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Abstract— The complexity of today’s embedded systems forces 
designers to model and simulate systems and their components to 
explore the wide range of design choices. Such design space ex-
ploration is especially needed during the early design stages, 
where the design space is at its largest.  

Due to the exponential design space in real problems, evaluat-
ing and comparing every single point in the design space is infea-
sible. Therefore, heuristic search techniques, such as Evolutionary 
Algorithms (EA), are often used to search the design space for 
optimum design points using only a finite number of design-point 
evaluations. Understanding how the design space was searched by 
such searching algorithms and providing insight into the “land-
scape” of the design space, may be of invaluable importance to the 
designer, To this end, this paper presents a novel interactive visu-
alization application, based on tree visualization, to understand 
the search dynamics of an evolutionary algorithm and to visualize 
where the optimum design points are located in the design space.  
 
Keywords— Design space exploration, multimedia MP-SoC de-
sign, visualization, evolutionary algorithms. 

I. INTRODUCTION 
The complexity of today’s embedded systems forces design-

ers to start with modeling and simulating system components 
and their interactions in the very early design stages. It is there-
fore crucial to have good tools for exploring a wide range of 
design choices, especially during the early design stages, where 
the design space is at its largest. In the Sesame framework [1,2], 
a modeling and simulation environment is developed for the 
efficient design space exploration of multimedia embedded 
systems that are based on heterogeneous Multi-Processor Sys-
tem-on-Chip (MP-SoC) architectures.  Models in Sesame are 
defined at a high level of abstraction and capture only the most 
important characteristics of the components in the system. 

Because Sesame maintains independent application and ar-
chitecture models and relies on the co-simulation of these two 
models in the performance evaluation of the composed embed-
ded system, it is in need of an explicit mapping step which re-
lates application tasks (i.e., processes) onto architecture com-
ponents  (typically processors). Each mapping decision taken 
in this step corresponds to a single point in the design space. In 
order to achieve an optimal design, the designer should ideally 
evaluate and compare every single point in this space. However, 
such exhaustive search quickly becomes infeasible, as the de-

sign space grows exponentially with the sizes of both applica-
tion and architecture model components. 

In general, to trim down an exponential design space into a 
finite set of points, which are more interesting (or superior) 
with respect to some chosen design criteria, design space prun-
ing is used. In [3], the mapping decision problem is formulated 
as a multi-objective combinatorial optimization problem in 
which three criteria are considered: the processing time, power 
consumption and cost of the architecture. To solve this problem, 
an Evolutionary Algorithm (EA) has been used to achieve a set 
of best alternative mapping decisions under the aforementioned 
multiple criteria. To this end, it searches the design space over 
several iterations, called generations, during which the EA 
converges to an optimum.  

As the searched design space still is vast, interpreting all ev-
aluation data and understanding how the EA searched through 
or pruned the design space is also cumbersome. Such analysis 
is, however, essential to the designer as it provides insight into 
the “landscape” of the design space (e.g., indicating which de-
sign parameters are more important than others). Moreover, it 
allows tool designers to optimize their design space exploration 
algorithms to reduce search times.   

To address these problems, this paper presents a novel inter-
active visualization application to understand how an evolu-
tionary algorithm, such as presented in [3], searches the design 
space and where the optimum design points are located. In that 
respect, we visualize the design space as a tree and show how 
the EA searches through the design space over different gen-
erations. To give a rough feeling of how such a visualization 
looks like, Fig. 1 shows a screenshot of our visualization appli-
cation. 

Data visualization in the context of embedded systems de-
sign, and especially for understanding the process of design 
space exploration, is novel and hardly addressed in this domain.  
This paper, therefore, focuses on introducing and presenting 
the concepts for visualization of EA-based searches through 
vast design spaces. A follow-up paper will show how these 
visualization techniques can be actually applied to real design 
case studies. The remainder of this paper is organized as fol-
lows. Section II describes related work. In Section III, we ex-
plain how a design space can be modeled as a tree. Section IV 
introduces some techniques we provide in our visualization to 
be able to handle large trees. In Section V, we describe specific



 
Fig. 1 Screenshot of the tree visualization 

 
capabilities that have been added to the tree to show the search 
process of the EA in the design space. Section VI presents a 
small case study with a Motion-JPEG encoder application to 
reiterate the benefits of using visualization in      the design 
exploration process. Finally, Section VII concludes the paper. 
 

II. RELATED WORK 
In the field of computer architecture simulation, and espe-

cially in the area of system-level design space exploration, little 
research has been undertaken on visualization of simulation 
data in exploring alternative architectural solutions. Most of the 
visualization work in this area focuses on educational purposes 
(e.g., [4,5]), or only provides some basic support for the visu-
alization of simulation results in the form of 2D (and some-
times 3D) graphs. 

The work of [6,7] provides advanced and generic visualiza-
tion support, but tries to do so for a wide range of computer 
system related information which may not necessarily be ap-
plicable to computer architecture simulations and in particular 
to design space exploration, with its own domain-specific re-
quirements. 

In [8], an interactive visual tool is presented to visualize the 
results from system-level design space exploration experiments. 
The simulation results are visualized using a coordinated, 
multiple-view approach which enables users to understand the 
information through different perspectives. It is possible to 

compare different design points with respect to various charac-
teristics and gain more insight in the performance landscape of 
the design space. But this tool does not provide any insight in 
the searching process as performed by e.g. an EA. For example, 
there is no way to distinguish between the design points 
searched and evaluated in the different generations.  

There are only a few research efforts addressing the visuali-
zation of EAs. Most visualization approaches are simple line 
plots. Commonly, a diagram of the population’s fitness versus 
generation number is used to study the quality of the solutions 
over the generations [9]. Although such a diagram shows the 
improvements in the quality of the solutions considered during 
EA search process, it does not show anything about the proper-
ties of the solutions being searched, or the regions of the search 
space being explored. 

More complex techniques have focused on how to display 
the progress of the EA in variables (parameters) space or objec-
tives space [10,11]. Usually they use 2D or 3D plots in which 
one axis represents the generation numbers and the others show 
variables or objectives. Therefore, two separate views are 
needed to show the distribution of the population in both vari-
ables and objectives spaces. Furthermore, due to the large 
number of dimensions in practical problems, techniques such 
as Sammon Mapping [12] should be used to transform higher 
dimensional search spaces into smaller ones. Tree visualization, 
as presented in this paper, enables us to easily visualize more 
than three dimensions as well as to show variables and objec-
tives in one view. 



III. TREE VISUALIZATION 

A. Modeling the design space as a tree 
We visualize the design space as a tree in which each level 

shows one aspect of the design space such as the number of 
processors, type of processors, etc.  Because of the human 
visual limitation to three dimensions, most of the commonly 
used techniques for visualization can visualize data sets de-
pendent on two or three variables. Modeling the design space 
as a tree enables us to easily visualize multivariate data without 
the limitation on the number of variables as each level of the 
tree shows one dimension of design space. Furthermore, both 
categorical and numerical data types can be shown in one view. 
Variables which are more distinctive and are more important 
should be located at the higher levels of the tree. 

A simple scenario is depicted in Fig. 2, illustrating a tree 
model of a small design space. In this case, the design space 
has three parameters: number of processors (maximum 2 pro-
cessors), type of processors (one general purpose microproces-
sor (mP), two ASIPs and two Application Specific Integrated 
Circuits (ASICs)) and scheduling policy (static). These param-
eters are shown in the first three levels of the tree. Leaves show 
the mapping decision corresponding to a single point in the 
design space, i.e., which application process is mapped onto 
what resource. We should note that Fig. 2 is just for illustration 
purposes; in reality, we can deal with larger systems having 
more processors, processor types, etc.  

 

 
Fig. 2 Modeling design space as a tree 

 
We refer to leaf nodes as data nodes and all other nodes as 

parameter nodes. Colors of the nodes can be used to show 
properties of the nodes. For example, in Section V.C we use 
the colors to visualize the performance. The order of the sibling 
nodes (nodes with the same parents) can also specify some-
thing. Here, they are just alphabetically ordered. 

One of the drawbacks of the tree presented in Fig. 2 is that 
all the data nodes are at the same level and, as the number of 
design points increases, the tree becomes wider and more diffi-
cult to explore. Furthermore, it is hard to distinguish between 
sibling leaves. In the next section, we introduce a clustering 
mechanism to group the design points based on particular fea-
tures. 

 
 
 

B. Clustering 
Clustering helps a user to easier interpret the design points 

and prevent the tree of becoming deformed and too wide. By 
clustering the design points, we distribute them at some levels 
instead of putting all of them at one level. Depending on the 
final aim of the clustering, the user can define a similarity cri-
terion. 

In this paper, the similarity criterion is mapping distance. 
We define the mapping distance between two mappings as the 
minimum number of application-task reallocations needed to 
transform the one mapping into the other. To give an example, 
let’s assume two mappings {{1}, {2, 3, 4}} and {{1, 4}, {2, 
3}}. Mapping {{1}, {2, 3, 4}} means that application task 1 is 
mapped onto the first processor and tasks 2, 3, 4 are mapped 
onto the second processor. The distance between these two 
mappings is one because one reallocation is needed to trans-
form the first to the second mapping (task 4 should be executed 
on processor one instead of processor two). 

We use the following algorithm to cluster the design points:   
1. Put all design points (leaf nodes in Fig. 2) with the same 

parent in the same cluster. 
2. Choose the design point with the smallest processing 

time as a cluster seed. 
3. For each point in the cluster (except the cluster seed), 

calculate the mapping distance between the point and 
the cluster seed. 

4. Put all points with the same mapping distance in the 
same cluster. 

 

 
Fig. 3 Clustering design points 

 
Fig. 3 shows the same tree as in Fig. 2 after applying the 

clustering algorithm, which added two extra levels to the tree: 
the cluster seed level which holds the seed and the distance 
level which contains the distance value. The rest of the design 
points are then children of the corresponding distance node. 
Therefore, our data nodes are now distributed over two levels: 
the cluster seed level and the leaves. 

The design points with the same parent at the cluster seed 
level, have the same architecture components but the way that 
application tasks are mapped onto those components is differ-
ent. This difference in mapping causes different processing 
times. Clustering these design points according to the mapping 



distance enables us to investigate the effects of mapping on the 
processing time. For example, design points might have a 
completely different processing time, but a very small mapping 
distance. This shows that the application tasks which are dif-
ferently mapped are critical and mapping those tasks on the 
same processors may yield good performance. On the other 
hand, design points might have almost the same processing 
time, but with a large mapping distance. This may show that 
for the tasks mapped on different processors in these mappings, 
the type of the processors is not important. 

IV. HANDLING LARGE TREES 
Although clustering the design points may reduce the com-

plexity of interpreting the tree data, it is still possible that the 
user encounters a very big tree. To tackle this problem, we 
have added several other capabilities to our visualization appli-
cation, which are explained in the following subsections.  

A. Zoom 
In our visualization tool, among normal zoom features, we 

provide two extra zooming features for improved exploring: 
bird view and satellite view. 

Bird view, depicted in Fig. 4, is a window moving with the 
mouse-pointer and shows a scene with a specified zoom factor 
and works like a magnifier. So, by simply hovering over the 
tree with the mouse-pointer, it is possible to zoom in on an area 
of interest to show its details. Bird view is helpful when the 
tree is big and the user wants to see the whole picture in one 
scene and still wants to view the details such as the labels of 
nodes. 

 
Fig. 4 Bird View 

Satellite view, shown at the bottom of Fig. 1, gives an over-
all, smaller scale view of the entire scene, which allows the 
user to navigate quickly across the view. It also enables the 
user to zoom in on certain parts of the scene to focus on certain 
nodes in the tree without losing track of the position in the en-
tire scene. 

B. Hiding nodes 
To reduce the number of visible nodes in the tree to make it 

smaller for better viewing, three options are provided in our 
tool: 

1)  Hiding sub trees without data nodes 
Since some areas of the design space are not visited by the 

searching algorithm (e.g., they are not interesting enough so we 
do not have evaluation data for those parts), it should be pos-
sible to hide the sub trees of the nodes that have no data. This 
way, the user can focus on the sub trees which are more im-
portant and can easily see which parts of the tree are searched 
by EA. This is depicted in Fig. 5 and Fig. 6. Here, Fig. 6 has 
omitted the “empty” tree nodes, which are shown in Fig. 5 as 
the uncolored nodes. 

 
Fig. 5 The entire design space 

 
Fig. 6 The data design space only 



 
2)  Hiding duplicate design points 

During the process of design space exploration using an EA, 
some design points that have a good performance may be re-
generated in different generations. Therefore, there might be 
some duplicate design points in different generations. The user 
can select to see only the unique design points in the tree or he 
can select to see all design points generated by the EA. To dis-
tinguish copy design points from the main design points (gen-
erated in the most recent generation), the copies are stacked 
behind the corresponding main design points and are sorted by 
generation number. 

Copies near the main design points are generated later than 
copies far from the main design points. For the main design 
points, the generation number is written inside a pentagon at 
the bottom of the node and for the copies the generation num-
ber is shown in their tooltip. A tooltip is a small pop-up win-
dow that appears when a user hovers the mouse pointer over an 
element. The pentagon will be described in more detail in Sec-
tion V.B.  

For better vision, the background color of the duplicate 
nodes becomes gradually lighter from front to the rear. To pre-
vent the scene from becoming cluttered, the edges between 
duplicate nodes and their parents are invisible. Hiding (and 
showing) duplicate design points is illustrated in Fig. 7 and 8. 

 

 
Fig. 7 All design points (including duplicate nodes) 

 

 
Fig. 8 Unique design points only 

3)  Hiding sub trees 
If the user is not interested in some parts of the tree, then he 

is able to hide them in order to make the tree smaller and pay 
more attention to other nodes. By double clicking on a node, its 
sub tree becomes invisible and a blue triangle appears at the 
bottom of the node specifying that the children of the node are 
hidden. The size of the triangle represents the size of the sub 
tree. The bigger the triangle, the more nodes in the sub tree. By 
double clicking again, the sub tree becomes visible and the 
blue triangle is removed. Fig. 9 is the same as Fig. 7 in which 
the children of some nodes are hidden. As can be seen in Fig. 7, 
distance node ‘3’ has more children than distance node ‘2’. 
This is shown by a bigger blue triangle in Fig. 9. 

It should be mentioned that by hiding a node, the entire tree 
will be redrawn, meaning that the empty space from that node 
will be used by the other nodes. We recalculate the location of 
visible nodes to optimize their fit to the screen. 

 
Fig. 9 Hidden sub trees 



C. Filtering 
Sometimes, the user wants to consider only the design points 

generated in some specific generation(s). For example, show-
ing only design points generated in the three last generations or 
comparing design points in the three first generations with the 
three last generations, and so on. Therefore, we provide a filter 
option. The user can simply add (or remove) generation num-
bers to the list of generation numbers that need to be visualized. 
Two kinds of filtering are available: local and global. In local 
filtering, only design points with their generation numbers in 
the list are visible and the others become invisible. The param-
eter nodes with at least one child in the generation list are still 
visible. In global filtering, all nodes are visible but the nodes 
with generation numbers inside the list become highlighted. So 
the user can understand the position of the selected nodes in the 
entire tree. 

In Fig. 10, design points for the three last generations are 
shown. 

 
Fig. 10 (left) global filtering and (right) local filtering 

V. EVOLUTIONARY ALGORITHM SPECIFIC CAPABILITIES 
Apart from all the aforementioned capabilities, we also 

added some more features specifically for studying the search 
as performed by the Evolutionary Algorithm (EA). These fea-
tures visualize the EA generations step by step, showing which 
data has been generated when and where in the tree. Further-
more, they highlight the progress of the algorithm in the tree.  
The color of the nodes and edges, the texts inside the nodes, the 
thickness of the edges, etc. each show a different property of 
the design points. 

Note that in our visualization we have the capability of 
showing multiple evaluation metrics, but in this paper we con-
sider only one evaluation criterion, which is processing time. In 
the future, we will also consider multiple objectives. 

A. Showing Mapping Decisions 
As we mentioned before, in Sesame, each mapping decision 

that is evaluated, corresponds to a single point in the design 
space. In the tree, each data node’s label shows the mapping 

decision. For example, if a data node is labeled with “{1,3}, 
{2,4}”, it shows that application tasks one and three are exe-
cuted on one processor and tasks two and four are executed on 
another one. The order of the task sets are in the same order as 
their parents at the type level. For example, if the label of the 
parent at the type level is "ASIP_mP", this means that tasks 
one and three are executed on an ASIP and tasks two and four 
are executed on a microprocessor (mP). 

B. Showing Generation Numbers 
It is important to know which design point is generated at 

what EA generation. To visualize this, we use a pentagon labe-
led with the generation number. For data nodes, at the cluster 
seed level, this pentagon is drawn on the upper left of the node 
and for the other data nodes (data nodes in leaves) it is at the 
bottom. To prevent the scene from being cluttered, the genera-
tion number of duplicate nodes is shown as a tooltip. If the 
mouse pointer goes over these nodes, the generation number is 
shown in a balloon. Sibling nodes at the data level are sorted 
by their generation numbers.  

As the EA gradually converges to a (set of) optimum design 
point(s), we expect better design points in the later generations. 
To show this in the visualization, the background color of the 
pentagon gradually becomes darker from the first to the last 
generation. Furthermore, the color and thickness of the edges 
show the progress. The color of each edge is the same as the 
color of the pentagon with the highest generation number in its 
sub tree. Also, the edges with a higher generation number are 
thicker. As a result, the path from the root to the last generated 
data nodes is the darkest and thickest path. Edges that have no 
data node in their sub tree are shown in gray using dashed lines. 
Using this technique, it is very easy to identify which parts of 
the tree are searched in the later stages and which parts of the 
tree are not searched anymore. Fig. 11 illustrates how we show 
the generation numbers in our visualization application. 

 
 

 
Fig. 11 EA Generations 



C. Showing the performance (processing time) 
In this paper, we consider only processing time as an objec-

tive and we use color coding to show it. Colors are varied from 
yellow to red with all color grades in between. Nodes with the 
lowest processing time are yellow and nodes with the highest 
processing time are red. In Fig. 11, the design point in the clus-
ter seed level with two processors has a lower processing time 
than the design point in the cluster seed level with one proces-
sor. 

Parameter nodes, however, do not represent single design 
points and therefore do not have the direct notion of processing 
time; only their child data nodes have. For this reason, there are 
three options to color the parameter nodes: based on the aver-
age, minimum, or maximum processing time of the child data 
nodes. In Fig. 11, the average processing time is chosen. The 
color of parameter nodes that have no data node in their sub 
trees is white. 

D. Step by step animation of the EA 
Our visualization application allows the user to trace the EA 

search process. The user can define a desired generation num-
ber and a window size. This means that the user wants to view 
the generated data ending at the desired generation number and 
within the window. For example, if the desired generation 
number is 10 and the window size is 4, the data generated in 
generations 7,8,9 and 10 are shown. Doing so, the tree is re-
drawn and contains only the design points generated up to the 
desired generation number and within the window. The user 
can also move forward and backward using next and previous 
buttons. For the aforementioned example, moving next means 
that the generations 8,9,10, and 11 are shown. Fig. 12 shows a 
snapshot of the first 4 EA generations using a step-by-step 
animation. 

 

 
Fig. 12 Step by step animation (desired generation is 4) 

 
When moving through the generations (i.e., replaying parts 

of, or even the entire, search process), it is important to know 
which data nodes are added in each generation (i.e., new design 

points, added to the population of the EA). To show this, the 
design points generated in the current generation are blinking. 
If a parameter node which had no data node in the previous 
step, receives its first data node in the current generation, it 
starts blinking as well.   

For the hidden sub trees, in case of any data node addition, 
the blue triangle starts blinking and if the user is interested in 
viewing that sub tree, he can unhide it. 

In Fig. 13, nodes with a green border are added in the fifth 
generation. A green triangle indicates that its parent has at least 
one new child in the current generation. 
 

 
Fig. 13 Step by step animation (desired generation is 5) 

VI. CASE STUDY: MOTION-JPEG ENCODER 
In this section, we present a small case study with a real ap-

plication to reiterate the benefits of using visualization in the 
design space exploration process. This case study is by no 
means meant as an effort towards a detailed study of the design 
space exploration data for a particular design. As was men-
tioned earlier, a follow-up paper will provide a detailed and 
quantitative design space exploration study in which the pre-
sented visualization techniques are actually deployed.  

In this case study, we map a Motion-JPEG (M-JPEG) en-
coder to an MP-SoC platform architecture that consists of five 
processors: a general-purpose microprocessor (mP), two ASIPs 
and two Application Specific Integrated Circuits (ASICs). 
Using a multi-objective evolutionary optimizer [3], we intend 
to find promising instances of this platform architecture that 
lead to a good mapping (in terms of processing time) of the M-
JPEG encoder application.  

It should be mentioned that the multi-objective evolutionary 
optimizer in [3] considers three criteria: processing time, power, 
and cost but in this case study we focus only on processing 
time, while we have fixed the values for the other criteria. In 
the future, we will extend our visualization to consider the 
other criteria as well. 

Fig. 14 shows a snapshot of the visualization of the  
M-JPEG case study. Just by looking at the picture, one can 
easily draw conclusions with respect to the following issues: 



• Which are the parts of the design space that are not 
searched at all (no design point is generated there). As 
we have mentioned before, nodes with a white color 
have no data. As can be seen in Fig. 14, there are e.g. no 
design points (i.e., MP-SoC platforms) with five 
processors or two ASICs.  

• Which are the parts of the design space that are searched 
more often by the EA. In these areas, the tree provides 
more design points and the sub trees of the 
corresponding nodes are bigger. 

• Which are the design points that are frequently re-
generated. Design points with a bigger stack behind 
them are re-generated more often during the EA’s 
search. As can be seen in Fig. 14, the better performing 
design points (node color is yellow) are repeated more 
than design points with a poor performance (node color 
is red). 

• The number of unique design points generated by the 
EA. Duplicate design points are stacked behind their 
main design point.  

• Which are the parts of the design space that are searched 
in later generations of the EA. The edges in these paths 
are thicker and darker. Subsequently, the designer can 
gain insight into the characteristics of design points in 
these later generations that are close to the optimum 
(i.e., what characteristics make a design point to be a 
good one?). 

• Which are the parts of the tree that contain the better 
performing design points as indicated by the color 
coding.  

 
Clearly, such visual analysis of the design space exploration 
process, as described above, allows the designer to better 
understand the design space he is dealing with. Moreover, it 
may help to improve the EA search algorithm (e.g., using 
domain specific knowledge) to more quickly converge to a 
global optimum. 
 

VII. CONCLUSION 
In this paper, we presented a visualization application that 

helps designers to understand the search behaviour in EA-
based design space exploration as well as to gain insight into 
the landscape of the design space. That is, understanding the 
characteristics of design points with good performance and the 
relationships between design parameters and their effects on 
performance. In our application, we provide several capabili-
ties to be able to handle large design spaces and to represent 
the progress of the EA during the process of design space ex-
ploration. We have also briefly illustrated the benefits of such 
visualization using a Motion-JPEG encoder case study. 
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