
System-level MP-SoC Design Space Exploration
Using Tree Visualization
Toktam Taghavi, Andy D. Pimentel, Mark Thompson

Computer Systems Architecture group
Informatics Institute, University of Amsterdam

Amsterdam, The Netherlands
{T.TaghaviRazaviZadeh, A.D.Pimentel, M.Thompson}@uva.nl

Abstract— The complexity of today’s embedded systems forces
designers to model and simulate systems and their components to
explore the wide range of design choices. Such design space ex-
ploration is especially needed during the early design stages,
where the design space is at its largest.

Due to the exponential design space in real problems, evaluat-
ing and comparing every single point in the design space is infea-
sible. Therefore, heuristic search techniques, such as Evolutionary
Algorithms (EA), are often used to search the design space for
optimum design points using only a finite number of design-point
evaluations. Understanding how the design space was searched by
such searching algorithms and providing insight into the “land-
scape” of the design space, may be of invaluable importance to the
designer, To this end, this paper presents a novel interactive visu-
alization application, based on tree visualization, to understand
the search dynamics of an evolutionary algorithm and to visualize
where the optimum design points are located in the design space.

Keywords— Design space exploration, multimedia MP-SoC de-
sign, visualization, evolutionary algorithms.

I. INTRODUCTION
The complexity of today’s embedded systems forces design-

ers to start with modeling and simulating system components
and their interactions in the very early design stages. It is there-
fore crucial to have good tools for exploring a wide range of
design choices, especially during the early design stages, where
the design space is at its largest. In the Sesame framework [1,2],
a modeling and simulation environment is developed for the
efficient design space exploration of multimedia embedded
systems that are based on heterogeneous Multi-Processor Sys-
tem-on-Chip (MP-SoC) architectures. Models in Sesame are
defined at a high level of abstraction and capture only the most
important characteristics of the components in the system.

Because Sesame maintains independent application and ar-
chitecture models and relies on the co-simulation of these two
models in the performance evaluation of the composed embed-
ded system, it is in need of an explicit mapping step which re-
lates application tasks (i.e., processes) onto architecture com-
ponents (typically processors). Each mapping decision taken
in this step corresponds to a single point in the design space. In
order to achieve an optimal design, the designer should ideally
evaluate and compare every single point in this space. However,
such exhaustive search quickly becomes infeasible, as the de-

sign space grows exponentially with the sizes of both applica-
tion and architecture model components.

In general, to trim down an exponential design space into a
finite set of points, which are more interesting (or superior)
with respect to some chosen design criteria, design space prun-
ing is used. In [3], the mapping decision problem is formulated
as a multi-objective combinatorial optimization problem in
which three criteria are considered: the processing time, power
consumption and cost of the architecture. To solve this problem,
an Evolutionary Algorithm (EA) has been used to achieve a set
of best alternative mapping decisions under the aforementioned
multiple criteria. To this end, it searches the design space over
several iterations, called generations, during which the EA
converges to an optimum.

As the searched design space still is vast, interpreting all ev-
aluation data and understanding how the EA searched through
or pruned the design space is also cumbersome. Such analysis
is, however, essential to the designer as it provides insight into
the “landscape” of the design space (e.g., indicating which de-
sign parameters are more important than others). Moreover, it
allows tool designers to optimize their design space exploration
algorithms to reduce search times.

To address these problems, this paper presents a novel inter-
active visualization application to understand how an evolu-
tionary algorithm, such as presented in [3], searches the design
space and where the optimum design points are located. In that
respect, we visualize the design space as a tree and show how
the EA searches through the design space over different gen-
erations. To give a rough feeling of how such a visualization
looks like, Fig. 1 shows a screenshot of our visualization appli-
cation.

Data visualization in the context of embedded systems de-
sign, and especially for understanding the process of design
space exploration, is novel and hardly addressed in this domain.
This paper, therefore, focuses on introducing and presenting
the concepts for visualization of EA-based searches through
vast design spaces. A follow-up paper will show how these
visualization techniques can be actually applied to real design
case studies. The remainder of this paper is organized as fol-
lows. Section II describes related work. In Section III, we ex-
plain how a design space can be modeled as a tree. Section IV
introduces some techniques we provide in our visualization to
be able to handle large trees. In Section V, we describe specific

Fig. 1 Screenshot of the tree visualization

capabilities that have been added to the tree to show the search
process of the EA in the design space. Section VI presents a
small case study with a Motion-JPEG encoder application to
reiterate the benefits of using visualization in the design
exploration process. Finally, Section VII concludes the paper.

II. RELATED WORK
In the field of computer architecture simulation, and espe-

cially in the area of system-level design space exploration, little
research has been undertaken on visualization of simulation
data in exploring alternative architectural solutions. Most of the
visualization work in this area focuses on educational purposes
(e.g., [4,5]), or only provides some basic support for the visu-
alization of simulation results in the form of 2D (and some-
times 3D) graphs.

The work of [6,7] provides advanced and generic visualiza-
tion support, but tries to do so for a wide range of computer
system related information which may not necessarily be ap-
plicable to computer architecture simulations and in particular
to design space exploration, with its own domain-specific re-
quirements.

In [8], an interactive visual tool is presented to visualize the
results from system-level design space exploration experiments.
The simulation results are visualized using a coordinated,
multiple-view approach which enables users to understand the
information through different perspectives. It is possible to

compare different design points with respect to various charac-
teristics and gain more insight in the performance landscape of
the design space. But this tool does not provide any insight in
the searching process as performed by e.g. an EA. For example,
there is no way to distinguish between the design points
searched and evaluated in the different generations.

There are only a few research efforts addressing the visuali-
zation of EAs. Most visualization approaches are simple line
plots. Commonly, a diagram of the population’s fitness versus
generation number is used to study the quality of the solutions
over the generations [9]. Although such a diagram shows the
improvements in the quality of the solutions considered during
EA search process, it does not show anything about the proper-
ties of the solutions being searched, or the regions of the search
space being explored.

More complex techniques have focused on how to display
the progress of the EA in variables (parameters) space or objec-
tives space [10,11]. Usually they use 2D or 3D plots in which
one axis represents the generation numbers and the others show
variables or objectives. Therefore, two separate views are
needed to show the distribution of the population in both vari-
ables and objectives spaces. Furthermore, due to the large
number of dimensions in practical problems, techniques such
as Sammon Mapping [12] should be used to transform higher
dimensional search spaces into smaller ones. Tree visualization,
as presented in this paper, enables us to easily visualize more
than three dimensions as well as to show variables and objec-
tives in one view.

III. TREE VISUALIZATION

A. Modeling the design space as a tree
We visualize the design space as a tree in which each level

shows one aspect of the design space such as the number of
processors, type of processors, etc. Because of the human
visual limitation to three dimensions, most of the commonly
used techniques for visualization can visualize data sets de-
pendent on two or three variables. Modeling the design space
as a tree enables us to easily visualize multivariate data without
the limitation on the number of variables as each level of the
tree shows one dimension of design space. Furthermore, both
categorical and numerical data types can be shown in one view.
Variables which are more distinctive and are more important
should be located at the higher levels of the tree.

A simple scenario is depicted in Fig. 2, illustrating a tree
model of a small design space. In this case, the design space
has three parameters: number of processors (maximum 2 pro-
cessors), type of processors (one general purpose microproces-
sor (mP), two ASIPs and two Application Specific Integrated
Circuits (ASICs)) and scheduling policy (static). These param-
eters are shown in the first three levels of the tree. Leaves show
the mapping decision corresponding to a single point in the
design space, i.e., which application process is mapped onto
what resource. We should note that Fig. 2 is just for illustration
purposes; in reality, we can deal with larger systems having
more processors, processor types, etc.

Fig. 2 Modeling design space as a tree

We refer to leaf nodes as data nodes and all other nodes as

parameter nodes. Colors of the nodes can be used to show
properties of the nodes. For example, in Section V.C we use
the colors to visualize the performance. The order of the sibling
nodes (nodes with the same parents) can also specify some-
thing. Here, they are just alphabetically ordered.

One of the drawbacks of the tree presented in Fig. 2 is that
all the data nodes are at the same level and, as the number of
design points increases, the tree becomes wider and more diffi-
cult to explore. Furthermore, it is hard to distinguish between
sibling leaves. In the next section, we introduce a clustering
mechanism to group the design points based on particular fea-
tures.

B. Clustering
Clustering helps a user to easier interpret the design points

and prevent the tree of becoming deformed and too wide. By
clustering the design points, we distribute them at some levels
instead of putting all of them at one level. Depending on the
final aim of the clustering, the user can define a similarity cri-
terion.

In this paper, the similarity criterion is mapping distance.
We define the mapping distance between two mappings as the
minimum number of application-task reallocations needed to
transform the one mapping into the other. To give an example,
let’s assume two mappings {{1}, {2, 3, 4}} and {{1, 4}, {2,
3}}. Mapping {{1}, {2, 3, 4}} means that application task 1 is
mapped onto the first processor and tasks 2, 3, 4 are mapped
onto the second processor. The distance between these two
mappings is one because one reallocation is needed to trans-
form the first to the second mapping (task 4 should be executed
on processor one instead of processor two).

We use the following algorithm to cluster the design points:
1. Put all design points (leaf nodes in Fig. 2) with the same

parent in the same cluster.
2. Choose the design point with the smallest processing

time as a cluster seed.
3. For each point in the cluster (except the cluster seed),

calculate the mapping distance between the point and
the cluster seed.

4. Put all points with the same mapping distance in the
same cluster.

Fig. 3 Clustering design points

Fig. 3 shows the same tree as in Fig. 2 after applying the

clustering algorithm, which added two extra levels to the tree:
the cluster seed level which holds the seed and the distance
level which contains the distance value. The rest of the design
points are then children of the corresponding distance node.
Therefore, our data nodes are now distributed over two levels:
the cluster seed level and the leaves.

The design points with the same parent at the cluster seed
level, have the same architecture components but the way that
application tasks are mapped onto those components is differ-
ent. This difference in mapping causes different processing
times. Clustering these design points according to the mapping

distance enables us to investigate the effects of mapping on the
processing time. For example, design points might have a
completely different processing time, but a very small mapping
distance. This shows that the application tasks which are dif-
ferently mapped are critical and mapping those tasks on the
same processors may yield good performance. On the other
hand, design points might have almost the same processing
time, but with a large mapping distance. This may show that
for the tasks mapped on different processors in these mappings,
the type of the processors is not important.

IV. HANDLING LARGE TREES
Although clustering the design points may reduce the com-

plexity of interpreting the tree data, it is still possible that the
user encounters a very big tree. To tackle this problem, we
have added several other capabilities to our visualization appli-
cation, which are explained in the following subsections.

A. Zoom
In our visualization tool, among normal zoom features, we

provide two extra zooming features for improved exploring:
bird view and satellite view.

Bird view, depicted in Fig. 4, is a window moving with the
mouse-pointer and shows a scene with a specified zoom factor
and works like a magnifier. So, by simply hovering over the
tree with the mouse-pointer, it is possible to zoom in on an area
of interest to show its details. Bird view is helpful when the
tree is big and the user wants to see the whole picture in one
scene and still wants to view the details such as the labels of
nodes.

Fig. 4 Bird View

Satellite view, shown at the bottom of Fig. 1, gives an over-
all, smaller scale view of the entire scene, which allows the
user to navigate quickly across the view. It also enables the
user to zoom in on certain parts of the scene to focus on certain
nodes in the tree without losing track of the position in the en-
tire scene.

B. Hiding nodes
To reduce the number of visible nodes in the tree to make it

smaller for better viewing, three options are provided in our
tool:

1) Hiding sub trees without data nodes
Since some areas of the design space are not visited by the

searching algorithm (e.g., they are not interesting enough so we
do not have evaluation data for those parts), it should be pos-
sible to hide the sub trees of the nodes that have no data. This
way, the user can focus on the sub trees which are more im-
portant and can easily see which parts of the tree are searched
by EA. This is depicted in Fig. 5 and Fig. 6. Here, Fig. 6 has
omitted the “empty” tree nodes, which are shown in Fig. 5 as
the uncolored nodes.

Fig. 5 The entire design space

Fig. 6 The data design space only

2) Hiding duplicate design points

During the process of design space exploration using an EA,
some design points that have a good performance may be re-
generated in different generations. Therefore, there might be
some duplicate design points in different generations. The user
can select to see only the unique design points in the tree or he
can select to see all design points generated by the EA. To dis-
tinguish copy design points from the main design points (gen-
erated in the most recent generation), the copies are stacked
behind the corresponding main design points and are sorted by
generation number.

Copies near the main design points are generated later than
copies far from the main design points. For the main design
points, the generation number is written inside a pentagon at
the bottom of the node and for the copies the generation num-
ber is shown in their tooltip. A tooltip is a small pop-up win-
dow that appears when a user hovers the mouse pointer over an
element. The pentagon will be described in more detail in Sec-
tion V.B.

For better vision, the background color of the duplicate
nodes becomes gradually lighter from front to the rear. To pre-
vent the scene from becoming cluttered, the edges between
duplicate nodes and their parents are invisible. Hiding (and
showing) duplicate design points is illustrated in Fig. 7 and 8.

Fig. 7 All design points (including duplicate nodes)

Fig. 8 Unique design points only

3) Hiding sub trees
If the user is not interested in some parts of the tree, then he

is able to hide them in order to make the tree smaller and pay
more attention to other nodes. By double clicking on a node, its
sub tree becomes invisible and a blue triangle appears at the
bottom of the node specifying that the children of the node are
hidden. The size of the triangle represents the size of the sub
tree. The bigger the triangle, the more nodes in the sub tree. By
double clicking again, the sub tree becomes visible and the
blue triangle is removed. Fig. 9 is the same as Fig. 7 in which
the children of some nodes are hidden. As can be seen in Fig. 7,
distance node ‘3’ has more children than distance node ‘2’.
This is shown by a bigger blue triangle in Fig. 9.

It should be mentioned that by hiding a node, the entire tree
will be redrawn, meaning that the empty space from that node
will be used by the other nodes. We recalculate the location of
visible nodes to optimize their fit to the screen.

Fig. 9 Hidden sub trees

C. Filtering
Sometimes, the user wants to consider only the design points

generated in some specific generation(s). For example, show-
ing only design points generated in the three last generations or
comparing design points in the three first generations with the
three last generations, and so on. Therefore, we provide a filter
option. The user can simply add (or remove) generation num-
bers to the list of generation numbers that need to be visualized.
Two kinds of filtering are available: local and global. In local
filtering, only design points with their generation numbers in
the list are visible and the others become invisible. The param-
eter nodes with at least one child in the generation list are still
visible. In global filtering, all nodes are visible but the nodes
with generation numbers inside the list become highlighted. So
the user can understand the position of the selected nodes in the
entire tree.

In Fig. 10, design points for the three last generations are
shown.

Fig. 10 (left) global filtering and (right) local filtering

V. EVOLUTIONARY ALGORITHM SPECIFIC CAPABILITIES
Apart from all the aforementioned capabilities, we also

added some more features specifically for studying the search
as performed by the Evolutionary Algorithm (EA). These fea-
tures visualize the EA generations step by step, showing which
data has been generated when and where in the tree. Further-
more, they highlight the progress of the algorithm in the tree.
The color of the nodes and edges, the texts inside the nodes, the
thickness of the edges, etc. each show a different property of
the design points.

Note that in our visualization we have the capability of
showing multiple evaluation metrics, but in this paper we con-
sider only one evaluation criterion, which is processing time. In
the future, we will also consider multiple objectives.

A. Showing Mapping Decisions
As we mentioned before, in Sesame, each mapping decision

that is evaluated, corresponds to a single point in the design
space. In the tree, each data node’s label shows the mapping

decision. For example, if a data node is labeled with “{1,3},
{2,4}”, it shows that application tasks one and three are exe-
cuted on one processor and tasks two and four are executed on
another one. The order of the task sets are in the same order as
their parents at the type level. For example, if the label of the
parent at the type level is "ASIP_mP", this means that tasks
one and three are executed on an ASIP and tasks two and four
are executed on a microprocessor (mP).

B. Showing Generation Numbers
It is important to know which design point is generated at

what EA generation. To visualize this, we use a pentagon labe-
led with the generation number. For data nodes, at the cluster
seed level, this pentagon is drawn on the upper left of the node
and for the other data nodes (data nodes in leaves) it is at the
bottom. To prevent the scene from being cluttered, the genera-
tion number of duplicate nodes is shown as a tooltip. If the
mouse pointer goes over these nodes, the generation number is
shown in a balloon. Sibling nodes at the data level are sorted
by their generation numbers.

As the EA gradually converges to a (set of) optimum design
point(s), we expect better design points in the later generations.
To show this in the visualization, the background color of the
pentagon gradually becomes darker from the first to the last
generation. Furthermore, the color and thickness of the edges
show the progress. The color of each edge is the same as the
color of the pentagon with the highest generation number in its
sub tree. Also, the edges with a higher generation number are
thicker. As a result, the path from the root to the last generated
data nodes is the darkest and thickest path. Edges that have no
data node in their sub tree are shown in gray using dashed lines.
Using this technique, it is very easy to identify which parts of
the tree are searched in the later stages and which parts of the
tree are not searched anymore. Fig. 11 illustrates how we show
the generation numbers in our visualization application.

Fig. 11 EA Generations

C. Showing the performance (processing time)
In this paper, we consider only processing time as an objec-

tive and we use color coding to show it. Colors are varied from
yellow to red with all color grades in between. Nodes with the
lowest processing time are yellow and nodes with the highest
processing time are red. In Fig. 11, the design point in the clus-
ter seed level with two processors has a lower processing time
than the design point in the cluster seed level with one proces-
sor.

Parameter nodes, however, do not represent single design
points and therefore do not have the direct notion of processing
time; only their child data nodes have. For this reason, there are
three options to color the parameter nodes: based on the aver-
age, minimum, or maximum processing time of the child data
nodes. In Fig. 11, the average processing time is chosen. The
color of parameter nodes that have no data node in their sub
trees is white.

D. Step by step animation of the EA
Our visualization application allows the user to trace the EA

search process. The user can define a desired generation num-
ber and a window size. This means that the user wants to view
the generated data ending at the desired generation number and
within the window. For example, if the desired generation
number is 10 and the window size is 4, the data generated in
generations 7,8,9 and 10 are shown. Doing so, the tree is re-
drawn and contains only the design points generated up to the
desired generation number and within the window. The user
can also move forward and backward using next and previous
buttons. For the aforementioned example, moving next means
that the generations 8,9,10, and 11 are shown. Fig. 12 shows a
snapshot of the first 4 EA generations using a step-by-step
animation.

Fig. 12 Step by step animation (desired generation is 4)

When moving through the generations (i.e., replaying parts

of, or even the entire, search process), it is important to know
which data nodes are added in each generation (i.e., new design

points, added to the population of the EA). To show this, the
design points generated in the current generation are blinking.
If a parameter node which had no data node in the previous
step, receives its first data node in the current generation, it
starts blinking as well.

For the hidden sub trees, in case of any data node addition,
the blue triangle starts blinking and if the user is interested in
viewing that sub tree, he can unhide it.

In Fig. 13, nodes with a green border are added in the fifth
generation. A green triangle indicates that its parent has at least
one new child in the current generation.

Fig. 13 Step by step animation (desired generation is 5)

VI. CASE STUDY: MOTION-JPEG ENCODER
In this section, we present a small case study with a real ap-

plication to reiterate the benefits of using visualization in the
design space exploration process. This case study is by no
means meant as an effort towards a detailed study of the design
space exploration data for a particular design. As was men-
tioned earlier, a follow-up paper will provide a detailed and
quantitative design space exploration study in which the pre-
sented visualization techniques are actually deployed.

In this case study, we map a Motion-JPEG (M-JPEG) en-
coder to an MP-SoC platform architecture that consists of five
processors: a general-purpose microprocessor (mP), two ASIPs
and two Application Specific Integrated Circuits (ASICs).
Using a multi-objective evolutionary optimizer [3], we intend
to find promising instances of this platform architecture that
lead to a good mapping (in terms of processing time) of the M-
JPEG encoder application.

It should be mentioned that the multi-objective evolutionary
optimizer in [3] considers three criteria: processing time, power,
and cost but in this case study we focus only on processing
time, while we have fixed the values for the other criteria. In
the future, we will extend our visualization to consider the
other criteria as well.

Fig. 14 shows a snapshot of the visualization of the
M-JPEG case study. Just by looking at the picture, one can
easily draw conclusions with respect to the following issues:

• Which are the parts of the design space that are not
searched at all (no design point is generated there). As
we have mentioned before, nodes with a white color
have no data. As can be seen in Fig. 14, there are e.g. no
design points (i.e., MP-SoC platforms) with five
processors or two ASICs.

• Which are the parts of the design space that are searched
more often by the EA. In these areas, the tree provides
more design points and the sub trees of the
corresponding nodes are bigger.

• Which are the design points that are frequently re-
generated. Design points with a bigger stack behind
them are re-generated more often during the EA’s
search. As can be seen in Fig. 14, the better performing
design points (node color is yellow) are repeated more
than design points with a poor performance (node color
is red).

• The number of unique design points generated by the
EA. Duplicate design points are stacked behind their
main design point.

• Which are the parts of the design space that are searched
in later generations of the EA. The edges in these paths
are thicker and darker. Subsequently, the designer can
gain insight into the characteristics of design points in
these later generations that are close to the optimum
(i.e., what characteristics make a design point to be a
good one?).

• Which are the parts of the tree that contain the better
performing design points as indicated by the color
coding.

Clearly, such visual analysis of the design space exploration
process, as described above, allows the designer to better
understand the design space he is dealing with. Moreover, it
may help to improve the EA search algorithm (e.g., using
domain specific knowledge) to more quickly converge to a
global optimum.

VII. CONCLUSION
In this paper, we presented a visualization application that

helps designers to understand the search behaviour in EA-
based design space exploration as well as to gain insight into
the landscape of the design space. That is, understanding the
characteristics of design points with good performance and the
relationships between design parameters and their effects on
performance. In our application, we provide several capabili-
ties to be able to handle large design spaces and to represent
the progress of the EA during the process of design space ex-
ploration. We have also briefly illustrated the benefits of such
visualization using a Motion-JPEG encoder case study.

REFERENCES
[1] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra. A Framework

for System-level Modeling and Simulation of Embedded Systems Archi-
tectures, EURASIP Journal on Embedded Systems, 2007, available on-
line: DOI 10.1155/2007/82123.

Fig. 14 Visualization of the M-JPEG case study

[2] A.D. Pimentel, C. Erbas, and S. Polstra. A Systematic Approach to
Exploring Embedded System Architectures at Multiple Abstraction
Levels, IEEE Transactions on Computers, vol. 55, no. 2, pp. 99-
112,(2006).

[3] C. Erbas, S. Cerav-Erbas and A.D. Pimentel. Multiobjective
Optimization and Evolutionary Algorithms for the Application
Mapping Problem in Multiprocessor System-on-Chip Design, IEEE
Transactions on Evolutionary Computation, pp. 358-374, Vol. 10
(No. 3), June 2006.

[4] P. Marwedel, B. Sirocic. Multimedia components for the visualiza-
tion of dynamic behavior in computer architectures, in the Proc. of
the Workshop of Computer Architecture Education, 2003.

[5] C. Yehezkel, W. Yurcik, M. Pearson, D. Armstrong. Three simulator
tools for teaching computer architecture: Easycpu, little man com-
puter, and rtlsim, Journal on Educational Resources in Computing
(JERIC), vol. 1, no. 4, pp. 60-80, 2001.

[6] R. Bosch, et al, Rivet: A flexible environment for computer systems
visualization, SIGGRAPH Computer Graphics, vol. 34, no. 1, pp.
68-73, 2000.

[7] R.P. Bosch. Using Visualization to Understand the Behavior of
Computer Systems, PhD thesis, Stanford University, 2001.

[8] T. Taghavi, A. D. Pimentel, and M. Thompson. Visualization of
Computer Architecture Simulation Data for System-level Design
Space Exploration, in the Proc. of Int. Symposium on Systems, Ar-
chitectures, MOdeling and Simulation (SAMOS '09), July 2009.

[9] E. Hart and P. Ross. GAVEL - A New Tool for Genetic Algorithm
Visualization, IEEE Trans on Evolutionary Computation, Vol. 5, No.
4, pp. 335-348, August 2001.

[10] H. Pohlheim. Visualization of evolutionary algorithms — set of
standard techniques and multidimensional visualization, in the Pro-
ceedings of the 1999 Genetic and Evolutionary Computation Con-
ference GECCO’99, Morgan Kaufmann, Los Altos, CA, 1999, pp.
533–540.

[11] T.D. Collins. Applying software visualization technology to support
the use of evolutionary algorithms, Journal of Visual Language and
Computing 14 (2003), 123-150.

[12] Sammon, J. W. jr. A Nonlinear Mapping for Data Structure Analy-
sis. IEEE Transactions on Computers, vol. C-18, no. 5, pp. 401-409,
1969.

