamic
exploration. When moving through the generations (i.e., replaying parts of or even the entire search process),
it is important to know in each generation which new design points are found (added to the DSE tree). To
show this, the design points generated in the current generation are blinking. If a parameter node, which
had no data node in the previous step, receives its first data node in the current generation, it starts blinking
as well. Therefore, the designer can easily notice that some new parts of the design space are visited for the
first time in the current generation. For the hidden sub trees, in case of any data node addition, the blue
triangle starts blinking and if the user is interested in viewing that sub tree, it can be expanded as well.

5.5. Details on Demand
Because of limited screen space as well as high data complexity, showing every detail for all design

points is impractical. Therefore, generally, in proposing a visualization method, only the most important
data features are shown directly in the visualization and detailed information for interesting parts is shown
just after the user requests them. In VMODEX, a variety of detailed information are provided, enabling
designers to interpret the evaluated design points from di↵erent aspects and gaining additional insight into
the underlying information. This detailed information has been described earlier in the previous section and
are called the secondary objectives. By right clicking on an interesting design point, a pop-up menu appears
that shows the available detail options. The user can simply select the desired detailed information from
the list and see it.

5.6. Adjusting DSE tree Appearance
In VMODEX, there are some options for modifying the way that the DSE tree looks, based on alternatives

for showing/hiding sub tress, coloring the parameter nodes and tree edges.

Showing/Hiding Sub trees. As we explained in Section 5.2, the designer can choose to see the entire design
space or only those parts of the design space that are visited by the searching algorithm. Furthermore, it is
possible to hide the sub tree of a (uninteresting) node by double clicking on it.

Coloring Parameter Nodes. As we described in Section 4.2.1, parameter nodes do not represent single design
points and therefore do not have the direct notion of processing time or energy consumption. For this reason,
we provide some options to color the parameter nodes based on the average, minimum, or maximum of either
processing time or energy consumption of the design points in their sub trees. The color of parameter nodes
that have no data node (i.e., do not have any DSE data) is white.

Another option for coloring the parameter nodes is based on the generation number in which the searching
algorithm could get access to that part of the design space for the first time. (See Section 4.4)

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ASIC-DCT! ASIP!mP! ASIC-VLE!

DRAM!mC!SRAM!

DFIFO-1!

DFIFO-2!

Bus-1!
Bus-2!

Figure 12: Heterogeneous multi-processor system-on-chip
architecture model with 5 processors, 2 shared memories
and 2 dedicated point-to-point FIFOs.
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Figure 13: M-JPEG encoder process network graph with 8
processes and 17 FIFO channels.

Coloring and Thickness Regulation of Tree Edges. As we explained in Section 4.3, there are two options for
visualizing the tree edges based on the minimum Euclidian distance or the last generation number.

6. A Case Study

In this section, we present a real application case study to illustrate the benefits of using visualization
in the design space exploration process. In this case study, we map a Motion-JPEG (M-JPEG) encoder
to a heterogeneous multi-processor system-on-chip platform architecture consisting of a general-purpose
microProcessor (mP), a microController (mC), an Application Specific Instruction Processor (ASIP) and
two Application Specific Integrated Circuits (ASIC-DCT and ASIC-VLE). For communication, the platform
architecture contains two dedicated point-to-point FIFOs (between mP and ASIP) and two shared memories;
one Static RAM (SRAM) and one Dynamic RAM (DRAM), each one is accessible through a common bus.
Note that the evaluated design instances only use a subset of the platform resources, based on the mapping of
application tasks and communication channels onto the platform resources. Fig. 12 represents our MP-SoC
architecture model and Fig. 13 shows the M-JPEG encoder application.

In our case study, an mC or an mP processor can execute all the di↵erent processes in the M-JPEG
application while an ASIP can execute only three processes, namely: DCT, Q and RGB2YUV. The ASIC-
DCT is designed for executing the DCT process and ASIC-VLE is dedicated for executing the VLE process.

The design space that we consider in this study has four parameters: number of processors, processor
type, number of memories and memory type. Each architecture platform instance is indicated by a unique
combination of these parameters. Those combinations that lead to the platform instances that are capable of
executing the application are denoted as Possible Combinations. We formulated the design space exploration
problem as a multi-objective optimization problem [42]. Using the NSGA-II multi-objective evolutionary
optimizer [10], we intend to find a set of optimal design points (in terms of alternative architectural solutions
and mappings) under three criteria: processing time, energy consumption and architecture cost. For this
study, we run the MOEA for 100 generations with 100 individuals per population. Therefore, 10000 design
points are searched by the MOEA. In this experiment, we have used the uniform crossover with probability
0.9. The mixing ratio between two parents is 0.5 (i.e. the o↵spring has approximately half of the bits
from first parent and the other half from second parent). The mutation probability 2 is 0.23 and the bit
mutation probability 3 is 0.01. For evaluating design points in terms of aforementioned criteria, we used
the Sesame system-level simulator. In our case study, the processing time varied by factor of 6.4, energy
consumption by factor of 4.45 and architecture cost by factor of 10.25. These large variations indicate the
need for automated exploration and optimization.

It should be mentioned that the goal of this case study is to illustrate how our proposed visualization
methods can help designers to gain additional insights. Actually, for evaluating the e↵ectiveness of our
proposed visualization tool and examining how successful it is in generating insights, we performed a real

2i.e., the likelihood of mutating a particular individual.
3i.e., the likelihood of mutating each bit of an individual in mutation.
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Figure 14: Platform instances that are not visited by the MOEA. The white nodes represent those parts of the deign pace that
have no evaluated design point.

case study and used our tool to explore the results and see what new and unexpected insights we can gain
from the tool that is very hard (if not impossible) to find out those insights from the raw data.

VMODEX allows designers to look at the evaluated design points and explored design space from di↵erent
perspectives and analyze the results at multiple levels of abstraction. In the following subsections, we analyze
the M-JPEG case study with respect to the following issues: 1) design space coverage, 2) The characteristics
of the global Pareto optimal points, 3) investigating the absence of ASIC-VLE in the Pareto optimal set,
and 4) studying the e↵ects of executing the DCT process by di↵erent processor types on design criteria.

6.1. Design Space Coverage

Since we use an evolutionary algorithm (instead of exhaustive search) for exploring the design space,
the searching algorithm may not visit some parts of the design space. Therefore, there is no evaluated data
for those parts. However, it is essential that a searching algorithm achieves a broad coverage of the design
space. This means that the algorithm is able to find solutions in as many as possible di↵erent regions of the
decision space, even if those solutions are not Pareto-optimal. In this case, the exposed solutions represent
the variety of possible designs in the decision space and enable the designer to do a more comprehensive
study on the relationship between design parameters and their e↵ects on the design criteria. Furthermore, a
higher diversity and coverage in the searching algorithm also means that there is a higher chance of finding
the global optimal solutions rather than the local optimum ones (the algorithm does not get trapped in local
optimum points in the design space). The spread of design points in the design space can help the algorithm
to escape from such local optima.

Using VMODEX, the designers can easily see the parts of the design space that are covered/not covered
by the MOEA. This tool clearly shows which parts of the design space contain evaluated solutions and which
parts are not searched at all (no design point is evaluated there). As we have described before, parameter
nodes with a white color and dashed line have no data. In our case study there are 99 possible combinations
of design parameters. By visualizing the exploration results, we could find out that more than 90% of
possible platform instances are searched (91 out of 99). For platforms with two and three processors, all
the possible combinations are searched. Further, only a few combinations of platforms with four and five
processors have not been visited by the MOEA. Those parts of the design space that are not investigated
during the exploration process are shown in Fig. 14. In this figure, minimum processing time is used for
coloring the parameter nodes. The white nodes represent the combinations that are not searched by the
MOEA. For instance, there is no evaluated design point that consists of four processors of the types ASIC-
DCT, ASIC-VLE, ASIP and mP and two memories of which one is DFIFO-1 and another one is DRAM
(this platform instance is indicated by subtree A in Fig. 14). However, the color of the node labeled with
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Figure 15: Visualization of design space coverage for our case study. For each parameter node, the color of the node represents
the number of the generation that the searching algorithm visited that part of the design space for the first time (i.e. generation
when a solution appeared).

”2” in this subtree (at the number of memories level) indicates that the other combinations of two memories
such as one DRAM and one SRAM are searched.

Next, we are going to study how our MOEA walked through the design space and found new architecture
platform instances during its search iterations. We used the visualization of design space coverage option in
VMODEX to understand the searching behavior of the MOEA in the design space. By selecting this option,
parameter nodes are colored based on the generation number in which the searching algorithm gained access
to that part of the design space for the first time. Therefore, the color of the parameter nodes, which are
searched in the earlier generations, is lighter and those parameters that are visited in the later generations are
darker. In our case study, we found that most of the architecture platform instances (possible combinations
of design parameters) are searched in the 15 first generations. Actually, in our initial population, which is
generated randomly, 58 unique instances are visited and then until the 15th generation totally 86 (out of 99)
possible combinations are searched. In the next generations, the algorithm could found 4 more instances
and after the 65th generation it could not find any new combination of design parameters. Fig. 15(b) shows
the visualization of design space coverage for our case study. Since the size of the DSE tree representing the
entire design space is large and it is not possible to include it here, this figure shows only four processors
architecture instances. Furthermore, the four last combinations that are found by the algorithm are in
this part of the design space. So, we can easily see which architecture instances are searched in the later
generations.

As can be seen in this figure the color of most parameter nodes is light green, which indicates that those
parts of the design space are searched in the beginning generations. Only four nodes (denoted by A-D)
are colored with darker green, which points out that those architecture instances are visited in the later
generations. The number written at the bottom of these nodes shows the number of the first generation
during which the algorithm has investigated them.

As we described before, the size of the blue triangle at the bottom of each node represents the number
of design points in its subtree. From Fig. 15(b) we can see that the platform instances containing four
processors of the types ASIC-DCT, ASIP, mC and mP (subtree indicated by S) are searched more often by
our MOEA since nodes in this subtree have the biggest triangles.

In Fig. 15(b), the minimum Euclidian distance is used as an importance factor for edge visualization.
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Figure 16: Global Pareto optimal points found by the MOEA (denoted by P1-P17). 15 unique combinations of architectural
components lead to the 17 Pareto optimal points.

Cost level

Global Pareto

level

Therefore, the edges in the path from the root to the global Pareto optimal points are the thickest and
darkest (black color) since the distance is zero. From Fig. 15(b) we can see that among four processors
platform instances only one of them leads to the global optimal design points, which is indicated by subtree
S. So, this explains why the searching algorithm evaluated more design points in subtree S, as, in this part
of the design space it has found design points that are closer to the optimum solutions. Within subtree S,
two combinations of memory types yield optimum solutions. The two architecture instances that contain
optimum design points in their subtrees are denoted by P1 and P2.

6.2. The Characteristics of the Global Pareto Optimal Points

Fig. 16 shows the global Pareto optimal points found by our MOEA. By looking at the picture, the
designer can immediately recognize the characteristics of the Pareto optimal points, which are the best
design points with respect to the design criteria. As in the DSE tree both design parameters and objective
values are shown in a single view, the designer can easily find out which combinations of architectural
components yield optimum design points and what the trade o↵ is between objective values. As can be seen
in Fig. 16, in our case study, fifteen unique combinations of architectural components lead to the seventeen
Pareto optimal points. The variety of architecture cost in the Pareto optimal set is quite large. The cost
is varying from the cheapest one to almost the most expensive one that have been encountered during the
whole search (approximately 10x (195/20)). For the processing time, except the design point with a single
processor architecture (labeled by ”P1” in Fig. 16) all the other points have relatively good processing
time. The normalized value of the processing time (excluding P1) is in the interval [0, 0.21]. The energy
consumption of all the found Pareto optimal points is relatively low. Its normalized value is in the range
[0,0.16].

Now we are going to analyze the discovered Pareto optimal points in terms of design parameters. From
Fig. 16 we can see that, in our case study, there is no Pareto optimal point with five processors. This
means that with less processors (which is cheaper) we can get the same or better processing time and
energy consumption. Therefore, using five processors is not appropriate for this application. Another
interesting feature is that most of the obtained Pareto optimal points (10 out of 17) contain two processors
in their underlying architecture. Thus, maybe two processors architectures are more suitable for executing
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(a) Minimum processing time is used for coloring parameter nodes. For all platform instances containing ASIC-VLE
(indicated by A1-A12), the processing time is quite high (the color of node is red).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

(b) Minimum energy consumption is used for coloring parameter nodes. For all platform instances containing ASIC-VLE
(indicated by A1-A12), the energy consumption is quite high (the color of node is dark violet).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Figure 17: Possible combinations of processor types

our application. It can also be seen that there is no Pareto optimal point with four memories. So, the
communications between processors can be done e�ciently with less memories. Furthermore, we can see
that the processor ASIC-VLE, which is dedicated for executing the VLE process, is never used in the Pareto
optimal set. In the next subsection we are going to find out the reason of this remarkable property.

6.3. Investigating the Absence of the ASIC-VLE in the Pareto Optimal Set

As we can see in Fig. 16, there is no Pareto optimal point that contains ASIC-VLE in its underlying
architecture. By looking at the DSE tree representing the entire design space, we can find that there are
several evaluated design points that use ASIC-VLE. Thus, our MOEA could access the parts of the design
space that contain ASIC-VLE. However, the quality of design points in these parts with respect to the design
criteria is not optimal and they are dominated by the solutions in the other parts. Fig. 17 shows all the
possible combinations of processor types. To make the picture fit here, di↵erent alternatives with respect to
the number and types of memories are not shown. Thus, only the first two levels of the parameter segment
are shown (i.e. the number of processors and processor types). In Fig. 17(a) the minimum processing time
and in Fig. 17(b) the minimum energy consumption is used for coloring the parameter nodes. As can be
seen in these two figures, in all of the platform instances containing ASIC-VLE, both the processing time
and energy consumption is quite high.

We use filtering options provided in VMODEX to realize why both the processing time and energy
consumption are significantly increased when using an ASIC-VLE. First, we filter design points based on
their primary objective values. We were interested to see all design points which are relatively good in
both processing time and energy consumption (their normalized value is in the range [0, 0.2] for both
objectives). There was no restriction in the architecture cost objective. We found out that in all of them
three processes V-Out, VLE and Control are mapped to the same processor. We did similar filtering to
see those design points that are extremely poor in both (their normalized value is in the range [0.8, 1.0]
for both objectives). Then, we could recognize that in all of them, the three aforementioned processes are
mapped to di↵erent processors. Thus, we can conclude that the communications between these processes are
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(a) VLE is mapped to the same processor as V-Out
and Control. Both processing time and energy
consumption are relatively good.

V-In! DMUX!

Control!

V-Out!

VLE!DCT! Q!
YUV!
RGB2!

(b) VLE is mapped to the dedicated ASIC-VLE
processor. Both processing time and energy
consumption are quite high.

ASIC-DCT ASIC-VLE ASIP mP mC 

DRAM 

SRAM 

DFIFO-1 
DFIFO-2 

(c) Legend for shape and color of processor and memory types

Figure 18: Mapping decision (with and without ASIC-VLE). Objective values are shown at the left side of mapping visualization.

much more intensive than the communications between other processes.The reason for this is that over these
channels tables for Hu↵man encoding are being transmitted (see [43]). However, for the other processes,
the communications are all the same as they communicate pixel blocks, which are small units of data.
Therefore, using shared memories for these communications causes large overheads that can actually make
the system slower. However, if these communications are done internally (mapping in the same processor)
the mapping is much more e�cient with respect to both processing time and energy consumption. As
ASIC-VLE is dedicated for executing the VLE process, by using it, the processes V-Out and Control have
to be mapped on the other processors and therefore their communications will be done externally using
shared memories, which is not e�cient. Thus, even though using an ASIC implementation for the VLE
process is computationally e�cient, because of its intensive communication, it is not an e↵ective solution.
In Fig. 18 we illustrate this conclusion with an example. This figure represents the mapping decisions of
two design points in which they have exactly the same mapping for all the processes except for VLE. In
Fig. 18(a) the VLE process is mapped to the mP (the same processor as V-Out and Control) and in Fig.
18(b) it is mapped to the ASIC-VLE. From the visualization of their objective values we can see that they
are significantly di↵erent in both processing time and energy consumption. The legend for shape and color
of processor and memory types are shown in Fig. 18(c).

6.4. Studying the E↵ects of Executing the DCT Process by Di↵erent Processor Types on Design Criteria

In the M-JPEG application, the DCT is the most computationally intensive process and therefore it
is essential to be mapped on the processor that is optimal for executing it. We are going to investigate
how the values of processing time and energy consumption change by running the DCT on di↵erent types
of processors. To do that, we use mapping filtering. From the previous discussion we understand that if
three processes V-Out, VLE and Control are not mapped on the same processor, regardless of the mapping
of the other processes, the processing time and energy consumption are quite high. So, in this study, we
assume that these three processes are mapped on the same processor and then we examine the influences
of di↵erent mappings for DCT on the objective values. Using mapping filtering, we could find out that
if DCT is mapped to ASIC-DCT or ASIP both the processing time and energy consumption is relatively
good. But, by executing the DCT on the mC or mP, we cannot get any satisfactory solution. To illustrate
this conclusion, an example is shown in Fig. 19. This figure represents the mapping decisions of four design
points in which the mappings of all processes excluding DCT are the same. The variation on mapping the
DCT are shown in Fig. 19(a) to Fig. 19(d). From the visualization of the objective values we can see the
e↵ect of each mapping on processing time and energy consumption.
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(a) DCT is mapped to the dedicated ASIC-DCT
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(b) DCT is mapped to the ASIP
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(c) DCT is mapped to the mC
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(d) DCT is mapped to the mP

Figure 19: Illustration the e↵ects of executing DCT process by di↵erent processor types on design criteria.

The analysis we performed in this section would have been very cumbersome and time consuming to
do by only looking at the raw data or by using traditional 2D/3D graphs. Several traditional graphs are
needed in order to interpret the data like we did. However, using VMODEX, a single visualization view of
the design space enables very powerful and rapid analysis of the DSE data.

7. Comparing Subspaces

As we described in Section 4.1, in VMODEX, the design space is modeled as a tree and this kind of
modeling causes the design space to be divided in several subspaces. Each subspace represents a unique
instance of the architecture platform. On the other hand, solutions inside a subspace have exactly the same
architecture components (have the same parents at the parameter levels) but the way that the application
is mapped onto those components is di↵erent. We have provided additional functionality in VMODEX to
allow designers to evaluate and compare the properties of interesting subspaces from various perspectives.

Fig. 20 represents the design space of our case study, which is visualized by VMODEX. This figure shows
only those parts of the design space that are compared with each other in this section. To make the picture
smaller to be able to put it here, only global and local Pareto points are shown and non-Pareto points are
not displayed. In the DSE tree shown in Fig. 20 there are five subspaces, which are indicated by dashed
contour lines and are labeled from S1 to S5. For instance, the subspace S1 consists of one ASIP, one mC,
one DRAM and one SRAM. Thus, all design points in this subspace utilize these architecture components
(same resource allocation) but their task and communication bindings are di↵erent. In each subspace, the
Pareto optimal solutions found by a MOEA are called local Pareto optimal solutions, which are optimal with
respect to a specific architectural instance. However, in the entire design space, a design point might exist
which dominates the local Pareto point. In the following subsections, we explain the techniques VMODEX
provides for analyzing and comparing the properties of discovered design points in di↵erent subspaces. We
use these techniques for comparing the properties of the five local Pareto optimal sets, which are labeled by
LPS1 to LPS5 in Fig. 20.

The concept of local Pareto solutions and proposing some methodologies for evaluating and comparing
di↵erent local Pareto optimal sets (like we explain here) is a new point of view in the multi-objective DSE
process and has not been considered before. Such comparison is, however, essential to the designer as it
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Figure 20: Subspaces of the design space. Five subspaces are indicated by dashed contour lines and are labeled from S1 to S5.

provides insight into the landscape of the design space and can help him to comprehensively understand
the properties of the discovered design points in di↵erent subspaces of the explored design space. Using
VMODEX the designer is able to select the interesting subspaces and compare them with respect to the
di↵erent aspects, which are explained in the following subsections.

7.1. Distance from the Global Pareto Optimal Solutions

A subspace containing local Pareto optimal solutions, which are closer to the global Pareto optimal set,
is more preferable. The distance can be measured in two ways: 1) the number of solutions in a local Pareto
optimal set which are also in the global Pareto optimal set, and 2) the average of Euclidian distances (in the
objective space) between the solutions in a local Pareto optimal set and the nearest member of the global
Pareto optimal set.

In the DSE tree, both distance measures can simply be evaluated. Just by looking at the tree, one can
easily recognize which solutions of a local Pareto optimal set are in the global Pareto optimal set as well.
For those solutions, their parents (in the tree) are Pareto optimal nodes; otherwise they become children of
a relation node. For example, in Fig. 20, two solutions (out of three) in the set LPS2 are globally Pareto
optimal. However, in the other sets, none of the solutions are in the global Pareto optimal set (their parents
are relation nodes).

The second distance measure can be seen directly in the DSE tree as well. The color and thickness of
edges show the distance from the nearest global Pareto optimal solutions. The edges in the path from the
root to the main Pareto optimal solutions are the thickest and darkest since the distance is zero. As the
distance increases the edges become thinner and lighter. The value of the average distance between solutions
in a local Pareto optimal set and global Pareto optimal set is shown at the bottom of the local Pareto set
(denoted by d̄). If the designer is interested to know the exact value of the distance measure for a particular
solution, then the distance value is shown by clicking the corresponding edge. For example, in Fig. 20,
the average distance for LPS2 is 0.01 which means that solutions in this set are quite close to the Pareto
optimal set. However, the solutions in set LPS5 are relatively far from the global Pareto optimal set since
their edges are thin and light and the average distance is 0.38.
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7.2. Coverage of Local Pareto Sets

Ziztler and Thiele [44] introduced the Coverage (C) metric, which directly compares two Pareto optimal
sets with each other. The metric C(P1, P2) calculates the proportion of solutions in Pareto optimal set P2

which are weakly dominated at least by one solution in P1:

C (P1, P2) =
|{p0 2 P2|9 p 2 P1 : p  p0}|

|P2|
(12)

Where  is the weakly dominance relationship. For two solutions p and p0 it is said that p weakly
dominates p0 , if p is not worse than p0 in all objectives. In fact, the function C maps the ordered pair (P1, P2)
to the interval [0, 1]. The value C (P1, P2) = 1 means that all members of P2 are weakly dominated by P1

and C (P1, P2) = 0 represents the situation where none of the solutions in P2 are weakly dominated by P1.
Note that for fully understanding the dominance relations between two Pareto optimal sets, both directions
C (P1, P2) and C (P2, P1) have to be considered, since C (P1, P2) is not necessarily equal to 1 � C (P2, P1).
The C metric compares only two sets with each other. Thus, for comparing more than two sets, we propose
a new metric called Total Coverage (TC), as follows:
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j

, P
i
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Where n is the number of comparing sets. TC > 0 means that the dominating rate is higher than the
dominated rate and the TC < 0 implies that the solutions are more dominated by the other sets than they
dominate solutions in the other sets. Therefore, a set with a bigger TC value is better. In VMODEX, the
designer is able to select the interesting local Pareto sets and compare them using the TC metric. For better
understanding the dominance relations between sets, we visualize this metric. A directed weighted graph is
used for visualizing the TC metric. Each comparing set is shown as a node in the TC graph. For each two
sets P1 and P2, if C (P1, P2) 6= 0 then an edge is drawn from P1 to P2, of which the weight is equal to the
C value. In the case of C (P1, P2) = 0, there is no edge from P1 to P2. Due to the summation property, we
can break up a summation across a sum or di↵erence. Therefore, we can rewrite the TC formula as follows:
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According to the TC graph, the first sum in Equation 14 is equal to the sum of the weights of outgoing
edges and the second sum is equivalent to the sum of the weights of incoming edges. Thus, for each node in
the TC graph, the value of TC metric is calculated by the sum of the weights of outgoing edges minus the
sum of the weights of incoming edges:

TC (P
i

) =
X

(Outgoing Edges)�
X

(Incoming Edges) (15)

The size of the nodes in the graph indicates the TC value. Therefore, nodes with higher TC values are
bigger. Because the TC value greater than zero (means more dominating) or less than zero (means more
dominated) have completely opposite meaning, we demonstrate this property in the nodes color. Nodes with
TC > 0 are shown in blue while nodes with TC < 0 are shown in red. Fig. 21 shows the visualization of
the TC metric for sets LPS1 to LPS5 shown in Fig. 20. As can be seen in this figure, all solutions in LPS5

are dominated by all the other comparing sets (there are four incoming edges from LPS1 to LPS4 with the
weight 4/4 = 1), while there is no solution in LPS5 that dominates a solution in the other sets (LPS5 does
not have any outgoing edge). Thus the TC value for LPS5 is less than zero (TC = �4) and this node is
shown by a red color. Furthermore, we can understand that solutions in LPS1 dominate all the solutions
in set LPS3, while no solutions in LPS1 are dominated by any other sets, since there is no incoming edge.
Moreover, we can see that half of the solutions is LPS4 are dominated by solutions in LPS2. As a result,
LPS1 has the highest TC value (biggest node in the graph) and thus is the best local Pareto optimal set
among the comparing sets with respect to the TC metric.
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Figure 21: Visualization of the TC metric. The size of the nodes indicates
the TC value. Nodes with TC > 0 are blue and with TC < 0 are red.
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Figure 22: Visualization of the C metric. Cross
symbol indicates the dominated solutions.

If the designer is interested to know more about the dominance relation between each two sets, such as
which solutions in one set dominate which solutions in the other set, it is possible to select those sets to
see more details. To this end, we visualize the dominance relation between two sets as follows. Solutions in
both sets P1 and P2 are shown in two di↵erent rows. If a solution in P1 dominates a solution in P2, an arrow
is drawn between them coming out from the solution in P1 to the solution in P2. Furthermore, a cross is
displayed at the dominated solution in P2 to show that this solution is dominated by another one. Fig. 22
shows the visualization of the dominance relation between two local Pareto sets LPS1 and LPS3. From this
figure, we can understand that all solutions in set LPS1 dominate all the solutions in LPS3 and therefore
LPS1 is absolutely better than LPS3. The architectural components of each local Pareto set are shown
on the left side of each set. As can be seen in Fig. 22, both local Pareto sets have the same components
except that in LPS3 the ASIP is replaced by mP. Using an mP instead of an ASIP is not beneficial since it
increases the cost but does not yield a better processing time nor a better energy consumption.

7.3. Size of the Dominated Region

In [44], the Hypervolume (HV ) metric is proposed, which measures how much of the objective space is
dominated by a given Pareto optimal set. Fig. 23 illustrates the Hypervolume metric. In this figure, the
back points are the Pareto optimal solutions and the gray region represents the Hypervolume metric for two
objectives (f1 and f2) where these objectives are to be minimized. Each point in the gray region is dominated
at least by one member of Pareto optimal set. The reference point (W ) can simply be found by constructing
a vector of worst objective values. A set with a larger Hypervolume is desirable. We use this metric to
compare the local Pareto optimal sets in di↵erent subspaces of the design space. Moreover, we visualize
this metric to clearly show which area of the objective space is dominated by solutions in a local Pareto set.
Fig. 24 represents the visual form of the Hypervolume metric for two local Pareto sets LPS1 and LPS5

shown in Fig. 20. Each side of the cube shows one objective. The colored region indicates the dominated
area in the objective space. For better vision, each side of the cube is colored with the corresponding color
scheme in the DSE tree. Black lines in the colored region denote the solutions in a local Pareto optimal set.
Since we have used the normalized value of objectives, the reference point is W = (1, 1, 1). The normalized
values of processing time (PT ) and energy consumption (EC) for each solution, is written at the bottom
of the cube. As can be seen in Fig. 24, in set LPS1 almost half of the objective space is dominated while
only a small portion of the objective space is covered by the solutions in the LPS5. Using the Hypervolume
visualization, it is possible to see the dominated parts of each objective separately. For instance, in Fig. 24
the energy consumption and processing time surfaces are almost completely covered for LPS1 while only
half of the cost surface is dominated.

7.4. Sensitivity of Subspaces to Di↵erent Mappings on Design Criteria

In studying the properties of a certain subspace (i.e. specific platform architecture instance), it is a
worthwhile issue to investigate how the objective values are being changed with modifying the mapping
decisions. In this paper, we propose a visualization method for exploring the sensitivity of each subspace
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Figure 23: Illustration of the HV met-
ric. The gray region indicates the area
in the objective space that is domi-
nated by the Pareto optimal solutions.
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Figure 24: Visualization of the HV metric. Each side of the cube shows one
objective. The colored region indicates the dominated area in the objective space.

to di↵erent mappings on the objective values. To do this, the frequency distribution of objective values in
each subspace is visualized to see the range as well as the frequency of objective values that can be achieved
with a specific architecture instance by using di↵erent mappings. Since all solutions in a subspace have the
same architecture cost, the frequency distribution is not applicable for this objective and should only be
considered for the other two objectives: processing time and energy consumption.

For each objective, a horizontal axis from 0 to 1 is drawn and colored like the color-coding technique
used for showing that objective in the DSE tree. For example, in our case, colors from yellow to red are used
for representing the processing time and therefore, this color scheme is used for coloring the corresponding
axis in the frequency distribution visualization. The height of each color bar in the (color-coded) objective
axis indicates the number of design points with the objective value inside that range. Fig. 25 shows the
visualization of the frequency distribution for three subspaces. Fig. 25(a) shows the frequency distribution
of solutions in a subspace that contains an ASIP, mP, DFIFO-2 and SRAM. This subspace is indicated as
S2 in Fig. 20. As can be seen in this figure, for all design points, both the processing time and energy
consumption is relatively good (less than 0.5). Therefore, for this particular architecture, with di↵erent
mappings we can get approximately good design points. So if the designer is looking for a system that
can flexibly deal with di↵erent mappings, this architecture is a good solution. The subspace in Fig. 25(b)
consists of an ASIP, mC, mP, DFIFO-2 and SRAM, which is denoted as S4 in Fig. 20. In this subspace,
both the processing time and energy consumption are varying from the best to almost the worst. However,
the processing time and energy consumption of most design points are approximately good. Therefore, if
the designer is interested in this platform architecture instance, he should take care about the mapping
because a wrong mapping decision can make the di↵erence between the best or the worst design point.
Fig. 25(c) represents the frequency distribution of subspace S5 in Fig. 20. This subspace is made up of
following components: ASIC-DCT, ASIC-VLE, ASIP, mP, DFIFO-2, DRAM and SRAM. As can be seen in
this figure, for all design points, both the processing time and the energy consumption are extremely poor.
Even with di↵erent mappings, we cannot get an acceptable design point. Thus, this architecture is not a
suitable solution for our case study.

Therefore, by using the frequency distribution visualization, the designer is able to analyze the e↵ect
of di↵erent mappings on the design criteria for a certain architecture instance. Furthermore, it is easy to
compare the sensitivity of di↵erent subspaces with respect to the mapping decisions.
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Figure 25: Visualization of frequency distribution of objective values for three subspaces.

8. Conclusion

VMODEX is an interactive visualization tool, which is developed for visualizing multi-objective design
space exploration of embedded systems that are based on heterogeneous multi-processor system-on-chip
architectures. It provides insight into the search process of heuristic searching algorithms that are typically
used in the DSE process. It helps designers to understand how such algorithms explore the design space
during their iterations and converge towards the optimal design points. It should be mentioned that although
in this paper we choose the Sesame simulator for evaluating design points and MOEAs for searching the
design space, our visualization tool is not restricted to neither evaluating approach nor searching mechanism.
It can easily be used for di↵erent types of evaluating methods as well as searching strategies.

The tree model that we propose in this paper for visualizing the design space enables us to easily
visualize multivariate data. There is no limitation on the number of neither design parameters nor criteria.
Furthermore, in our DSE tree model, the concepts of subspaces and local Pareto points are proposed, which
are new points of view in the multi-objective DSE process and has not been considered before.

VMODEX also enables very powerful and rapid analysis of DSE results. Designers can look at the data
from di↵erent perspectives and at multiple levels of abstraction. Several interactive capabilities are provided,
which allow designers to play with data and find out some interesting and important features that may not
be found just by looking at the static visualization.

To summarize the di↵erent visualization approaches that we proposed in this paper, Fig. 26 shows all
our proposed visualization methods together with the graphical tricks that we used for visualizing them.
Furthermore, in this figure, we clarify how these visualizations are related to each other.
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Figure 26: summarization of all our proposed visualization approaches together with their relations with each other
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